The present invention is related to the field of hypodermic syringes and needles, and particularly to syringe assemblies comprising detachable needle assemblies.
Hypodermic syringes are commonly used by doctors, nurses and other medical staff (including staff trained in cosmetic procedures) for various medical and cosmetic procedures that require injection of medication and other medical or cosmetic substances into patient's bodies. Such syringes are also commonly used by certain patients, as for example, diabetics who may self-inject insulin.
In certain situations where a patient must be given multiple injections, for example for allergy injections, injections of insulin for diabetics or cosmetic applications, it is desirable to avoid dulling of a hypodermic needle over multiple uses, as dulling can lead to decreased accuracy in drug delivery discomfort for the patient. Further, in view of recent industry-wide attention to minimizing medical waste environmental impact, it is desirable to provide syringe assemblies that permit convenient use and interchangeability of needles with syringes, such as providing a single syringe that can be used multiple times on a single patient, where a used needle attached to the barrel of a syringe can quickly and easily be replaced with a fresh and sterile needle.
Even further, in view of the increased cost of healthcare, it is further desirable to provide syringe assemblies that are configured to maximize the fluid injected into a patient's body, thereby decreasing the “dead space” after discharge of the fluid, and thus diminishing un-injected fluid retained in the syringe after injection.
In general, an injection is administered in a manner including a “loading” step—that is, a step wherein the administrator or patient obtains a fully assembled but empty syringe assembly with the plunger fully depressed into the syringe barrel, then “loads” the syringe assembly by inserting the needle portion into a source of fluid (for example, a container that holds a reservoir of the fluid to be injected into the patient). This step is followed by the administrator or patient's pulling out the plunger by sliding it along the longitudinal axis of the barrel in a proximal direction, engaging a vacuum force to load the syringe with a predetermined amount of fluid. The needle is then withdrawn from the container, fully loaded and ready to inject into the patient. Repeated loading can also dull the needle.
Small needles have not traditionally been commonly used, but are gaining in popularity. For example, needles as small as 29-30 gauge are often used to inject insulin, and even needles as small as 31-33 gauge are now becoming more widely used (the “gauge” of a needle is a way of denoting the outer diameter of the needle, and a higher gauge indicates a small needle). Some uses for lower gauge needles include injecting insulin, administering allergy injections and for cosmetic applications such as the administration of Botox®. Further, allergy injections and Botox® injections generally require multiple injections to a patient in a single treatment. Thus, it may be desirable to use smaller needles for comfort and convenience for the patient. However, such needles are generally fragile because of their smaller size, and tend to be undesirable for loading, as their small circumference leads to slow loading and an increased risk of breakage during the handling of the syringe before injection. Moreover, multiple injections and the need to insert the needle through a barrier the top of a bottle or vial of sterile fluid as part of the loading step may all lead to faster dulling of the needle, causing further discomfort to the patient. Thus, the needles that are desirable for certain injections because of their small size are at the same time not so desirable for loading such syringes before injection into the patient. Yet, in the syringe and needle assemblies in the current art, users generally do not have the option of using one needle to load the syringe and another to inject the fluid into the patient. While a large needle may be fast to load, it may cause greater physical pain to the patient during injection, and such pain is multiplied with multiple injections. On the other hand, a small needle can be difficult to load. Thus, a user is often left with two undesirable alternatives.
In the situations where repeated loadings and injections on a single patient are desirable, there are other disadvantages besides increased possibility of breakage and/or dulling of the needle. Because many small syringe assemblies do not have detachable needles, a user may choose to use a fresh syringe for each injection to avoid dulling the needle. Discarding each syringe can be expensive and wasteful. Further, repeated injections over time may incrementally increase wasted fluid, as each injection will result in some fluid that is caught in the “dead space” in the syringe assembly rather than injected into the patient. This can be very expensive in the case of high-cost cosmetic fluid preparations such as Botox®.
Still further, many hypodermic needles are designed with a bevel tip that is cut at an angle, to facilitate smooth injection. The angle of such tip is known as the “bevel angle.” Most bevel tips are cut as a “regular” bevel, which makes the tip appropriate for intramuscular delivery. However, other types of bevels include “short” bevels and “intradermal” bevels (all are based on the angle of the tip). To minimize a patient's discomfort, it is generally desirable to orient a needle such that when injected into the patient, the sharpest and farthest extending point (the “needle point”), rather than the part of the point that is closest to the hub (the “needle heel”) breaks the patient's skin first. In the case of larger (lower gauge) needles known in the art, the bevel angle is visible to the user's naked eye, and therefore this is fairly easy to do. However, in the case of extremely small needles (for example, higher gauges of about 25 and higher), such as those used for multiple injections as discussed herein, the bevel tip may be very small and difficult or impossible to see.
Thus, a need exists for improved syringes that have detachable and interchangeable needles, such that a used needle may be easily removed from a syringe and replaced with a fresh needle; and that also minimize dead space after injection to preserve as much fluid as possible; as well as kits comprising such syringes and needles that permit easy detachment and interchanging of such parts for users of multiple needles.
In certain embodiments, the present invention is directed to a syringe assembly comprising:
(a) a cylindrical barrel having an open proximal end and a distal end, the cylindrical barrel defining an interior space, the interior space comprising a distal portion defining a roof, the interior space configured to receive a plunger capable of sliding relative to the cylindrical barrel from the open proximal end of the cylindrical barrel to the roof;
(b) a plunger having a proximal end and a distal end, the proximal end including a plunger handle and the distal end disposed within the interior space of the cylindrical barrel, the plunger configured to slide relative to the interior space of the cylindrical barrel along the longitudinal axis of the cylindrical barrel, the distal end of the plunger capable of touching the roof on the distal portion of the interior space; and
(c) a needle assembly detachably fixed to the distal end of the cylindrical barrel, the needle assembly comprising a hub and a needle fixed on the hub, wherein the needle comprises a hollow lumen therethrough, the hollow lumen communicating with the interior space of the cylindrical barrel; and
(d) a bevel indicator on the needle assembly;
wherein the distal end of the plunger defines a surface that touches the roof of the cylindrical barrel when the plunger is fully plunged into the cylindrical barrel.
In certain embodiments, the present invention is directed to a syringe assembly comprising:
(a) a cylindrical barrel having an open proximal end and a distal end, the cylindrical barrel defining an interior space, the interior space comprising a distal portion defining a roof, the interior space configured to receive a plunger capable of sliding relative to the cylindrical barrel from the open proximal end of the cylindrical barrel to the roof, the interior space containing fluid;
(b) a plunger having a proximal end and a distal end, the proximal end including a handle portion and the distal end disposed within the interior space of the cylindrical barrel, the plunger configured to slide relative to the interior space of the cylindrical barrel along the longitudinal axis of the cylindrical barrel, the distal end of the plunger having a shape that corresponds to an opposite and complementary shape on the roof of the distal portion of the interior space, such that when the plunger is fully deployed within the cylindrical barrel, the distal end of the plunger and the roof of the distal portion of the interior space mate at an interface to form a seal that forces substantially all of the fluid away from the interface; and
(c) a needle assembly detachably fixed to the distal end of the cylindrical barrel, the needle assembly comprising a hub and a needle fixed on the hub, wherein the needle comprises a hollow lumen therethrough, the hollow lumen communicating with the interior space of the cylindrical barrel; and
(d) a bevel indicator on the needle assembly;
wherein the distal end of the plunger defines a surface that touches the roof of the cylindrical barrel when the plunger is fully plunged into the cylindrical barrel; and wherein the cylindrical barrel and the needle assembly are detachably fixed to each other with a mechanism chosen from: a threading connection, a snap connection and a binary connection.
In certain embodiments, the present invention is directed to a method of delivering a medical or cosmetic fluid to a patient, the method comprising the steps of:
a and 5b show a top outside view and a side outside view, respectively, of a needle assembly (including a needle hub) in accordance with a certain embodiment of the invention.
a-9c show views of the distal end of a barrel in accordance with one embodiment of the present invention.
a and 10b show views of the a needle assembly that fits within the distal end of the barrel shown in
a and 11b show views of the distal end of a barrel in accordance with one embodiment of the present invention.
a and 12b show views of the distal end of a barrel in accordance with one embodiment of the present invention.
a and 13b show a side view and a cross sectional view, respectively, of a needle assembly in accordance with one embodiment of the present invention.
a and 14b show views of the distal end of a barrel in accordance with one embodiment of the present invention.
a-15c shows views of the a needle assembly that fits within the distal end of the barrel shown in
a and 16b show views of another syringe assembly in accordance with one embodiment of the present invention.
a-17c show internal and external cross sectional views, respectively, of another syringe assembly in accordance with another embodiment of the present invention.
The syringe assemblies of the present invention are particularly useful for the injection of medical or cosmetic fluid to treat conditions such as, but not limited to, allergies, hypohydrosis, muscle twitches, crossed eyes, cerebral palsy or the like, that require multiple injections along multiple sites on a patient's face or body in a single procedure or series of procedures. As used herein, the terms “medical or cosmetic fluid” refer to any fluid material that is desired to be delivered to a patient's body by injection using a syringe assembly, for the purposes of treating a medical condition or providing a cosmetic benefit. In certain embodiments, the medical or cosmetic fluid may comprise, but is not limited to any of the following: allergenic and allergy-triggering compositions such as dander, or cosmetic compositions such as botulism toxin (in the case of cosmetic fluids such as Botox®) and muscle relaxants and the like.
In certain embodiments, the present invention is directed to a syringe assembly comprising a detachable needle assembly. In certain embodiments, the needle assembly comprises a hub that is fixed to a needle. The hub and needle may be permanently fixed to each other in any of various ways known in the art, including, for example, a jointing medium such as an adhesive.
In certain embodiments, the needle assembly is detachably fixed to the syringe assembly in various ways, as will be described in greater detail. Further, desirable shield apparatuses for storing such assemblies are discussed in great detail in copending U.S. application Ser. No. ______, filed on the same date as the present application and entitled “Shield Apparatuses and Methods for Storing Syringe Assemblies and Needle Assemblies” the disclosure of which is hereby incorporated by reference in its entirety. Further, kits comprising such assemblies are discussed in great detail in copending U.S. application Ser. No. ______, filed on the same date as the present application and entitled, “Kits Comprising Syringe Assemblies” the disclosure of which is hereby incorporated by reference in its entirety.
The issue of dead space is an ongoing concern in the field of syringes and other surgical instruments that deliver fluids. In many syringes currently used, the internal stopper or plunger has a conical shape that does not fully contact the internal portion of the tube of the syringe. As a result, a primary concern is that whenever currently used syringes are fully deployed, liquid remains in the syringe, generally in the distal end of the barrel that may comprise a conical or cross-sectionally trapezoidal shape, as well as in the length of the needle itself. This liquid is lost after deployment of the syringe assembly, as there is no way to extract it from the syringe or force it from the barrel through the needle.
Attempts have been made to both minimize dead space and provide detachable needle assemblies. See, for example, U.S. Pat. No. 5,782,803 to Jentzen and U.S. Patent Publication No. 2008/0033347 to D'Arrigo. However, these and other references in the art address syringes more traditionally used that have larger needles (generally gauges of far lower than 29) with a capacity of 3 mL and larger. The interchangeability and dead space of lower gauge needles has not been adequately addressed by prior attempts. As discussed herein, higher gauge needles (for example, needles with a gauge of higher than 25, 25-34 or 29, 30, 31, 32 or 33 and even smaller) present unique challenges in the art, including but not limited to their fragility and difficulty to detach due to their small size.
As discussed herein, minimization of dead space is a desirable goal of syringe assemblies, and it has been found here that it can be accomplished via design of the plunger and the syringe barrel. Specifically, the interior of the barrel is configured to receive a plunger, and the plunger has a distal end (which is inserted into the barrel) and a proximal end, which in certain embodiments, comprises a plunger handle to facilitate the user's sliding the plunger along the longitudinal axis of the barrel. The cylindrical barrel itself may further comprise projections on which a user puts his or her hand to facilitate the user's sliding the plunger. The cylindrical barrel comprises an interior cavity, and at the distal portion of the cavity is an interior distal surface, which the plunger touches when fully deployed—that is, fully slid into the barrel such that it can slide no farther in. This interior distal surface of the barrel that the distal end of the plunger ultimately touches when fully deployed, and which represents the farthest surface to which the plunger can travel into the barrel, is often referred to in the art (and will be referred to in the present disclosure) as the “roof” of the barrel.
While at least a portion of the roof of the barrel is a closed surface in order to receive the plunger, the roof of the barrel will, in certain embodiments, comprise at least one opening that permits fluid communication of the interior of the barrel with the needle assembly, thus permitting injection of the fluid from the barrel into the body of a patient via the hollow lumen of the needle when the user depresses the plunger incrementally toward the position of being fully deployed, as shown in
In certain embodiments, the distal end of the plunger may be one of any other shapes that minimize dead space—for example, partially or substantially conical, trapezoidal, circular, angular, or any shape that is useful for coaxing the fluid down through the barrel and into the needle assembly. For example, the distal end of the plunger may be substantially flat and at a substantially perpendicular angle to the longitudinal axis of the syringe barrel; the corresponding roof of the barrel may also be substantially flat in the same way, such that when the two meet, an optimal amount of fluid may be forced out of the barrel and through the needle.
Further, the distal end of the plunger may constitute a “male” portion that mates with a “female” portion having a complementary surface thereto. In other embodiments, the relative portions can be switched, for example, the plunger may have a “female” portion that mates with a “male” portion of the roof. In still other embodiments, both relative portions may both have one or more of either “male” or “female” portions.
In certain embodiments, the syringe assemblies of the present invention are configured such that less than about 5% of the fluid originally loaded into the barrel is lost to dead space. In various embodiments, this value is less than about 4%, less than about 3%, less than about 2%, or less than about 1%. In certain embodiments, the amount of fluid lost is less than about 0.5 mL, less than about 0.4 mL, less than about 0.1 mL, less than about 0.05 mL or less than about 0.01 mL.
In various embodiments of the present invention, the syringe assembly comprises a detachable needle assembly. As used herein, “detachable” means that a user can both attach the needle assembly to, and remove the needle assembly from, the distal end of the barrel without damaging either the needle assembly or the barrel or the connection between them.
Thus, in certain embodiments, the syringe assemblies of the present invention will comprise two major components: first, a cylindrical barrel having disposed therein a plunger; and second, a needle assembly comprising a hub fixed to a needle. In certain embodiments, the needle assembly may be detachably fixed to the cylindrical barrel via any of the following mechanisms:
(a) a threaded portion on the distal end of the barrel that mates with a threaded portion of the syringe assembly (“Threading Connection”);
(b) a portion on the distal end of the barrel that fits with a corresponding and complementary portion on the syringe assembly by a snapping together (“Snap Connection”); or
(c) male and female portions that are capable of being engaged together and connected by twisting (“Binary Connection”).
These mechanisms will be discussed in greater detail herein.
A. Threading Connection
In certain embodiments, the connection between the syringe and the needle may be made by one or more threads on the needle assembly, where the threads correspond to and mate with corresponding threads on the distal end of the syringe assembly at the point of attachment, as with a screw. For example, the distal end of the syringe assembly may terminate in a threaded post (as shown, for example, in
As seen in
In certain embodiments, the threading mechanisms connecting the needles to the syringes may further comprise one or more attachments that serve the purpose of locking the two together after threading, such that movement or pushing of the syringe or needle does not cause the needle to “walk off” the syringe during use. Such a locking mechanism may be in the form of a snap, a hook, a clamp flange or other similar mechanism, as well as a temporary and easily removable adhesive or a magnetic attachment.
Other examples of threading connections can be seen in
B. “Snap” Connection
In certain embodiments, the connection between the syringe assembly and the barrel may be made with corresponding mating parts on the needle (or attachment thereto) and the syringe, for example, “male” and “female” parts that mate together by a “click” or “snap” mechanism. In such embodiments, either of the needle assembly or the distal end of the barrel may be configured to have a slightly larger diameter than the other, such that one of the two can fit over the other and, in certain embodiments, deform and then pop into place in a manner that the two are not easily separated during use of the syringe assembly. In certain embodiments, be locked or joined tightly into place. Such a mechanism is shown, for example, in
C. Binary Connection
In various embodiments, the connection is of a binary nature—that is, the corresponding ends of the syringe or needle (or attachment thereto) have locking portions that can be mated by inserting one portion into a corresponding and complementary portion of another and then making a “twist” to lock the two in place. Generally, the “twist” action may be less than a full 360 degree twist—that is, a fraction of the outer circumference of the locking portions. In various embodiments, the “twist” action can be accomplished by twisting to an amount of about 45 to about 100 degrees, about 50 to about 95 degrees or about 90 degrees. By “binary” it is meant that the corresponding parts can be configured in two possible ways—locked and unlocked or fixed and unfixed or attached and unattached.
A kit according to these embodiments of the invention may comprise, as stated above, a configuration wherein a user can easily detach and interchange needles by inserted the end of a used needle into a chamber, giving the syringe a fractional turn (in various embodiments, a quarter turn, a half turn or a turn of about 45 degrees, about 90 degrees, about 180 degrees or about 270 degrees), thereby detaching the used needle. The user can then insert the syringe into a different chamber, give a similar turn and engage a fresh needle that is ready for use once it is pulled out of the chamber.
In another embodiment, the port or hub may be configured such that the needle assembly can be attached to the distal end of the cylindrical barrel by a turn—for example, a quarter turn—to tighten the seal between the two. This is shown, for example, in
In certain embodiments, the hub of the needle assembly has a bulge 28 at the tip to create a snap tip with a needle cap. The clip is strong enough to secure the needle while handling, but weak enough to release the needle hub when engaged with the rest of the syringe assembly.
In
Other exemplary embodiments of such configurations can be seen in
Another example of a syringe assembly of the present invention can be seen in
Thus, in various embodiments, the syringe assemblies of the present invention are configured to optimize each of the three factors discussed above—that is: (1) the surface of the distal end of the piston is in substantially full contact with the roof of the barrel's interior surface when fully inserted therein to minimize dead space; (2) the detachable needle assembly detaches from the cylindrical barrel at a point on the distal end of the cylindrical barrel to allow interchangeability of needle assemblies; and (3) a bevel indicator is located on the needle assembly so as to assist the user in injecting the needle in a way that best serves the needs of the patient. That is, it has been found that the combination of these three factors—low dead space, detachable needle assembly and bevel indicator—is optimal. It is advantageous that the syringes of the present invention are directed to a syringe that has both the efficiency of low dead space coupled with the convenience of a detachable needle and a bevel indicator
In certain embodiments, the syringe further comprises a gasket in its internal portion. In certain embodiments, an “O-ring” is present. The O-ring provides a spring resistance for locking the needle hub to the distal end of the syringe, and also provides a tight seal that prevents leakage of the liquid contained within the barrel of the syringe. In various embodiments, a coating seal made of a material such as silicone may be used in conjunction with, or instead of, the O-ring.
As discussed herein, many needles comprise a beveled tip, such that the tip is at an angle. Bevel tips are highly desirable for many injection purposes. In certain embodiments, it is highly desirable to inject the needle with its bevel point entering the patient first, to minimize discomfort. While for larger needles (for example, needles having 18-25 gauge) the user can make this determination with the naked eye, this is almost impossible to do with small needles. Thus, in certain embodiments of the present invention, the needle hub, or any other point along the needle or syringe, may comprise a bevel indicator. The syringe assembly may comprise a bevel indicator that is located at any point along the syringe assembly (including on any portion of the needle assembly). In particular, where the syringe assembly is detachable from the barrel, in certain embodiments the bevel indicator may be present at least in part on the hub, and may be, for example, a line or a dot or other easily discernible indicator, and may be colored in a manner that its contrast with the color of the hub makes it easily visible to a user, and/or raised or recessed or having a texture in a manner that its contrast with the texture of the hub and thus visible or discernible by touch to the user.
In this manner, the user can use the bevel indicator to determine the best way to inject the needle. For an example,
When undergoing procedures such as Botox® injections, allergy injections or insulin injections quickly, or a patient may be suffering pain or discomfort due to muscle spasms or a related medical condition necessitating a series of injections rapidly administered (for example, a series of injections to treat allergies or cerebral palsy). In such situations, a patient may be impatient, agitated or emotional (this is especially true if the patient is a child, elderly or otherwise having diminished capacity), and anything that will streamline the process of injecting, reloading and re-injecting is likely to be desirable from the standpoint of patient comfort. In particular, embodiments of the present invention provide an easy way for a user (such as the medical or spa staff, or the patient himself or herself) to go through the entire process of unwrapping a syringe from its packaging, loading the drug (for embodiments wherein the drug is not pre-loaded into the syringe), preparing the appropriate needle for injection, injecting the drug, detaching and discarding the used needle and re-loading a fresh needle as necessary, all with minimal effort.
In various embodiments, a user may load the syringe assembly with a larger (lower gauge) needle, and then detach the larger needle assembly from the syringe barrel, then attach a smaller (higher gauge) needle assembly. Lower gauge (larger) needles are more desirable for loading, as they can load more fluid in a faster amount of time, with less danger of breaking or dulling the needle. In various embodiments, the first (loading) needle may be a lower gauge (larger) needle; for example, 25 gauge or lower, 18 to 25 gauge, or 18, 20 or 22 gauge. In various embodiments, the second (injecting) needle may be a higher gauge (smaller) needle; for example, higher than 25 gauge, 26-34 gauge, or 29, 30, 31, 32 or 33 gauge.
In various embodiments, the syringes of the present invention may include a plunger handle or a syringe flange, both of which may be configured for ease of use—for example, a plunger handle or syringe flange having a loop that can easily be grasped using a single hand, or comprising a soft or pliant material, such as an elastomeric material, 1 that provides a comfortable grip for the user, such as one that yields to the pressure of a user's hand when gripped.
The syringe barrels in the syringe assemblies of the present invention may have fluid volume capacities, in various embodiments, of about 2 to about 5 mL, about 3 mL, about 2 mL, about 1 mL, about 0.5 mL or about 0.3 mL. It has been found that the assemblies of the present invention provide unexpected benefits when used with very small volume barrels and very small (higher gauge) needles.
The syringe assemblies of the present invention may be made of any materials that are useful for medical devices, including those that are inert, stable, disposable and/or can easily be sterilized. Preferably they will not cause undue discomfort or allergic reactions in users or patients. Examples of useful materials are glass, polymeric materials such as plastic (including but not limited to materials comprising polypropylene, polyethylene, polystyrene, polyethylene terephthalate, or low density or high density forms of any of the foregoing), natural or synthetic rubbers, elastomeric materials, fiberglass, glass, metal and the like.
All embodiments described herein are illustrative and in no way limit the scope of the invention, and the invention may be embodied in other forms not explicitly described here, without departing from the spirit thereof.
This application claims benefit of U.S. Provisional Application No. 61/252,962 filed Oct. 19, 2009, hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61252962 | Oct 2009 | US |