1. Technical Field
The present invention relates to a synthetic resin thin-walled bottle container comprising a mouth portion for filling or discharging contents, a body portion extending from the mouth portion, and a heel portion provided at a bottom part of the body portion, for placing the body portion thereon in a self-supporting manner.
2. Related Art
Synthetic resin thin-walled bottle containers are thinner than ordinary bottle containers and are thus capable of achieving light-weighted containers and reduction in the volume of wastes. As such, this sort of synthetic resin containers are used as refill containers for detergents for kitchen use, bathroom use and the like.
Meanwhile, the thin-walled bottle containers are sometimes used as they stand, and are thus provided with an annular heel portion near a bottom surface of the container's body portion so as to cause the container itself to self-support on a supporting surface such as shelf or table. Further, the heel portion comprises a sidewall having a curved surface bulged toward the outside of the container relative to said sidewall, a flat and annular bottom face region continuous to the sidewall, and a bottom-up region continuous to the bottom face region and inwardly recessed toward the vicinity of a bottle's center axis.
This sort of thin-walled bottle containers are stretch blow molded from a thermoplastic synthetic resin such as polypropylene (PP), so that the molded article (bottle container) has a non-uniform wall thickness, thereby failing to completely eliminate occurrence of so-called “thickness deviation”. Therefore, when it is contemplated to further reduce the resin amount in a conventional thin-walled bottle container in view of environmental problems, the bottle container in a contents-filled state may cause inclination and/or buckling at a thin-walled region of the heel portion where the thickness-deviation has occurred, under a load applied in a center axis direction of the container.
It is therefore an object to be achieved by the present invention, to provide a synthetic resin thin-walled bottle container which, when filled with contents, can be stably self-supported without causing inclination or buckling under a load applied in the center axis direction of the container, while allowing reduction of the resin amount.
To achieve such an object, the present invention provides a synthetic resin thin-walled bottle container comprising a mouth portion for filling or discharging contents, a body portion extending from the mouth portion, and a heel portion provided at a bottom part of the body portion for placing, thereon, the body portion in a self-supporting manner, wherein the heel portion comprises a sidewall having a curved surface recessed toward the inside of the container.
According to the present invention, the heel portion of the synthetic resin thin-walled bottle container comprises the sidewall formed of the curved surface recessed toward the inside of the container in a so-called “reverse R” manner. The sidewall constituted in such reverse R manner produces an increased restoring force even when the container is applied with a load in the center axis direction, for example. It is therefore possible to provide a synthetic resin thin-walled bottle container which, even when filled with contents, can be more stably self-supported without causing inclination or buckling under a load applied in the center axis direction, while allowing reduction of the resin amount.
It is preferred that the heel portion further comprises a bottom face region formed of a curved surface continuous to the sidewall and bulged toward the outside of the bottle container relative to said sidewall, a bottom-up region inwardly recessed toward the vicinity of the bottle center axis, and a rising region for smoothly connecting the bottom face region and the bottom-up region to each other. In this instance, the bottom face region and the rising region are bulged toward the underside of the bottle container when it is filled with the contents due to the thin-walled nature of the bottle container. However, when such a container is placed on a supporting surface, these bulged portions are brought to form a flat surface to be closely contacted with the supporting surface. It is thus possible to further improve the stability of the bottle container when the same is self-supported.
a) and 1(b) are a side view and a bottom view, respectively, showing a bottle container according to a first embodiment of the present invention.
Some preferred embodiments of the present invention will be more fully described below with reference to the accompanying drawings.
a) and 1(b) are a side view and a bottom view, respectively, showing a bottle container 10 according to a first embodiment of the present invention.
The bottle container 10 is a thin-walled one, having a volume of 560 cc and obtained by stretch blow molding a PP (polypropylene) resin in an amount of 6 g, and comprises, as shown in
More specifically, for example, the mouth portion 11 has a structure, onto and from which a screw cap (not shown) can be fitted and detached. In this instance, the cap to be fitted onto the mouth portion 11 is not limited to the screw cap, and there may be alternatively used existing ones such as a hinge-type cap or irremovable virgin cap. Further, the body portion 12 has a sidewall provided with a reinforcing portion 12a in a diamond-cut pattern at a shoulder portion of the body portion adjacent to the mouth portion 11, and a gripping recess 12b for enhancing the gripping force to be applied by users.
By way of example, the sidewall 14 at the heel portion H10 is constituted of a curved surface having a radius of curvature R11 and connected to the sidewall of the body portion 12 through a curved surface having a radius of curvature R10. The bottom face region 15 is constituted of a curved surface having a radius of curvature R12 and continuous to the sidewall 14. Further, the bottom-up region 16 is constituted of a curved surface having a radius of curvature R13, and provided with an annular groove 16a around the center axis A, the annular groove having been formed by holding an end of a preform so as to avoid an axis deviation thereof upon stretching the preform. The bottom face region 15 and the bottom-up region 16 are connected to each other through the rising region 17 having a larger radius of curvature, i.e., constituted of a curved surface having a radius of curvature R14 and smoothly continued along a tangential line of the bottom face region 15.
Since such a bottle container is molded by stretch blow molding a thermoplastic resin such as polypropylene (PP), as described above, it is practically impossible to completely eliminate thickness deviation at those parts constituting the angled faces such as the heel portion. Therefore, when the resin amount of the thin-walled bottle container is reduced, and such container as being internally filled with contents is to be self-supported, the container tend to give rise to inclination and/or buckling at the thin-walled region of the heel portion where a thickness-deviation has occurred.
Since, however, the heel portion H10 of the thin-walled bottle container 10 according to the present embodiment comprises the sidewall 14 formed of the curved surface that is recessed toward the inside of the container 10 (in a so-called “reverse R” manner), the sidewall 14 constituted in such reverse R manner has an increased restoring force even when the side surface of the container 10 is applied with a lateral load, for example. It is thus possible, according to the present embodiment, to provide a synthetic resin thin-walled bottle container, which can be more stably self-supported even when filled with contents, without causing inclination or buckling, while allowing reduction of the resin amount.
According to the present embodiment, in particular, the heel portion H10 comprises the bottom face region 15 formed of the curved surface continuous to the sidewall 14 and bulged toward the outside of the bottle container 10 relative to said sidewall 14, the bottom-up region 16 inwardly recessed toward the vicinity of the bottle center axis A, and the rising region 17 for continuously connecting the bottom face region 15 and bottom-up region 16 to each other. The bottom face region 15 and rising region 17 are bulged toward the underside of the container 10 when it is filled with the contents, due to the thin-walled nature of the container 10. However, when the container is placed on the supporting surface such as shelf or table, these bulged portions are brought to form a flat surface to be closely contacted with the supporting surface, thereby further improving the stability of the container 10 when the same is self-supported.
The thin-walled bottle container 20 according to the second embodiment includes, as shown in
Similarly, the thin-walled bottle container 30 according to the third embodiment shown in
As shown in
With reference to
The test results are illustrated in
As can be appreciated from
Although the present invention has been described above with reference to the illustrated preferred embodiments, it is apparent that various modifications may be made without departing from the scope of the appended claims. For example, the amount of the resin constituting the thin-walled bottle container is not limited to 6 g for the container volume of 560 ml, and may be variously modified to 9 g through 11 g equivalently to typical thin-walled bottle containers. It is also possible to appropriately modify the volume of the bottle container to 350 ml, 500 ml, 1,000 ml, 2,000 ml or the like, as required. Furthermore, the shape of the bottle body portion may be a typical one without reinforcing portion 12a and gripping recess 12b such as those provided in the first embodiment.
Number | Date | Country | Kind |
---|---|---|---|
2002-022868 | Jan 2002 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP03/00854 | 1/29/2003 | WO | 00 | 12/20/2004 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/064269 | 8/7/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3366290 | Mojonnier et al. | Jan 1968 | A |
3409167 | Blanchard | Nov 1968 | A |
3973693 | Brocklehurst | Aug 1976 | A |
4372455 | Cochran | Feb 1983 | A |
4880129 | McHenry et al. | Nov 1989 | A |
6068161 | Soehnlen et al. | May 2000 | A |
6349838 | Saito et al. | Feb 2002 | B1 |
6752284 | Akiyama et al. | Jun 2004 | B1 |
Number | Date | Country |
---|---|---|
69 20 207 | Jan 1970 | DE |
30 00 785 | Jul 1980 | DE |
1 099 638 | May 2001 | EP |
2 759 976 | Aug 1998 | FR |
A 56-48946 | May 1981 | JP |
A 07-149336 | Jun 1995 | JP |
A 10-139029 | May 1998 | JP |
A 10-258824 | Sep 1998 | JP |
Number | Date | Country | |
---|---|---|---|
20050082250 A1 | Apr 2005 | US |