The present invention relates generally to synthetic-rich fabrics and, more particularly to apparel and non-apparel items having improved physical and qualitative properties (e.g. print and dye receptivity, pilling, wicking, UV protection, etc.).
Woven fabrics that are 100% synthetic (e.g., polyesters, polypropylene, nylon, acrylic and elastane fibers), with a tight surface, are a good receptive fabric choice for dye sublimation heat transfer applications. However, 100% synthetic fabrics make poor articles of apparel, and poor non-apparel items (e.g., napkins, tablecloths or aprons), because these fabrics are hydrophobic and repel or are resistant to moisture, and tend to be harsh to the touch.
Some newer 100% polyester fabrics, with hydrophilic wicking ability, have been produced with the intent of addressing these concerns. Several methods are used in order to make synthetic fabrics more amenable to wicking moisture (i.e., make them more hydrophilic).
One method to make synthetic fibers more hydrophilic is to treat them with a wicking agent. These fibers can then be made into yarn that is then constructed into fabric. The resulting fabric is then hydrophilic.
Alternatively, hydrophobic fibers can be made into yarn that is then treated with a wicking agent. When constructed into fabric, this yarn makes the fabric hydrophilic.
Finally, a hydrophobic fabric can be treated with a wicking agent to make it more hydrophilic.
Regardless of the method used to make synthetic fabrics more hydrophilic, many wicking agents or treatments usually wash out after a few washes, and others have been permanently damaged or neutralized after exposure to severe temperature, pressure and dwell time (such as when undergoing a dye sublimation heat-transfer application—exposure to about 400 degrees Fahrenheit and to about 50 pounds of pressure per square inch, more or less, for approximately thirty seconds), and still others may not perform as well.
Until recently, the only fabric available for dye sublimation heat transfer applications that was also suitable for apparel use, was a “plated” fabric. This fabric is made on a double-knit knitting machine. This knitting machine is set up to produce a knit fabric having two distinct sides with different fabric compositions. One example is where the surface or face side is 100% polyester, and the reverse or backside is 100% cotton. The actual blend of the fabric would be 50% polyester, 50% cotton. Although this fabric is print receptive, and the reverse or backside of the fabric (cotton side) is hydrophilic, or receptive of moisture, the fabric demonstrates a slightly lower resolution for a dye sublimation heat transfer print, when compared to another fabric that is 100% synthetic and has the identical heat transfer applied. This is because of slight “grin through”, or the phenomenon where some of the cotton fibers from the reverse, or backside of the fabric, come through to the surface of the fabric.
Cotton fibers do not readily accept the sublimable dyes and the sublimable dyes are not fully colorfast on cotton. In addition, because the polyester side of the fabric remains hydrophobic, it could be uncomfortable when made into apparel. The hydrophobic surface of the polyester can act like a shield or barrier to the cotton side of the fabric, and inhibit the transmission of moisture through to the surface. Also, after going through the process of a dye-sublimation transfer application, the surface of the fabric plates becomes shiny and very slick (or slimy) to the touch. In addition, the plated fabrics tend to shrink more than polyester.
The formula for dye sublimation heat transfer application varies, and depends on the transfer manufacturers' directions. There are many types of dyes and paper substrates that can be used in the manufacture of the heat transfers, in addition to many different ways to make the transfers. Time of application can vary from a low of about 15 seconds to a high of about 35 seconds. Pressure from the application can also vary from a low of about 20 psi, to a high of about 50 psi. Temperatures can also vary from about 340 F to about 400 F, or more.
There is a need in the market place for truly “no-care”, synthetic-rich fabrics that are highly adaptive and print receptive, having the hydrophilic characteristics necessary to withstand the severe conditions of the dye-sublimation heat-transfer process, in addition to having other characteristics that will allow the fabrics to withstand the many washings that will follow, both domestic and commercial/industrial. For apparel, additional desirable characteristics include: functional, comfortable, soft cotton-like feel, affordable, stylish, zero to low shrinkage, ease of cleaning, stain and soil resistant, chlorine bleach resistant, wrinkle resistant, colorfastness, long lasting, durable, and UV protection. Many of the same characteristics that are desirable for apparel are desirable for non-apparel items.
Americans are more concerned about skin cancer than ever before. UV rays damage the skin in many ways, causing premature wrinkles, sunburn, cataracts and skin cancer. The Skin Cancer Foundation (www.skincancerfoundation.org), estimates that nearly 1,000,000 Americans will be diagnosed with skin cancer this year. In addition, one American per hour dies from skin cancer, mostly melanoma, and that 1 in 5 Americans will be diagnosed with skin cancer in their life times. California has the “Billy Law” requiring students in school to wear hats during outside activities. Many states now cover workmen's compensation claims from employees who work outside and develop skin cancer.
Wearing apparel with UV protection helps decrease the damage done by these rays. In warmer climates, it is important to have lighter weight clothing that is both comfortable to wear and has adequate UV protection. Although cotton is highly breathable and comfortable to wear, it proves to be an inadequate material for UV protection. Alternatively, polyester is an excellent material for UV protection, but in order to be comfortable, the fabric would also need to have wicking capabilities necessary for breathablity.
The FTC recently set standards to label apparel for UV protection, requiring that a UPF rating be determined. This standard is nearly identical to the SPF ratings given to sunscreen and cosmetics. UPF stands for “Ultra-violet Protection Factor”. A number is associated with the protective factor of the fabric. There are laboratory tests to determine the UPF rating of a fabric. One test is UV Protection Factor, AATCC 183-2000A. This FTC standard requires that 2 types of invisible UV rays be tested for penetration through the fabric. Both UVA and VB rays are measured. A rating of UPF15+ is the minimum rating of fabric that is allowed for labeling purposes. A rating of UPF 15+, means that less than of 1/15 of all UV rays penetrate the fabric and reach the surface of the skin, and represents a blockage of a minimum of 93.3% of all UV rays. A rating of UPF 50+ is the highest rating possible for labeling purposes of apparel, and means that less than 1/50 of all UV rays penetrate the fabric and reach the surface of the skin, and represents a minimum blockage of a minimum of 98% of all UV rays. There are three levels of protection (see table below).
Most light weight cotton t-shirts and polo shirts only have a UPF rating of UPF 6 or 7. Certainly well under the minimum standards set by the FTC for UV protective clothing. At the present time, apparel that has a UPF40+ to UPF50+ rating is relatively expensive to manufacture. More often than not, these garments are of heavier weight and although they provide exceptional UV protection, are not really practical for warm, hot or tropical weather. There is a need in the market for lightweight %-shirts and polo shirts that have “Excellent” UPF ratings of UPF40+ to UPF50+, rated both dry and wet, with a high degree of wicking, and that are more economical to manufacture. These garments would also be perfect for babies and children, where sun block lotions must be constantly addressed throughout the day.
Iron-on heat transfers, and specifically, dye-sublimation heat-transfers, have been around for many decades. In the iron-on process, sublimable dyes are printed onto a substrate, such as paper. There are many ways to print these transfers, such as: rotary screen, flat screen, roller print or digital. This printed substrate (the dye sublimation heat transfer) is then placed onto a host fabric where it undergoes a process whereby specific heat and specific pressure are applied to the transfer and fabric, or article of apparel or non-apparel, for a specific period of time. The substrate is then removed and the image has been “transferred” into the host fabric. The dyes “explode” under heat and pressure, turning into a gas, and this gas dyes the synthetic fibers in the host fabric, or article of apparel or non-apparel.
A true “no care” article of apparel, or non-apparel item, having undergone a dye sublimation heat transfer process, should have the following beneficial or necessary characteristics: little to zero shrinkage, no twisting and/or torque after repeated washings, doesn't fade and is colorfast, stain and soil resistant, washable at home, pill resistant, wrinkle resistant, soft, chlorine bleach resistant, cotton-like feel, comfortable, resistance to bacteria, odor, mildew and fungus, wicking capability, and UV protection.
The present invention relates to an improved, synthetic-rich, pill-resistant fabric that has additional properties of consistent high rate of wicking after 25, 50, 75 and over 100 washes, on a different wicking test getting a perfect score of 0.00 for many different fabrics after as many as 50 washes, color change rating of up to 4.5 after over 100 domestic washes, zero shrinkage after 5, 10, 20, 30 and 40 commercial/industrial washes on different t-shirts, stain and soil resistant with perfect scores as high as 5 on stains such as hamburger grease, butter sauce, pepperoni, mustard, pizza sauce, cooking oil after 50 washes and score of 4.5 on over 100 domestic washes, pilling rating of about 4.0 after 5 commercial washes, having good general appearance after 5 commercial washes, smoothness of appearance of up to 5.0 after 5 commercial washes, smoothness of seams of up to 5.0 after 5 commercial washes, crocking index up to 5, with a soft hand and cotton-like feel, skewness rating as low as 0.0 after 5 commercial washes, colorfastness rating of up to 5.0, and with UV protection with a rating of UPF50+ in several different fabrics, after repeated washes, both wet and dry, in multiple colors and meeting the FTC labeling requirements of “Excellent”, and articles of apparel and non-apparel items such as bedding, home accessories, home furnishings, and other miscellaneous items, all made of same fabric, that retains all of these properties after the process of a dye sublimation heat-transfer application, and after repeated domestic and commercial/industrial washing.
In accordance with the present invention, the more print receptive synthetic fibers available per square inch on the surface of the host fabric, or article of apparel or non-apparel, the greater the resolution of the transferred image. A fabric with a surface content of 50% cotton and 50% polyester will have roughly half the resolution of a similar fabric with a surface content of 100% polyester, when identical dye sublimation heat transfers are applied to each fabric. This difference would be similar to the difference between watching identical images on an analog TV and on a high definition plasma TV. For this reason, the ideal host fabric for dye sublimation heat-transfer applications is a fabric that has a tight, 100% synthetic surface.
The fabric disclosed herein achieves certain physical and qualitative properties when compared to prior art synthetic fabrics by using a unique combination, in no particular order, of: available polyester fiber, fiber size, yarn type and size, fabric choice and fabric construction, as well as dyeing, chemical additives, drying and finishing techniques. In a preferred embodiment, Fortrel polyester fiber is used in denier sizes ranging, from about 0.75 denier to about 1.5 denier, and made into 100% polyester air-jet yarn, ranging from 10/1 to 30/1 (ten singles to thirty singles), and then knit or woven, as necessary, to create a tight surface construction, so as not to distort the face of the fabric, where fabric is then dyed and treated in a jet-dying machine, where dye and a 5% Polymeric/Surfactant blend, such as Hydrowick® hydrophilic treatment (manufactured by Hydrotex USA, Inc. of Raleigh, N.C., USA) is exhausted into the fabric, where fabric is then dried and “heat-set” to proper width. Knit fabric weight in ounces per square yard preferably range from 4.4 to 10.75, and woven fabric weight is about 8 ounces per square yard.
Synthetic fibers, yarn and fabric are inherently hydrophobic (that is, they tend to repel or are resistant to moisture). Thus, apparel made from synthetic or synthetic rich fabric would hold moisture against the skin and cause the wearer to become hot and uncomfortable. (As used herein, “synthetic-rich” fabric is any fabric that has a significant percentage of synthetic fibers—usually >30%.) In addition, many synthetic fabrics may be shiny, slimy to the touch, and/or have excessive surface pilling after repeated washes.
It has been found that some of the properties that affect the level of UPF protection are: fabric content, thickness of the fabric, tightness of construction, regardless of whether the fabric is wet or dry, if the fabric is stretched, dyes in the fabric or chemical treatments. With respect to UV protection, cotton is one of the worst protective fibers, while polyester proves to be one of the best. A tight construction, where the yarns are very tight, allows less room for the invisible UV rays to penetrate, and will help increase UPF numbers. Dyes have the ability to absorb more or less of the UV rays, and generally white provides less UV protection than colors. Thicker fabrics have excellent UPF numbers, but tend to be uncomfortable to wear under warm, tropical or summer-time conditions.
The ideal fabric for people that are outside for pleasure or recreation would be a lightweight, 100% polyester, jersey fabric having ultraviolet UPF protection (according to the FTC guidelines above) of as much as UPF50+, a high rate of wicking, soft-hand and cotton like feel, jersey fabric, with a weight of about 5.5 to 7.5 ounces per square yard. Fabrics having the aforementioned qualities, of this weight, mirror much of the most popular clothing people wear today in cotton and cotton blends. However, cotton does not offer much UV protection, certainly not within the FTC guidelines. In contrast, t-shirts, polo shirts, as well as most beach cover-ups made of 100% polyester fabric, would protect millions of people from unnecessary UV exposure.
A fabric with a UPF rating when wet would make ideal clothing for the beach for adults, kids and babies. Fabric and apparel meeting the above expectations, with sublimation heat transfer image applications, would be a welcome addition to the market place. Other features, such as a high rate of wicking that lasts over 100 washes, colorfastness better than cotton, zero to low shrinkage, zero twisting or torque, exceptional stain and soil release through over 100 washes, low pilling, wrinkle resistant, bacteria, odor, mildew and fungus resistant, colorfast non-fading, wicking heat applied images, soft cotton-like feel and costs competitive with cotton apparel would make this type of apparel perfect for warm, summer-like conditions.
In addition to the millions of people who enjoy being outside for pleasure or recreation, there are also many millions of people who work outside. Therefore, a synthetic-rich, high rate of wicking clothing or uniforms with the highest degree of UV protection meeting the FTC standards, in addition to all the previously-mentioned desirable characteristics, would be ideal. In addition, if the fabric could be made in a high-visibility color, it would be highly desirable in jobs that are inherently dangerous (e.g., department of transportation workers, forest rangers, night watchman, etc.). Fabric and apparel meeting the above expectations, with sublimation heat transfer image applications, would also be of great benefit, where the sublimation image also has all of the characteristics of the fabric.
There are also millions of employees who work in restaurants. One of the problems faced by these employees, and more so by their employers and business owners, is dealing with stained uniforms, aprons, napkins and tablecloths. Some stains are never fully removed from these items. Some of the worst stains are: corn oil, pepperoni grease (because of the dyes in the pepperoni), hamburger grease, mustard, coffee, pizza sauce and butter. In order to mask residual stains, many restaurants outfit their employees in black, or very dark colored garments, or fabrics with very busy patterns. These restaurant outfits are also treated with stain and soil-release chemicals. However, most stain and soil-release fabrics lose their stain release properties after as few as 15 or 20 washes. Many fast food restaurant chains view a stain release score of 3.5, on a scale of 1 to 5 (where 1 is the poorest score and 5 being the best score with no visible stain), on Soil Release: Oily Stain Method, AATCC 130 test, at 30 washes, to be an excellent score. (It should be noted that such a score would be one of the highest currently available on the market.) There is a similar problem with these same stains on non-apparel items such as aprons, napkins and tablecloths.
Cotton absorbs moisture well, but is difficult to remove many stains. Polyester-cotton blends are better for stain release, but there is still difficulty removing many stains. In addition, the polyester in apparel, and in aprons, napkins and tablecloths, is not as absorbent as cotton (the polyester is hydrophobic), and makes the person wearing the polyester-cotton blend warmer than they would be compared to wearing a 100% cotton fabric, especially in the kitchen near hot ovens and hot fryers. The napkins, tablecloths and aprons made of a polyester-cotton blend also tend to have a harsh hand and feel rough to the touch. A napkin laid in a person's lap (where the legs are bare) becomes uncomfortable with the fabric touching the skin because of the warmth of the fabric and the harsh, rough hand.
Aprons, napkins and tablecloths made of 100% polyester that have some degree of stain and soil release are available. However, although some are hydrophilic with some degree of moisture absorption, the type of polyester fiber used in the manufacture of this fabric has a rough to extremely rough hand and is actually worse when put in the lap on bare legs. A solution for both problem situations of these apparel and non-apparel items, would be synthetic rich fabrics, with long lasting high degree of wicking, long lasting high degree of stain and soil release, zero to low shrinkage, colorfastness, durable, with a soft, cotton-like hand and cotton-like appearance. Additional properties that would be an added benefit for apparel, aprons, napkins and tablecloths would be: zero twist and torque of apparel, low crocking, low pilling, resistance to wrinkles, little to no color change. A huge benefit would be apparel, aprons, napkins and tablecloths made of fabrics that, in addition to the above, dye sublimation heat transfer images applied with logos or advertising, where the image area also wicks, is stain and soil resistant, and even with the image on the fabric, these items can easily be cleaned and still retain their original properties even after over 100 home washings, or can withstand commercial/industrial laundering, with little effect. Ideally, chlorine bleach has no effect on the dyes used to color the polyester fabric, or on any sublimation image that has been transferred onto the fabric.
Most employees who either work outdoors, in restaurants or in kitchens, are provided uniforms by their employers. Many employers or companies use uniform rental companies to provide weekly pickup of dirty uniforms, and to drop off of clean ones. These rental companies operate their own laundry. These uniforms are washed and dried in an industrial laundry environment using much higher wash and dry temperatures than experienced in the home, harsher detergents and chemicals than are used in the home, and much larger loads than are used in the home, ranging from between 100 to 200 lbs, or more, in addition to higher PH levels. Incredible stress is put on these uniforms during a commercial laundry process. Fabric, apparel and non-apparel items must be able to withstand this harsh environment.
Printed or dyed cotton sheets and pillowcases tend to fade after repeated washing. Polyester-cotton blends tend to make a person too warm when under the sheets in warm weather, in addition to not being as soft as cotton. Sheets and pillowcases made of a synthetic, or synthetic rich fabric, with a soft, cotton-like hand, that wicks, has stain and soil release, low pilling, colorfast, with little or no color change, zero to low shrinkage, zero twist and toque, low crocking and no wrinkling, does not exist today. In addition, there are no sheets or pillowcases made that have all of these characteristics in addition to being made of fabric that has dye sublimation heat transfer images with patterns, logos, advertising, etc, where the image area also wicks, is stain and soil resistant, colorfast, low crocking, along with the other characteristics listed above. In accordance with the present invention, non-apparel items such as sheets, pillowcases, napkins, tablecloths, etc., even with the image on the fabric, can be easily cleaned and still retain their properties even after over 100 home washings, are resistant to chlorine bleach and can also withstand repeated commercial/industrial laundering, with little to no effect.
There are nearly an infinite number of fabrics that can be made. Possibly nearly an infinite amount of synthetic and synthetic blends as well. When you extrapolate the various types of fiber available, sizes of fiber, and the types of yarn the fibers can be made into, the blends of the yarn, sizes and counts of yarn, various types of machinery, equipment and processing available to make knits, wovens and non-wovens, the amount and types of fabric jersey, twill, pique, fleece, etc), the needle arrangements and draw factors of yarn being made into fabrics, the various array of dyes and chemicals, choice of colors and shade, dye machines, finishing processes, etc; you would come up with a number for the possible different fabrics available with more than 20 zeros, or more after it (X00,000,000,000,000,000,000), that would represent one particular fabric possibility out of all fabrics possible, that has one set of unique characteristics. The present invention has novel characteristics that are not shown in fabrics that have been produced to date.
In a preferred embodiment, Fortrel polyester fiber, in denier sizes ranging from 0.75 to 1.5 denier were used in the manufacture and process of the various air-jet 100% polyester yarns, used in the construction of several fabrics, as well as some open-end 100% polyester yarn, in counts ranging from 10/1 to 30/1. There are many different types of polyester fiber available. These fibers also come in a multitude of denier sizes. There are also many different kinds of yarn that can be made from this assortment of fibers and types of polyester. Micro-denier fibers (fibers under 1.0 denier, or 1 denier and under, depending on definition) in a yarn help give fabric a softer hand characteristic. Air jet polyester yarn, tends to help give fabric more of an anti-pill characteristic. A tighter construction produces a fabric with a soft hand, anti pilling, with a perfect print receptive surface and good UV protection.
However, these fibers and this yarn are hydrophobic. Knitting of this yarn, in varying counts and combinations ranging from 10/1 to 30/1, was conducted to produce different type fabrics (single knit jersey, double knit and 3-end fleece), some of which are relatively flat on the surface, and tightly constructed in various degrees, without distorting the face of the fabric. In addition, some fabric was knit with up to 3% Spandex (styles S45 and S85), in counts of 40 and 60 denier, another fabric with up to 35% nylon, and another fabric with up to 8% Lycra were used, in addition to the air-jet polyester yarn. Woven fabrics were also constructed using the same Fortrel fiber and air-jet 100% polyester yarn, in counts ranging from 12/1 to 18/1, with a flat surface and tightly constructed without distortion.
Most knit fabrics are produced on circular knitting machines. Fabric was made for both tubular (body size) and open width processing. Both types of fabric were processed for dye and chemical applications, as well as for finishing, and apparel and non-apparel manufacturing. Sizes created for tubular applications ranged from 18″ to 34″, tubular, and from 44″ to 72″, open width. Nearly 20 different machines were used to make various fabrics, and test results varied only slightly. Woven fabric was made for 62″ open width. Weights of fabric ranged from the 4 ounces per square yard range to the 16 ounces per square yard, range, after dyeing and finishing.
In the preferred embodiment, the fabric is scoured, or dyed, in jet-dyeing machines, and treated with an approximate 5% solution of polymeric/surfactant wicking agent (e.g., HydroWick®), which is exhausted into the jet dyeing machine. Other chemicals may be added in the normal course of fabric processing, such as acetic acid, or hydrophilic softeners, or other compounds or chemicals that dye houses and finishers normally use in the process of dyeing and finishing fabrics. Jet dyeing machines are computerized, pressure dyeing machines that dye and treat fabrics utilizing various temperatures, various pressures and varying times of application, in addition to varying formulas and sequences for dyes and chemicals, and different ways to put the dyes and chemicals into the jet-dye machines. Fabric is then finished, dried and synthetic or synthetic rich fabrics are heat-set with temperatures under 400 degrees F., to set widths, minimize shrinkage and give the fabric memory. Additionally, some synthetic or synthetic rich fabrics may require an additional step of heat-setting greige fabric, in the case of fabrics with a 3% or higher percentage of elastane. Also, synthetic or synthetic rich fabrics requiring napping would be heat-set a second time after napping. Fabric is then packaged and either rolled or flat folded is sizes of varying weights.
In addition to treating the fabric with HydroWick, other embodiments of the present invention use Lubril-QCX, SRA-30 or Megafor-ADO, as a wicking agent. All fabric is scoured, or dyed, in jet-dyeing machines, and treated with a solution of a suitable wicking agent, which is exhausted into the jet dyeing machine. Other chemicals may be added in the normal course of fabric processing, such as acetic acid, or hydrophilic softeners, or other compounds or chemicals that dye houses and finishers normally use in the process of dyeing and finishing fabrics. Jet dyeing machines are computerized, pressure dyeing machines that dye and treat fabrics utilizing various temperatures, various pressures and varying times of application, in addition to varying formulas and sequences for dyes and chemicals, and different ways to put the dyes and chemicals into the jet-dye machines. Fabric is then finished, dried and synthetic or synthetic rich fabrics are heat-set with temperatures under 400 degrees F., to set widths, minimize shrinkage and give the fabric memory. Fabric is then packaged and either rolled or flat folded is sizes of varying weights.
A preferred process for making a dyed fabric will be described.
The jet is filled to load volume with 100° F. water. 0.5% defoamer MC-1 is added to water volume. The fabric is then loaded into water/defoamer mixture.
1.0% J-Scour WPE is added to jet and circulated for 4 minutes. 5.0% Hydrowick BC is added to jet and run for 2 minutes.
The temperature of the jet is increased by 3° F. per minute until it reaches 180° F. The fabric is circulated for 5 minutes at this temperature.
The temperature is then raised by 2° F. per minute until 265° F. is reached and held for 30 minutes.
The temperature is then reduced at 2° F. per minute until it reaches 140° F.
The temperature is then reduced to 100° F. over 10 minutes using an overflow wash using 100° F. water.
The jet is then drained and filled to volume with 100° F. water.
The jet then overflow washes for 10 minutes using 100° F. water.
Since no dye is used the above procedure relating to after clear chemicals is not necessary.
The pH is then checked to make sure it is within specified range and the shade is checked to make sure it matches standard.
The fabric is then unloaded and the jet drained.
The fabric is then slit in a conventional manner and heat set on a tenter frame at 380° 390° F.
Napping procedure; at T frame, pad on-NAP ASSIST (lubricant) prior to napping. Then fabric taken back to Tenter frame-run at lower heat than before, at about 350 F, just enough heat to get fabric reoriented into the pre hest set condition.
SCOURED STRETCH FABRIC-composed of more than 5% Elastane (LYCRA/SPANDEX)—Greige fabric is run on the Tenter frame at about 400 F. before scouring. Light weight fabrics as low as low as 3% elastane, or heavy weight fabrics as high as 8% elastane may not need this process. After the greige fabric is run on the Tenter frame, the above procedure is followed.
TUBULAR HEAT SETTING-takes the place of the Tenter frame for heat setting the fabric-Rings pull the fabric to a set width under high heat. Heat setting can take place on greige fabric prior to the above procedure, or on scoured fabric following the above procedure, where comparable temperatures to the Tenter frame are used. This process is ideal for fabric used in body size apparel, such as t-shirts or polo shirts.
The jet is filled to load volume with 100° F. water. 0.5% defoamer MC-1 is added to water volume. The fabric is then loaded into water/defoamer mixture.
1.5% Acetic Acid, 1% Chem Assist T and any dye combination necessary to achieve desired color is added to jet and circulated for 5 minutes. 5.0% Polymeric/Surfactant blend**** is added to jet and run for 2 minutes.
The temperature is then raised by 4° F. per minute until 265° F. is reached and held for 30 minutes.
The temperature is then reduced at 2° F. per minute until it reaches 170° F.
The shade is checked to make sure it matches standard.
3% Pressclear AW is added to the jet and run for 15 minutes.
The temperature is then reduced to 110° F. over 10 minutes using an overflow wash using 100° F. water.
The jet is then drained and filled to volume with 120° F. water.
The jet then overflow washes for 10 minutes using 100° F. water.
The jet is then drained and filled with 80° F. water and run for 5 minutes.
The pH is then checked to make sure it is within specified range and the shade is checked to make sure it matches standard.
The fabric is then unloaded and the jet drained.
The fabric is then slit in a conventional manner and heat set on a Tenter frame at 380°-390° F.
****Polymeric/Surfactant blend—this is a group of chemical treatments known for wicking and stain and soil release properties. Hydrowick, Lubril QCX and SRA-30 are a few of the various treatments used in our fabrics and testing.
Napping procedure; at T frame, pad on-NAP ASSIST (lubricant) prior to napping. Then fabric taken back to Tenter frame-run at lower heat than before, at about 350 F, just enough heat to get fabric reoriented into the pre hest set condition.
DYED STRETCH FABRIC—composed of more than 5% Elastane (LYCRA/SPANDEX)—Greige fabric is run on the Tenter frame at about 400 F. before dyeing. Light weight fabrics as low as low as 3% elastane, or heavy weight fabrics as high as 8% elastane may not need this process. After the greige fabric is run on the Tenter frame, the above procedure is followed.
TUBULAR HEAT SETTING—takes the place of the Tenter frame for heat setting the fabric-Rings pull the fabric to a set width under high heat. Heat setting can take place on greige fabric prior to the above procedure, or on dyed fabric following the above procedure, where comparable temperatures to the Tenter frame are used. This process is ideal for fabric used in body size apparel, such as t-shirts or polo shirts.
Starting with hydrophobic fiber and yarn, research was done to identify the best possible treatment to make the fabric hydrophilic. There are scores of Polymeric/Surfactant blends, and many different ways to treat the fabric with these various agents. HydroWick and Lubril-QCX were chosen because of their long-lasting characteristics, performance, consistent, ease of use and non-toxic characteristics. Most wicking agents in the market place today, according to their literature, similarly claim their products offer long lasting wicking capabilities, soft hand characteristics and some stain and soil-release, in addition to various other claims.
Although available, no hydrophilic fabric softeners were used in the manufacture of any fabric tested. Softness of hand and cotton-like feel were achieved only from choice of, and combination of: fiber, fiber size, yarn, machinery, equipment or process for the manufacture of fabric, type of fabric, and the tension of yarns and tightness of construction, dyes and treatments, wet and dry processing, heat setting, finished size and way the fabric is packaged.
Some types of fiber can be inherently hydrophilic, or fibers can be treated to be hydrophilic, resulting in yarn, and then fabric that is hydrophilic because of the fibers used. In addition, hydrophobic yarn can be treated with various wicking agents that would produce a fabric that is hydrophilic. There are also several other methods for applying a wicking agent to hydrophobic fabric, such as padding on the wicking agent after the fabric is dyed, rather than exhausting it in a jet dyeing machine.
It is important to note that other brands of polyester, other types of synthetic fibers, other denier sizes of fiber, different types of yarn, blending other types of fiber, such as nylon, cotton, elastane or fibers with elastane properties, acrylic, etc, with a synthetic percentage greater than 51%, varying degrees of tightness in the fabric construction, other types of fabric, different dyeing machines and methods of dyeing, different dyes and how the fabric becomes hydrophilic, etc, are all within the scope of this application.
Our resulting fabric (and apparel and non-apparel items made from the same fabric) demonstrates the following characteristics:
Wicking after more than 100 domestic washes
The highest possible ratings on wicking tests at 0, 25, and 50 washes
Zero shrinkage after 5, 10, 20, 30 and 40 commercial/industrial wash and dry cycles, the highest possible ratings
Skewness, twist and torque rating of 0.0 (highest possible rating) after 5 commercial/industrial washes, the highest possible ratings
Smoothness of appearance rating of Class 4.5 out of a possible 5 (5 highest rating possible) after 5 commercial/industrial washes
Smoothness of seams rating of Class 5 out of a possible 5 (5 highest rating possible) after 5 commercial/industrial washes, the highest possible ratings
Color change Class 4.5 out of a possible 5 (5 being the highest rating possible) after 5 commercial washes
Color change Class 4.5 out of a possible 5 (5 being the highest rating possible) after more than 100 domestic washes
Pilling Class 4 out of a possible 5 (5 being the highest rating possible) after 5 commercial/industrial washes
Colorfastness of Class 4.5 out of 5 (5 being the highest rating possible) after more than 100 domestic washes
Resistance to chlorine bleach
Stain resistance of Class 5 after 1, 25 and 50 domestic wash/dry cycles, and a minimum of 4.5 out of 5 (5 being the highest rating possible) after 75 and 101 domestic washes, where uncommon, harsh stain reagents <is that the correct word> were used, such as hamburger grease, pepperoni grease (2 different kinds), mustard, butter sauce, pizza sauce (2 different kinds), coffee, used cooking oil, and corn oil, the highest possible ratings
Extensive UV testing was conducted on different colors and different fabrics. Tests were also conducted on dry and wet fabric, and yet more tests were conducted after 25 and 50 domestic wash and dry cycles. The highest possible rating of UPF50+ was achieved in most tests, both wet and dry, and after 25 and 50 washes. Most of the fabrics were white in color, and all fabrics UPF rating increased after repeated washes. UV protection increases after white fabric undergoes the process of dye sublimation heat transfer application scoring a UPF 15 with a minimum of 94% of all UV rays blocked, ranked as GOOD. And this same fabric showed nearly a 3% increase in overall UV protection when compared to the same white fabric before the sublimation print was applied.
The fabric made in accordance with the present invention in the test for colorfastness after the fabric undergoes a process of dye sublimation heat transfer application achieved a rating of Class 5 out of a possible 5 (where 5 is the highest rating possible).
The fabric made in accordance with the present invention in the test for crocking resistance after the fabric undergoes a process of dye sublimation heat transfer application achieved a rating of Class 5 out of a possible 5 (where 5 is the highest rating possible) for both wet and dry crocking
The fabric made in accordance with the present invention in the test for moisture vapor transmission achieved a rate of 1313 g/m2/24 hr (rated Excellent) after the fabric undergoes a process of dye sublimation heat transfer application.
The fabric also exhibits bacterial, odor, mildew and fungal resistance because of fabric's ability to wick moisture
A t-shirt made out of black jersey fabric, with a weight of about 6 ounces per square yard, finished tubular, and manufactured according to the present invention was tested for evaluation after being subjected to an accelerated, commercial, industrial laundry battery of tests. All commercial laundries use wash and dry procedures that put extreme stress on garments and fabrics. These facilities use higher water temperatures than in home use, have hotter dryer temperatures than in domestic dryers, have load sizes that can, and often exceed 100 lbs to 200 lbs, or more, use stronger types of detergents and chemicals than are typically used in home/domestic washes as well as higher PH levels in wet processing. Numerous tests were conducted to test for the typical shortcomings that befall garments and fabric in this very hostile environment.
Referring to
1.1 This test method is used for the determination of dimensional changes of woven and knitted fabrics made of fibers other than wool when subjected to laundering procedures commonly used in a commercial laundry. A range of laundering test procedures from severe to mild is provided to allow simulation of the types of laundering found in commercial laundry. Five drying test procedures are established to cover the drying techniques used.
1.2 These tests are not accelerated and must be repeated to evaluate dimensional changes for multiple launderings.
2.1 The dimensional change of woven and knitted fabric specimens subjected to washing, drying and restoration procedures typical of commercial laundering are determined by measuring changes in bench mark distances applied to the fabric before laundering.
A t-shirt made out of black jersey fabric, with a weight of about 6 ounces per square yard, finished tubular, and manufactured according to the present invention was tested after 5 repeated wash/dry/restoration cycles. Width and length shrinkage were each 0.0, after 5 wash/dry/restoration cycles as illustrated in
Referring now to
Referring again to
1.1 This test method determines change in skewness in woven and knitted fabrics or twist in garments when subjected to repeated automatic laundering procedures commonly use in the home. Washing and drying procedures used for shrinkage tests and other home laundering tests are specified for this method.
1.2 For some fabrics the degree of twist of fabric in garments is not solely dependent on its behavior in the unsewn state; it also may be dependent on the manner of garment assembly.
A t-shirt made out of black jersey fabric, with a weight of about 6 ounces per square yard, finished tubular, and manufactured according to the present invention was tested after 5 repeated wash/dry/restoration cycles. Skewness and twisting of garments is most apparent at the very bottom of the garment and refers to the way the sides of the garment tend to twist. The results of 0.0 and there is not a better test result possible. (
Referring again to
“Good overall appearance” assessment was given to this t-shirt made of 100% polyester wicking fabric. And was tested after 5 repeated wash/dry/restoration cycles and the pilling test. The results speak for themselves.
As illustrated in
1.1 This test method is designed to evaluate the smoothness appearance of flat fabric specimens after repeated home laundering.
1.2 Any washable fabric may be evaluated for smoothness appearance using this method.
1.3 Fabrics of any construction, such as woven, knit and nonwoven, may be evaluated according to this method.
2.1 Flat fabric specimens are subjected to standard home laundering practices. A choice is provided of hand or machine washing, alternative machine wash cycles and temperatures, and alternative drying procedures. Evaluation is performed using a standard lighting and viewing area by rating the appearance of specimens in comparison with appropriate reference standards.
A t-shirt made out of black jersey fabric, with a weight of about 6 ounces per square yard, finished tubular, and manufactured according to the present invention was tested after 5 repeated wash/dry/restoration cycles. Test results of 4-5, on a scale of 1 to 5 were achieved rating a superior to excellent result. Typically, this fabric demonstrates continuous smoothness, showing almost no wrinkles, even after being rolled up in a ball for weeks at a time. Once shaken and smoothed out, wrinkles virtually disappear.
Referring again to
1.1 This test method is designed to evaluate the smoothness appearance of seams in fabrics after repeated home laundering.
1.2 Any washable fabric may be evaluated for seam smoothness using this method.
1.3 Fabrics of any construction, such as woven, knit and nonwoven, may be evaluated according to this method.
1.4 Techniques for seaming are not outlined, since the purpose is to evaluate fabrics as they will be supplied from manufacturing or as ready for use.
2.1 Seamed fabric specimens are subjected to standard home laundering practices. A choice is provided of hand or machine washing, alternative machine wash cycles and temperatures, and alternative drying procedures. Evaluation is performed using a standard lighting and viewing area by rating the appearance of the specimens in comparison with appropriate reference standards.
A t-shirt made out of black jersey fabric, with a weight of about 6 ounces per square yard, finished tubular, and manufactured according to the present invention was tested after 5 repeated wash/dry/restoration cycles. A visual inspection was conducted observing all seams on the garment. A perfect score of 5, based on a scale of 1 to 5, was achieved after 5 commercial wash/dry/restoration cycles.
Referring now to
1.1 This evaluation procedure describes the use of a Gray Scale for visually evaluating changes in color of textiles resulting from colorfastness tests. For instrumental assessment of change of color of a test specimen refer to AATCC Evaluation Procedure 7. A precise calorimetric specification of the differences between the reference and the 9-Step scale is given as a permanent record against which newly prepared Gray Scales, and old scales that might have changed, can be compared.
A t-shirt made out of black jersey fabric, with a weight of about 6 ounces per square yard, finished tubular, and manufactured according to the present invention was tested after 5 repeated wash/dry/restoration cycles for color change. Test results were a rating of 4-5 on a scale of 1 to 5, on a scale of 1 to 5, showing almost no color change. These results are rated “excellent”.
As illustrated in
As illustrated in
1.1 This test method covers the resistance to the formation of pills and other related surface changes on textile fabrics using the random tumble PILLING tester. The procedure is generally applicable to all types of woven and knitted apparel fabrics.
1.2 Some fabrics that have been treated with a silicone resin may not be satisfactorily tested by this procedure because the silicone resin may transfer onto the cork liners in the test chamber and cause erroneous results.
1.3 The values stated in either SI units or inch-pound units are to be regarded separately as the standard. Within the text, the inch-pound units are to be regarded as the standard. Within the text, the inch-pound units are shown in parentheses. The values stated in each system are not exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the specification.
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
After undergoing 5 wash/dry/restoration industrial cycles, the t-shirt made of 100% polyester wicking fabric in accordance with the present invention was evaluated for pilling. A score of 4, “slight pilling”, was achieved, on a scale of 1 to 5, where 5, “no pilling” is a perfect score.
As shown in
1.1 This test method is designed to measure the ability of fabrics to release oily stains during home laundering.
1.2 This test method is primarily for use by fabric finishers to evaluate the likely performance of soil release finishes in actual use. If this test method is used as part of a contract between buyer and seller, or in any case where comparisons between laboratories are being made, the parties should agree to use the same ballast and detergent. In referee situations, or where standard specifications are involved, 1993 AATCC Standard Reference Detergent should be used.
1.3 The use of this test on garments is not precluded.
2.1 A stain is applied to a test specimen. An amount of the staining substance is forced into the fabric by using a specified weight. The stained fabric is then laundered in a prescribed manner and the residual stain rated on a scale from 5 to 1 by comparison with a stain release replica showing a graduated series of stains.
This 100% polyester yellow jersey fabric with a weight of about 6.3 ounces per square yard, finished open width, and manufactured according to the present invention was washed 101 times and stained with various ingredients that are generally accepted as being some of the most difficult stains to remove in home wash environments: hamburger grease, mustard, pepperoni grease, pizza sauce, butter sauce, and corn oil. Corn oil was not evaluated on the early washes and was added near the end of the test. Fabrics were stained prior to wash, and again at 25, 50, 75, and at 101 washes. The hamburger and pepperoni grease were obtained by cooking these ingredients in the laboratory. The grease was then applied to the fabric by rubbing the grease into the fabric. A 5 represents the best stain removal, and a 1 the poorest stain removal. A rating of 4.5 on each all the stains at 101 washes is phenomenal. Most fabrics lose their satin release ability by 25 or 30 washes. The pepperoni, pizza sauce, and butter sauce were obtained from Domino's Pizza. Please note that the normal staining agent for this test is corn oil or vegetable oil. We believe the stains we chose to test are some of the most difficult common stains, and the test results demonstrate stain and soil release results not previously recorded at 25 washes, and certainly never recorded at 50, 75 or 100 washes.
Hamburger and pepperoni were cooked at the lab to obtain grease for each test, used cooking oil from a fryer was used as another staining agent, as was coffee and pizza sauce. At 50 washes, each fabric received a perfect score of 5 out of 5, for each stain, and each stain completely washed out of the fabric with warm water and a mild detergent. At the time of this application, only 50 washes had been completed out of 101 planned washes. To date, there are no known fabrics having comparable test results at 50 or more washes, nor are there any known fabric tests with similar stain agents.
The results of the ultraviolet tests are presented in
1.1 This standard test method is used to determine the ultraviolet radiation blocked or transmitted by textile fabrics intended to be used for UV protection.
2.1 The transmission of ultraviolet radiation (UV-R) through a specimen is measured on a spectrophotometer or spectroradiometer at known wavelength intervals.
2.1.1 The ultraviolet protection factor (UPF) is computed as the ratio of the erythemally weighted ultraviolet radiation (UV-R) irradiance at the detector with no specimen to the erythemally weighted UV-R irradiance at the detector with a specimen present.
2.1.2 The erythemally weighted UV-R irradiance at the detector with no specimen present is equal to the summation between wavelength intervals of the measured spectral irradiance times the relative spectral effectiveness for the relevant erythemal action spectra times the UV-R weighting function of the appropriate solar radiation spectrum times the appropriate wavelength interval.
2.1.3 The erythemally weighted UV-R irradiance at the detector with a specimen present is equal to the summation between wavelength intervals of the measured spectral irradiance times the relative spectral effectiveness for the relevant erythemal action spectrum times the spectral transmittance for the specimen times the wavelength interval.
2.1.4 The percent blocking of UVA and UVB radiation is also calculated.
This test evaluates the ability of a fabric to block the invisible UVA and UVB rays that are harmful to the skin. The test averages the readings of the blockage and a score is given in terms of a UPF number. UPF stands for Ultraviolet Protection Factor. For the FTC to allow a rating on articles of apparel, or in advertising, this test and evaluation must first be done.
A minimum of rating of 15 is required to for UPF labeling on articles of apparel or in advertising. A rating of UPF 50+ is the highest rating allowable, and blocks a minimum of 98% of al UV rays. The chart above shows the percent of UV rays blocked. A 1 over the UPF number demonstrates the maximum amount of UV rays coming through the fabric. A UPF 15 rating allows 1/15 of UV rays through the fabric. A UPF rating of 50+ allows 1/50 of the UV rays through the fabric.
As one skilled in the art can appreciate, it is common for various colors of the identical fabric to have different UPF ratings. Different dyes and heavier concentrations of the same dye will affect the UV blockage characteristics of the fabric. But it is important to note that white is regarded as the color having the poorest UPF rating.
Referring now to
Referring now to
1.1 These accelerated laundering tests are to evaluate the colorfastness to laundering of textiles which are expected to withstand frequent laundering. The fabric color loss and surface changes resulting from detergent solution and abrasive action of five typical hand, home or commercial launderings, with or without chlorine, are roughly approximated by one 45 min test.
2.1 Specimens are tested under appropriate conditions of temperature, detergent solution, bleaching and abrasive action such that the color change is similar to that occurring in five hand, home or commercial launderings.
The test results for a white fabric printed with dye sublimation heat transfer application (shark pattern) are presented in
1.1 This test method is designed to determine the amount of color transferred from the surface of colored textile materials to other surfaces by rubbing. It is applicable to textiles made from all fibers in the form of yarn or fabric whether dyed, printed or otherwise colored. It is not recommended for use for carpets or for prints where the singling out of areas may be too small using this method.
1.2 Test procedures employing white test cloth squares, both dry and wet with water, are given.
1.3 As washing, drycleaning, shrinkage, ironing, finishing, etc., may affect the degree of color transfer from a material, the test may be made before, after, or before and after such treatment.
2.1 A colored test specimen is rubbed with white crock test cloth under controlled conditions.
2.2 Color transferred to the white test cloth is assessed by a comparison with the Gray Scale for Staining or the Chromatic Transference Scale and a grade is assigned.
Referring to
1.1 These test methods cover the determination of water vapor transmission (WVT) of materials through which the passage of water vapor may be of importance, such as paper, plastic films, other sheet materials, fiberboards, gypsum and plaster products, wood products, and plastics. The test methods are limited to specimens not over 1¼ in. (32 mm) in thickness except as provided in Section 9. Two basic methods, the Desiccant Method and the Water Method, are provided for the measurement of permeance, and two variations include service conditions with one side wetted and service conditions with low humidity on one side and high humidity on the other. Agreement should not be expected between results obtained by different methods. That method should be selected which more nearly approaches the conditions of use.
1.2 The values stated in inch-pound units are to be regarded as the standard. Metric inch-pound conversion factors for WVT, permeance, and permeability are known to people skilled in the art. All conversions of mm Hg to Pa are made at a temperature of 0° C. This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
1.1 Absorbency is one of several factors that determine the suitability of a fabric for a particular use.
2.1 A drop of water is allowed to fall from a fixed height onto the taut surface of a test specimen. The time required for the specular reflection of the water drop is measured and recorded in wetting time.
A drop of distilled water was dropped onto the fabric from a height of 1″. A stopwatch was used to measure the time it took the drop of water to be completely absorbed by the fabric, also known as no specular reflection. The test was stopped at 5.0 seconds or at the point where the surface of the liquid loses its specular reflection. An average of 3 readings were recorded. Averages of less than 0.5 seconds were recorded as 0.0 seconds.
Another way to test the wicking or absorption of fabrics is with the above test. Comparisons can be drawn from one fabric to another. A total of eight fabrics manufactured according to the present invention were testing using this method. There were five different kinds of fabrics totaling eight different weights. Seven fabrics were tested “As Received” and seven fabrics were tested after 50 washes. Only all fabrics received a perfect score of 0.00 seconds for water absorption, and the remaining fabrics received scores of less than one second.
Referring now to
The reports of
The present invention discloses a method of making a synthetic-rich fabric having improved print and dye receptive qualities, stain and soil release qualities, and UV protection qualities. It is to be realized that optimum dimensional relationships for the parts of the invention to include variations and size, materials, shape, form, function and manner of operation, assembly and use are deemed readily apparent and obvious to one skilled in the art. All equivalent relationships to those illustrated in the drawings and described in the specification are intended to be encompassed herein. The foregoing is considered as illustrative only of the principles of the invention. Numerous modifications and changes will readily occur to those skilled in the art, and it is not desired to limit the invention to the exact construction and operation shown and described. All suitable modifications and equivalents that fall within the scope of the present invention and are deemed within the present inventive concept.
The present application claims the benefit under any applicable U.S. and/or PCT statute to U.S. Provisional Application No. 60/647,272 filed 24 Jan. 2005, titled PRINT AND DYE RECEPTIVE SYNTHETIC RICH FABRIC in the name of Frederick Michael Greenspoon. This application incorporates by reference U.S. Provisional Application No. 60/647,272 as if said application was fully set forth herein.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US06/02468 | 1/24/2006 | WO | 00 | 7/23/2007 |
Number | Date | Country | |
---|---|---|---|
60647272 | Jan 2005 | US |