The present invention relates to syringe assemblies and particularly to syringe assemblies having an automatic disabling mechanism.
Throughout the world the multiple use of hypodermic syringe products which are intended for single-use only, is instrumental in drug abuse and in the transfer of contagious diseases. Intravenous drug users who routinely share and re-use syringes are a high-risk group with respect to the AIDS virus. Also, the effects of multiple use are a major concern in some countries where repeated use of syringe products during mass immunization programs may be responsible for the spread of many diseases. Re-use of single-use hypodermic syringe assemblies is also instrumental in the spread of drug abuse even in the absence of infection or disease.
Many attempts have been made to remedy this problem. Most notable are early contributions which relied on a specific act to destroy the syringe after use either by using a destructive device or providing a syringe assembly with frangible zones so that the syringe could be rendered inoperable by the application of force. Other attempts involve the inclusion of structure which would allow the destruction or defeating of the syringe function to a conscious act by the syringe user. Although many of these devices work quite well, they do require the specific intent of the user followed by the actual act to destroy or render the syringe inoperable. These devices are not effective with a user having the specific intent to re-use the hypodermic syringe. Accordingly, there was a need for a single-use hypodermic syringe which after use will become inoperable or incapable of further use automatically without any additional act on the part of the user. The automatic function is much harder to provide because the means for rendering the syringe inoperable must not prevent its filling or use under normal conditions.
A single-use syringe which automatically disables after injection is taught in U.S. Pat. No. 4,973,310 to Kosinski. This syringe contains a locking element positioned in the syringe barrel between the plunger rod and the inside surface of the barrel. In use, the syringe allows the user to draw a pre-selected amount of medication into the chamber of the barrel and deliver this medication, as through injection, into the patient. Any attempt to withdraw the plunger to use the syringe a second time will cause the locking element to embed itself into the inside surface of the syringe barrel to prevent proximal motion of the plunger rod.
There is still a need for a single-use syringe which will allow a pre-selected number of plunger rod strokes before the automatic disabling mechanism activates. For example, four strokes of the plunger may be required to complete the injection process. Such as when the syringe assembly is used to draw a diluent into the syringe barrel, dispense the diluent into a vial containing the substance to be reconstituted, drawing back the reconstituted medication into the syringe and then delivering the contents of the syringe into the patient.
An operable syringe assembly having a passive disabling structure includes a barrel having a cylindrical sidewall with an inside surface defining a chamber for retaining fluid, an open proximal end and a distal end including a distal wall having a passageway therethrough in fluid communication with the chamber. An elongate hollow plunger rod having a proximal end, an open distal end, and an interior surface is provided. A stopper has a circular-shaped sealing element having a peripheral surface forming a seal with the inside surface of the barrel and a boss member projecting proximally from the sealing element. A locking element interacts between the stopper and the plunger rod. The locking element includes a central body portion having at least one cantilevered leg extending distally outwardly from the body portion wherein the leg includes a sharp free end directed outwardly for engaging the inside surface of the barrel. The locking element is movably connected to the boss of the stopper and movably connected to the plunger rod interior surface. Structure for indexing the locking element distally in the plunger rod during proximal motion of the plunger rod to draw fluid into the chamber and for indexing the locking element distally on the boss of the stopper during distally-directed motion of the plunger rod for delivering fluid from the chamber through the passageway and means for engaging the locking element with the inside surface of the barrel sidewall for preventing reuse of the syringe assembly is provided.
Structure or means for engaging the locking element with the inside surface of the barrel sidewall may include an opening in the distal end of the plunger rod to shorten the axial length of the interior surface area of the opening for allowing the sharp free end to project outwardly past the plunger rod and onto the inside surface of the barrel.
The structure or means for indexing includes at least one detent on the interior surface of the distal end of the plunger rod, at least one boss detent on the boss and at least one cantilevered arm on the stopper having an outwardly extending rib near its free end sized to engage a recess in the inside surface of the plunger rod. The indexing structure further includes the locking element having at least one finger element extending inwardly from an aperture in the central body portion of the locking element. The locking element is positioned with its sharp free end contacting the interior surface of the plunger rod proximally of the at least one detent and the boss member is positioned in the aperture of the locking element wherein the at least one finger element is contacting the boss member proximally of the at least one boss detent and the outwardly extending rib is positioned in the recess of the plunger rod.
The syringe assembly may be configured so that the at least one detent in the plunger rod includes two axially-spaced detents and the at least one detent in the boss includes two axially-spaced boss detents so that the plunger rod can be moved distally one or two times before proximal motion of the plunger rod causes the locking element to engage the inside surface of the barrel, depending on the initial position of the locking element at the time of use. The two axially-spaced detents in the plunger rod may include two axially-spaced steps each having a blunt surface at its distal end extending inwardly from the interior surface of the plunger rod. The two axially-spaced boss detents may each include an inclined surface extending proximally inwardly and a blunt surface at a distal end of each of the inclined surfaces extending radially inwardly.
The at least one cantilevered leg of the locking element may include two cantilevered legs positioned on opposite sides of the central body portion. The stopper may further include two radial cam projections positioned to contact and force the two cantilevered legs outwardly when excessive proximally-directed force is applied to the plunger rod in an attempt to overcome the locking element's engagement to the inside surface of the barrel.
The at least one cantilevered arm of the stopper may include two cantilever arms positioned on opposite sides of the boss and said at least one recess in the inner surface of the plunger rod may include two recesses positioned on opposite sides of the plunger rod and configured to receive the outwardly extending ribs of the two cantilevered arms.
The syringe barrel may further include an elongate tip extending distally from the distal wall and having a passageway therethrough in fluid communication with the chamber of the syringe barrel. The syringe assembly may also include a needle cannula having a distal end, a proximal end and a lumen therethrough, wherein the proximal end of the needle cannula is connected to the distal end of the syringe barrel so that the lumen is in fluid communication with the passageway of the barrel. The syringe assembly may include a locking element made of sheet metal such as stainless steel. Further, the stopper and all its elements may be integrally formed of thermoplastic material.
The present invention is directed to a syringe assembly having a passive disabling mechanism. The disabling mechanism enables variable dosages by the syringe assembly and enables a selected number of cycles or strokes by the plunger rod before being automatically disabled. In one preferred embodiment, the disabling mechanism provides two aspirating and two dispensing cycles before being automatically disabled. The assembly enables the aspiration and dispensing of a selected volume of a diluent into a vial to reconstitute a drug, pharmaceutical agent, or other substance and then aspirating the reconstituted substance back into the syringe. A selected volume of the reconstituted substance can be injected or delivered to a patient where the volume of the substance that is delivered can be the same or different than the volume of the substance aspirated into the syringe barrel. The syringe is automatically disabled after the injection or delivery stroke by retracting the plunger rod, which activates the disabling mechanism.
The disabling mechanism is actuated by the axial movement of the plunger rod with respect to the syringe barrel and to the stopper, by moving the plunger rod in the aspirating direction. The stopper is coupled to the plunger rod to allow limited axial movement of the stopper with respect to the plunger rod. The disabling mechanism moves through a series of stages by reversing the direction of the axial movement of the plunger rod with respect to the stopper to move the mechanism in a step-wise manner to the disabling position. The disabling position of the mechanism is attained by the relative movement between the plunger rod and the stopper and is not dependent on the position of the stopper within the syringe barrel or the length of the stroke by the stopper. In this manner, the syringe assembly is able to dispense a desired volume of the drug or other substance, and the disabling mechanism can be actuated after the final dispensing or injection stroke regardless of the position of the stopper in the syringe barrel. By actuating the disabling mechanism, the stopper cannot be retracted to aspirate a substance into the syringe barrel but allows any substance remaining in the syringe barrel to be dispensed.
Referring to the drawings, a syringe assembly 100 having a disabling mechanism includes a syringe barrel 102 and a plunger assembly 104. Barrel 102 includes a cylindrical sidewall 106 having an inside surface 107 defining a chamber 109 for retaining fluid, an open proximal end 113 and a distal end 115 including a distal wall 117 having a passageway 119 therethrough in fluid communication with the chamber. In this embodiment, the distal wall of the barrel includes an elongate tip extending distally therefrom and having a passageway in fluid communication with the passageway in the distal wall. In this embodiment barrel 102 also includes a needle cannula 170 having a proximal end 171, a distal end 172 and a lumen 173 therethrough. The proximal end of the needle cannula is attached to elongate tip 103 so that the lumen of the needle cannula is in fluid communication with passageway 119 in the barrel.
Plunger assembly 104 includes an elongate hollow plunger rod 108, a stopper 128 and a locking element 130. Plunger rod 108 includes a proximal end 111, an open distal end 110 and an interior surface 116 and at least one aperture or recess 114 in the interior surface at the distal end of the plunger rod. The recess includes a distal face 121. In this embodiment, there are two recesses 114 having distal faces 121. The interior surface at the distal end of the plunger rod includes at least one detent. In this embodiment the at least one detent on the interior surface of the distal end of the plunger rod includes four axially spaced detents 118 with two detents on each side of the plunger rod. Each pair of detents is shaped to form axially spaced steps 120 with each step having a blunt surface 122 at its distal end extending inwardly from the interior surface of the plunger rod.
Stopper 128 includes a circularly-shaped sealing element 144 having a peripheral surface 145 forming a seal with the inside surface of the barrel. A boss member 134 extends proximally from the sealing element and includes at least one boss detent and in this embodiment, contains two boss detents 136. At least one cantilevered arm extends proximally from the sealing element and in this embodiment there are two cantilever arms 140 extending proximally from the sealing element. Each of the cantilevered arms includes an outwardly extending rib 142. The rib is sized to fit within recess 114 in the plunger rod. The axially spaced boss detents 136 each include an incline surface 137 extending proximally inwardly and a blunt surface 138 at the distal end of each of the inclined surfaces. The stopper is preferably integrally formed of thermoplastic material such as polyethylene. The circularly-shaped sealing element and/or the peripheral sealing surface thereon may be made of elastomeric materials such as thermoplastic elastomers, natural rubber, synthetic rubber and combinations thereof.
Locking element 130 includes a central body portion 148 having an aperture 152 therethrough and at least one cantilevered leg 150 extending distally outwardly from the body portion and at least one finger element 154 extending inwardly from the aperture. In this embodiment, at least two cantilevered legs with each of the cantilevered legs having a sharp free end 155 directed outwardly for engaging the inside surface of the barrel. The configuration of sharp free end 155 can be any configuration capable of engaging the inside surface of the barrel, such as a sharp edge or one or more pointed teeth and the like. The locking element may be made of a variety of materials, or combinations of materials, however, it is preferred to have the sharp free ends made of metal and it is also preferred that the entire locking element be made of integrally formed from sheet metal such as stainless steel.
In this preferred embodiment plunger assembly 104 is assembled by inserting locking element 130 into the distal end of plunger rod 108. Boss 134 of stopper 128 is then inserted into the distal end of the plunger rod through aperture 152 of locking element 130 so that cantilevered legs 150 extend toward circularly-shaped sealing element 144 of the stopper as illustrated in
As will be explained in more detail hereinafter, the plunger assembly is then inserted into barrel 102 through open proximal end 113 to the initial position illustrated in
As will now be shown, the operation of the plunger assembly of this embodiment includes a first aspiration stroke followed by a first dispensing stroke, a second aspiration stroke and a final dispensing stroke after which the syringe is disabled. The disabling elements prevent or inhibit movement of stopper 128 in a proximal aspirating direction thereby limiting the function of the syringe assembly to a single use. The maximum number of strokes being limited by a number of axially positioned detents in the plunger rod and the number of axially positioned boss detents on the stopper. However, the actual number of strokes the syringe may make will be determined by the position of the locking element with respect to the detents in the plunger rod and the detents on the stopper at the time of first use. For example, a syringe with two plunger detents and two stopper detents can be supplied to the end user as a syringe capable of two strokes or four strokes. This is an important feature of the present invention since a single syringe assembly can be provided with different stroke limitations before disabling.
The syringe assembly may now be used to draw liquid, such as a sterile water diluent into the chamber of the barrel by applying a proximally directed force to a thumb press 123 on the proximal end of the plunger rod while holding the syringe barrel. As illustrated in
The liquid diluent in the chamber may now be discharged into a vial of dry medication such as lyophilized medication, for reconstitution. This first dispensing stroke is accomplished by moving the plunger rod in a distal direction while holding the barrel. A barrel flange 124 is provided on the proximal end of the barrel to help control motion of the barrel during use of the syringe assembly. As best illustrated in
When the diluent and the lyophilized medication are mixed the syringe assembly of the present invention may now be used to withdraw the reconstituted, ready-to-inject medication into the chamber of the syringe barrel, as best illustrated in
The syringe assembly of the present invention is now ready for a second and final dispensing stroke which is best illustrated in
The syringe assembly has now been used and is ready to be discarded. Any attempt to move the plunger rod in a proximal direction to refill the syringe assembly for further use will cause the locking element to disable the syringe. Specifically, as best illustrated in
It is also within the purview of the present invention to provide a discontinuity such as a recess or projection on the interior surface of the barrel, as illustrated in
The present syringe assembly provides an improvement over prior art devices by allowing a variable dose of diluent, chosen by the user at the time of use, to be drawn into the syringe, dispensing the diluent into a vial containing a substance to be reconstituted, drawing a selected amount of the reconstituted substance back into the syringe and then delivering the contents of the syringe. The selected amount of the reconstituted substance may be equal or less than the full volume reconstituted at the discretion of the user. The syringe assembly is automatically disabled after the final injection stroke by reversing the direction of the movement of the plunger rod from the dispensing direction to the aspirating direction. After the injection stroke of the syringe plunger the plunger rod is retracted to activate the disabling mechanism to prevent axial movement of the stopper toward the proximal end of the syringe barrel thereby preventing the stopper from being removed and preventing reuse of the syringe.
When the present syringe assembly has two or more detents on the stopper and in the plunger rod, the maximum number of strokes the syringe assembly will allow can be varied by the initial position of the locking element with respect to the stopper detents and the plunger rod detents.
While various embodiments have been chosen to illustrate the invention, it will be appreciated that changes and modifications can be made without departing from the scope of the invention.
This application is a continuation of U.S. application Ser. No. 10/838,687, filed May 4, 2004, which claims the benefit of U.S. Provisional Application No. 60/490,939, filed Jul. 30, 2003 and U.S. Provisional Application No. 60/523,490, filed Nov. 20, 2003.
Number | Name | Date | Kind |
---|---|---|---|
3478937 | Solowey | Nov 1969 | A |
4367738 | Legendre et al. | Jan 1983 | A |
4493703 | Butterfield | Jan 1985 | A |
4699614 | Glazier | Oct 1987 | A |
4731068 | Hesse | Mar 1988 | A |
4775363 | Sandsdalen | Oct 1988 | A |
4781684 | Trenner | Nov 1988 | A |
4820272 | Palmer | Apr 1989 | A |
4826483 | Molnar, IV | May 1989 | A |
4840616 | Banks | Jun 1989 | A |
4863427 | Cocchi | Sep 1989 | A |
4883466 | Glazier | Nov 1989 | A |
4908020 | Pettersen | Mar 1990 | A |
4915692 | Verlier | Apr 1990 | A |
4923443 | Greenwood et al. | May 1990 | A |
4950240 | Greenwood et al. | Aug 1990 | A |
4961728 | Kosinski | Oct 1990 | A |
4973308 | Borras et al. | Nov 1990 | A |
4973309 | Sultan | Nov 1990 | A |
4973310 | Kosinski | Nov 1990 | A |
4986812 | Perler | Jan 1991 | A |
5000737 | Free et al. | Mar 1991 | A |
5021047 | Movern | Jun 1991 | A |
5037393 | Ellgass | Aug 1991 | A |
5047017 | Koska | Sep 1991 | A |
5062833 | Perler | Nov 1991 | A |
5078686 | Bates | Jan 1992 | A |
5085638 | Farbstein et al. | Feb 1992 | A |
5085640 | Gibbs | Feb 1992 | A |
5090962 | Landry, Jr. et al. | Feb 1992 | A |
5106372 | Ranford | Apr 1992 | A |
5120314 | Greenwood | Jun 1992 | A |
5149323 | Colonna | Sep 1992 | A |
5181912 | Hammett | Jan 1993 | A |
5183466 | Movern | Feb 1993 | A |
5195975 | Castagna | Mar 1993 | A |
5205825 | Allison et al. | Apr 1993 | A |
5215524 | Vallelunga et al. | Jun 1993 | A |
5222942 | Bader | Jun 1993 | A |
5226882 | Bates | Jul 1993 | A |
5370620 | Shonfeld | Dec 1994 | A |
5432757 | Chelminski | Jul 1995 | A |
5531691 | Shonfeld et al. | Jul 1996 | A |
5562623 | Shonfeld et al. | Oct 1996 | A |
5593386 | Helldin | Jan 1997 | A |
5593387 | Rupp | Jan 1997 | A |
5624406 | Labouze | Apr 1997 | A |
5624408 | Helldin | Apr 1997 | A |
5643211 | Sadowski et al. | Jul 1997 | A |
5722951 | Marano | Mar 1998 | A |
5833660 | Nathan et al. | Nov 1998 | A |
5928202 | Linnebjerg | Jul 1999 | A |
5989219 | Villas et al. | Nov 1999 | A |
6013056 | Petterson | Jan 2000 | A |
6083200 | Grimm et al. | Jul 2000 | A |
6120479 | Campbell et al. | Sep 2000 | A |
6139526 | Bedner et al. | Oct 2000 | A |
6165153 | Kashmer | Dec 2000 | A |
6217550 | Capes | Apr 2001 | B1 |
6283941 | Schoenfeld et al. | Sep 2001 | B1 |
6361525 | Capes et al. | Mar 2002 | B2 |
6368306 | Koska | Apr 2002 | B1 |
6533756 | Schoenfeld et al. | Mar 2003 | B2 |
6599269 | Lewandowski et al. | Jul 2003 | B1 |
6607507 | Schottli | Aug 2003 | B2 |
6702784 | Sheckler et al. | Mar 2004 | B1 |
6790197 | Kosinski et al. | Sep 2004 | B2 |
6986756 | Pelkey et al. | Jan 2006 | B2 |
6991618 | Lau et al. | Jan 2006 | B2 |
7052482 | Lau et al. | May 2006 | B2 |
7331934 | Suresh et al. | Feb 2008 | B2 |
20020173411 | Wallerstein | Nov 2002 | A1 |
20050187518 | Pelkey et al. | Aug 2005 | A1 |
20050199113 | Ku et al. | Sep 2005 | A1 |
20060079839 | Moh et al. | Apr 2006 | A1 |
20060079848 | Pelkey et al. | Apr 2006 | A1 |
20060167409 | Pelkey et al. | Jul 2006 | A1 |
20060178625 | Lim et al. | Aug 2006 | A1 |
Number | Date | Country |
---|---|---|
2536246 | Feb 2003 | CN |
8914128 | Jan 1990 | DE |
2646087 | Oct 1990 | FR |
WO9413336 | Jun 1994 | WO |
WO9728836 | Aug 1997 | WO |
Number | Date | Country | |
---|---|---|---|
20080177229 A1 | Jul 2008 | US |
Number | Date | Country | |
---|---|---|---|
60523490 | Jan 2008 | US | |
60490939 | Jul 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10838687 | May 2004 | US |
Child | 12018865 | US |