This application is the U.S. National Stage of International Application No. PCT/EP2016/065260, filed Jun. 30, 2016, which designates the U.S., published in English, and claims priority under 35 U.S.C. §§ 119 or 365(c) to EP Application No. 15175189.8, filed Jul. 3, 2015. The entire teachings of the above applications are incorporated herein by reference.
The present disclosure relates to a syringe for mixing two substances which have been retained separately inside the syringe, for instance in a storage condition. In particular the present disclosure relates to a syringe for 1) retaining a dry composition in a vacuum, and 2) mixing the dry composition with an aqueous medium to form a flowable substance.
Mixing procedures and manipulations of different substances can be time consuming. Some types of medication are provided and stored in two separate chambers. Such medication may include a solid component and a liquid solvent and are known as two-part formulations. The solid component can be for example a powdered medicament. The substances can also include two liquid substances and/or two medicaments. Before the medicament is delivered, the components have to be mixed.
A syringe can generally be seen as a simple pump device consisting of a plunger in a tube, used to administer injections, insert intravenous drugs or apply compounds. There are a number of syringes capable of mixing and delivering two substances, including autoinjectors. In some of these syringes there are two chambers and a mechanism for mixing the substances either in one of the chambers or in a third chamber, before the mix is delivered, typically through a needle.
U.S. Pat. No. 4,048,999 shows a two-chamber syringe for medicinal purposes having one chamber for a liquid and one container for a solid or another liquid. The syringe has a stopper with an axial bore connecting the syringe to a vial and a second stopper sealing the axial bore and adapted to be ejected with the liquid in the syringe into the container by inward activation of the piston of the syringe.
It can be considered to be known in the art to include an inner needle in the syringe capable of transferring one component from one chamber to the other, thereby mixing the components. WO 2010/020800 A1 shows an autoinjector with mixing means, having a first and a second chamber for two different components. The autoinjector comprises both an injection needle and an internal transfer needle, wherein the transfer needle is capable of penetrating the stopper inside the autoinjector to establish fluid connection through the needle and mix the two components before they are injected.
The known syringes with several chambers and means for mixing several components are associated with a number of disadvantages. The mixing and injection are typically dependent on a manual movement lacking precise control or uses electrical power to control the mixing and injection. These designs are often overly complex and require precise finishing in order to work.
The present disclosure relates to a syringe for retaining and mixing first and second substances comprising a barrel comprising a sealable and/or closable distal outlet and a vacuum chamber for holding a first substance. The syringe preferably comprises a plunger, said plunger preferably incorporating a reservoir chamber for holding a second substance. The plunger may be configured to be axially displaced through a proximal end of the barrel. The syringe preferably comprises a membrane separating the vacuum chamber and the reservoir chamber. A pointed member, such as one or more needles, may be provided as part of the syringe suitable for penetrating the membrane. The syringe is preferably configured such that the membrane and the pointed member are axially slidable in relation to each other, preferably in correspondence with an axial displacement of the barrel relative to the plunger. I.e. the syringe is preferably configured such that an axial displacement of the plunger relative to the barrel corresponds to an axial displacement of the membrane and the pointed member relative to each other. For example if the membrane is attached to the plunger and the pointed member is attached to the barrel or vice versa.
The syringe may be configured such that an axial displacement of the plunger from a first position to a predefined second position in the barrel penetrates the membrane by the pointed member and establishes a fluid passageway between the reservoir chamber and the vacuum chamber. Preferably the vacuum in the vacuum chamber thereby aspirates the second substance into the vacuum chamber; the vacuum in the vacuum chamber thereby causing a transfer of the content of the reservoir chamber into the vacuum chamber, preferably without displacement of the plunger from said predefined second position. I.e. the reservoir chamber is thereby emptied or nearly emptied.
One advantage of the presently disclosed syringe is that a reservoir chamber is incorporated in the plunger for holding the second substance. Using the space inside the plunger to store one of the components makes the syringe more compact and lighter. The fact that the plunger is the movable part of the syringe (in relation to the barrel) can also render the design simple in that it is possible to mount the pointed member on the barrel, which is generally more stable than having the needle as a moving part.
Another advantage of the presently disclosed syringe is the vacuum chamber in the barrel for holding a first substance. If vacuum is created in the vacuum chamber, the vacuum may be utilized to move the plunger towards/inside the vacuum chamber and to aspirate the second substance from the reservoir chamber to the vacuum chamber. By first applying vacuum in the vacuum chamber and then letting the vacuum 1) pull the plunger, and 2) draw the content of the reservoir chamber into the vacuum chamber whereby the substances are mixed, the mixing process can be provided in a very controlled and automatic manner without involving manual force or manual movement of the plunger. If the parts of the plunger are produced in a process in which the parts always have the same size and shape, and the vacuum generation is applied in the same way, it can also be expected that the mixing will be performed in the same way every time.
The pointed member suitable for penetrating the membrane, wherein the syringe is configured such that the membrane and the pointed member are axially slidable in relation to each other, is another advantage of the presently disclosed syringe. If the needled is attached to the barrel and axially slidable in relation to the pointed member (which may be part of the plunger, constituting a separating barrier between the two chambers), the vacuum in the vacuum chamber may be used to move the plunger towards the vacuum chamber, the pointed member thereby penetrating the member and providing a fluid connection between the two chambers.
The combination of several of the abovementioned features can also be considered to further improve the design, which can be used with a range of additional mechanisms in order to make use of the invention. For example, the syringe may further comprise different kind of locking members to control the axial positions of the plunger inside the barrel. If vacuum is applied inside the vacuum chamber a mechanical locking mechanism can ensure that the plunger is not moved towards the vacuum chamber until the user removes the lock.
Furthermore, an axially slidable plug inside the plunger can be used to limit the reservoir chamber in the plunger. The syringe can be configured such that the plug slides distally inside the plunger when the substance in the reservoir chamber is transferred to the vacuum chamber. The plug can furthermore be used to plug the fluid connection between the two chambers when the substance of the reservoir of the first chamber has been transferred to the vacuum chamber. Preferably the plug is made of a material that can also be penetrated by the pointed member. Since, in one embodiment, the pointed member protrudes through the membrane after having penetrated the membrane, in a preferred embodiment the plug is made of a material that can also be penetrated by the pointed member, which allows that the plug is aspirated by the vacuum of the vacuum chamber to a position in which it abuts the distal end of the plunger or the member.
These and other aspects of the invention are set forth in the following detailed description if the invention.
The drawings are exemplary only and should not be construed as limiting the scope of the invention.
“Ambient pressure” is herein used interchangeably with the term “atmospheric pressure”. It is the pressure in the surrounding area, i.e. the pressure in the location in which a process takes place.
A “reduced pressure” is a pressure below ambient pressure, i.e. a pressure below that of the pressure in the surrounding area in which a certain process operates.
“Vacuum” is herein defined as a region with a gaseous pressure less than the ambient pressure, i.e. the surrounding atmospheric pressure. At sea level on Earth the atmospheric pressure is approximately 1 bar, i.e. 1000 mbar at 25° C. The below table shows the approximate pressures in “low”, “medium” and “high” vacuum at sea level on earth in millibar (mbar).
As stated the present disclosure relates to a syringe for retaining and mixing first and second substances comprising a barrel comprising a sealable and/or closable distal outlet and a vacuum chamber for holding a first substance, a plunger incorporating a reservoir chamber for holding a second substance and configured to be axially displaced through a proximal end of the barrel, a membrane separating the vacuum chamber and the reservoir chamber, and a pointed member, such as one or more needles, for penetrating the membrane, wherein the syringe is configured such that the membrane and the pointed member are axially slidable in relation to each other.
By incorporating the plunger in the reservoir chamber, the syringe can be made more compact and lighter compared to a solution in which the barrel contains two chambers for separates substances. In one embodiment the reservoir chamber is completely contained in the plunger, and/or wherein the reservoir chamber is at least partly defined by outer walls of the plunger. Preferably the reservoir chamber is a closed volume within the walls of the plunger, possible having a lid or cap, alternatively having a plug inside the hollow plunger. In one embodiment the reservoir chamber is defined by a hollow portion of the plunger.
The syringe is preferably configured such that the membrane and the pointed member are axially slidable in relation to each other. The idea is that a membrane keeps the two substances in separate containers (i.e. reservoir chamber and vacuum chamber), initially without a fluid connection between the two. The fact that the membrane and the pointed member are axially slidable in relation to each other implies that the pointed member can penetrate and break the membrane when they meet if the pointed member is configured such that the pointed end of the pointed member points towards the membrane. Preferably, in such a design the pointed member is attached inside the barrel, preferably attached at the distal end of the barrel pointing towards the plunger and the membrane. This can be seen as a stable solution compared to having a needle that is moved inside the barrel.
Configurations and Locking Mechanism
The presently disclosed syringe may operate in one or several configurations. In one embodiment the syringe may be configured to retain vacuum in the vacuum chamber in a first configuration, said first configuration preferably being a storage condition of the syringe. In such a configuration the vacuum chamber is a closed container. Such a configuration may be useful not only to store the substance in the vacuum chamber, but can also be considered a “charged” state in that there is in an inherent energy in a vacuum chamber. When a vacuum chamber changes from a closed container to being in connection with another volume, an aspiration force arises. Therefore, if the syringe is configured to retain vacuum in the vacuum chamber in a first configuration, this force could then be released by connecting the vacuum chamber to the reservoir chamber.
In the first configuration, the syringe can be said to be in a state with inherent energy that could later be used to mix the substances of the two chambers, preferably without adding any external manual force to move the plunger.
In the first configuration, the membrane and pointed member are preferably axially separated inside the barrel. This ensures that the vacuum chamber remains a closed volume, retaining the vacuum, until the pointed member penetrates the membrane.
In one embodiment, the syringe is, in a second configuration, configured to provide a liquid communication between the vacuum chamber and the reservoir chamber.
Preferably, in this configuration the pointed member penetrates the membrane. The pointed member can be said to create the liquid communication between the two chambers. If vacuum has been applied to the vacuum chamber in the first configuration, the second configuration may then serve as a configuration in which the two substances are mixed in the vacuum chamber. This is achieved by the aspirating force from the vacuum chamber in combination with that fact that the two chambers now are in liquid communication. According to this description, the reservoir chamber and the vacuum chamber may therefore be fluidly disconnected in a first configuration, and fluidly connected in a second configuration.
The presently disclosure also relates to mechanical means for implementing the abovementioned configurations. In the first configuration, the membrane and pointed member are preferably axially separated inside the barrel while vacuum is retained in the vacuum chamber. As stated, in the vacuum state there is an inherent force that pulls the (typically axially movable) plunger towards the vacuum chamber. The displacement of the plunger can be prevented mechanically by a locking mechanism; therefore, in one embodiment, the presently disclosed syringe further comprises a removable locking member configured to engage and restrict the plunger from distal axial displacement inside the barrel. There are several ways of implementing such a locking mechanism. In one embodiment, the locking member is configured to engage the proximal part of the plunger extending from the proximal end of the barrel. An example of such a solution is shown in
In one embodiment of the presently disclosed syringe, the locking member comprises a first locking element and a second locking element, each of said locking elements configured to engage and restrict the plunger from distal axial displacement inside the barrel. The two locking elements may be placed such that the first and second locking elements are configured to engage the plunger in axial extension of each other. The second locking element can be used to lock the plunger in a second position in relation to the barrel (and possibly the pointed member). In this state the two substances can be mixed in the vacuum chamber, but the plunger is mechanically prevented from being further moved towards the distal end of the barrel to deliver the mixed content. Therefore, in one configuration of the presently disclosed syringe, the axial displacement of the plunger from a first position to a predefined second position penetrates the membrane by the pointed member and establishes a fluid passageway between the reservoir chamber and the vacuum chamber. Examples of the two configurations are shown in
In one embodiment, the presently disclosed syringe is configured such that the plunger is restricted from axial displacement in a distal direction in said first configuration, preferably by means of the removable first and second locking elements for engaging and locking the plunger in said first configuration. Distal direction in this context has the meaning that the plunger moves towards the distal end of the barrel. As stated this means, in a preferred embodiment, that the plunger is locked in the distal direction such that the pointed member does not penetrate the membrane and the substance cannot be mixed. When the plunger is unlocked (e.g. by removing the locking member), a vacuum in the vacuum chamber causes an axial displacement of the plunger from a first position to a second position. Similarly, in the second configuration, the plunger may be restricted from axial displacement in a distal direction, preferably by means of the removable second locking element adapted for engaging and locking the plunger in said second configuration.
A further aspect of the presently disclosed syringe relates to the pointed member comprising one or more liquid bypass channels configured to provide liquid communication between the reservoir chamber and the vacuum chamber upon penetration of the membrane, which is further explained below. In relation to the configuration and/or position of the parts of the syringe, the presently disclosed invention presents a solution of how to provide a liquid path between the two chambers upon penetration of the membrane by the pointed member. The inventors have realized that by locking the membrane (preferably located at the distal end of the plunger) in an axial direction in relation to the pointed member, the bypass channel can be positioned such that it allows substance to flow from the reservoir chamber to the vacuum chamber. Therefore, in one embodiment, the syringe is configured such that in the second configuration and/or second position the at least one of said one or more bypass channels are axially aligned with the membrane. An example of such an alignment can be seen in
Membrane and Pointed Member
As stated, the presently disclosed syringe has a membrane separating the vacuum chamber and the reservoir chamber, and a pointed member, such as one or more needles, for penetrating the membrane. In a preferred embodiment, the membrane separates a proximal end of the vacuum chamber and a distal end of the reservoir chamber. In one embodiment, the membrane is attached to and/or forms the distal end of the plunger. If the plunger has a hollow body or hollow portion, this means that the membrane constitutes a portion or the whole of the bottom/distal side of the plunger. An example of such an implementation is shown in
In one embodiment the pointed member is attached inside the barrel, preferably attached at the distal end of the barrel. In this configuration, the pointed member and the membrane can move in relation to each other. The pointed member preferably extends axially inside the barrel, i.e. in the longitudinal direction of the barrel. In the example in
As stated, the idea of having a pointed member that can penetrate the membrane between the reservoir chamber and the vacuum chamber is to provide a bypass channel that makes use of the vacuum of the vacuum chamber to aspirate substance from the reservoir chamber to mix with the substance of the vacuum chamber. Therefore, in one embodiment of the presently disclosed syringe, the pointed member comprises one or more liquid bypass channels configured to provide liquid communication between the reservoir chamber and the vacuum chamber upon penetration of the membrane. The liquid bypass channel could be in the form of a hollow needle. The liquid bypass channel could also make use of the locking mechanism and second configuration described above. The inventors have realized that if the second configuration corresponds to a second locked axial position of the plunger in the barrel, this known position can be used to design the liquid bypass channel. As can be seen in e.g.
“Pointed” in relation to the presently disclosed syringe should be construed broadly in the sense that it could be any pointed structure capable of penetrating or breaking the membrane, typically a structure having a sharp top, such as a needle. In one embodiment, the pointed member is formed as an elongated pointed element wherein one end of the pointed element, preferably the proximal end, is pointed, such as pointed like a needle. Proximal is defined in the same way as proximal of the plunger and the barrel, i.e. opposite to distal i.e. opposite to the outlet and outer needle of the syringe.
In one embodiment, the liquid bypass channels are located adjacent to the proximal end of the pointed member. This has the advantage that the rest of the pointed member (i.e. below the bypass channel towards the distal part of the vacuum chamber) can be maintained as a mixing container in the locked second position. In one embodiment, one or more liquid bypass channels are formed as one or more recesses, such as one or more radial recesses, of the pointed member located distal from the proximal part of the pointed element. The liquid bypass channels, formed as one or more recesses, may be placed less than 1 mm, or less than 2 mm, or less than 3 mm, or less than 4 mm, or less than 5 mm, or less than 6 mm, or less than 7 mm, or less than 8 mm, or less than 10 mm, or less than 12 mm, or less than 14 mm, or less than 16 mm, or less than 18 mm, or less than 20 mm from the proximal end of the pointed member.
Plug
In a further embodiment of the presently disclosed invention, the syringe further comprises an axially slidable plug inside the plunger, preferably sealably engaged with the inside of the plunger which may be hollow, such that the reservoir chamber can be defined (proximally) by the plug inside the hollow plunger. This means that the plug can constitute a proximate sidewall of the closed reservoir chamber—the reservoir chamber is preferably located in the distal end of the plunger and defined distally by the distal end of the plunger and proximally by the axially slidable plug. Preferably, the plug is axially slidable inside the plunger, and can be used to plug the fluid connection between the two chambers when the substance of the reservoir of the first chamber has been transferred to the vacuum chamber. Since the plug defines a proximate sidewall of the reservoir, the reservoir chamber can alternatively be seen as an empty or nearly empty volume when the plug has been aspirated to a distal position abutting the distal end of the plunger or the member. In this position the content of the reservoir chamber has been transferred to the vacuum chamber.
Since, in one embodiment, the pointed member protrudes through the membrane after having penetrated the membrane, in a preferred embodiment the plug is made of a material that can also be penetrated by the pointed member, which allows that the plug is aspirated by the vacuum of the vacuum chamber to a position in which it abuts the distal end of the plunger or the member.
In a preferred embodiment, the plug is placed inside the plunger, and in an even more preferred embodiment, the plug is completely contained within the hollow body of the plunger. If the plunger is cylindrical, i.e. having a substantially circular cross-section, the plug should also have a substantially similar cross-section in order to seal the reservoir chamber. In this kind of embodiment, the plug can be considered to be recessed within the hollow body of the plunger. Preferably, the axially slidable plug is suitable for being penetrated by the pointed member, preferably only by means of the aspiration force exerted by the vacuum in the vacuum chamber.
When the discharge/transfer of substance from the reservoir chamber to the vacuum chamber takes place, the plug is typically aspirated towards the distal end of the plunger. Therefore, in one configuration of the presently disclosed syringe, upon penetration of the membrane and provision of a liquid communication between the vacuum chamber and the reservoir chamber, a vacuum in the vacuum chamber draws liquid contained in the reservoir chamber into the vacuum chamber along with an axial distal displacement of the plug within the hollow body. Furthermore, in such a configuration, the plug is configured to be axially displaced distally within the hollow body of the plunger during discharge/flushing of the second substance in the reservoir chamber into the vacuum chamber.
Other embodiments of the plug are also possible. The plug can be made of an expandable or elastic material, or, alternatively, the plug can be formed as a second small plunger adapted to fit and be recessed within the hollow plunger. Besides the advantage that plungers have proved to work for the purpose of keeping an inner volume sealed and push the volume to deliver it through a needle or other liquid connection, it opens the possibility for having a third chamber (i.e. a second separate reservoir) in the second plunger and mix more than two substances.
Vacuum Bypass Channel
As stated, the presently disclosed invention relates to a syringe including a vacuum chamber for holding a first substance. There are several ways of achieving vacuum in a closed volume (chamber). One embodiment of the presently disclosed syringe further comprising one or more vacuum bypass channels located in the barrel and/or in the plunger and configured such that the plunger sealably engages the vacuum chamber in at least a first axial position of the plunger inside the vacuum chamber, i.e. the state where a vacuum is retained, and such that fluid communication is established across the plunger in at least a second axial position of the plunger inside the vacuum chamber via said one or more vacuum bypass channels. Thus, the vacuum bypass channel(s) may be configured to break the sealing between the vacuum chamber and the plunger at a predefined axial position of the plunger inside the vacuum chamber. This may for example be provided if said one or more vacuum bypass channels 16 are one or more longitudinal grooves 17 formed in the inner surface of the proximal end of the vacuum chamber as illustrated in
Substances
The presently disclosed syringe works for a number of different substances in the two chambers. Some types of medication are provided and stored in two separate chambers, and are mixed before use. Such medication may include a solid component and a liquid solvent and are known as two-part formulations. The solid component can be for example a powdered medicament. In one embodiment of the syringe, the chambers are prefilled with first and second substances, wherein the first substance is a dry composition, and wherein the second substance is an aqueous medium. Preferably, the dry composition is placed in the vacuum chamber and the aqueous medium in the reservoir chamber. Similarly, the syringe may be prefilled with first and second substances, wherein the first substance is a dry component of a medicament and wherein the second substance is an aqueous medium in a wet component of said medicament. The presently disclosed syringe is also suitable for being used with a lyophilized substance, such as a lyophilized drug, as the first substance.
Other Barrel and Plunger Related Aspects
The barrel preferably comprises an outlet for disposing the mixed final product. This outlet is preferably closable and/or sealable in order to retain the vacuum in the vacuum chamber. The outlet may e.g. be a Luer type outlet and it is advantageously located at the distal end of the barrel. The outlet may further be formed as a connector portion suitable for connecting with another mating connector, e.g. suitable for connecting a hose to the syringe. The connector portion may be a connector portion of a standard type, such as a Luer lock or Luer slip connector, preferably a male Luer lock or Luer slip connector. The connector portion may be provided with a threaded portion for secure connection with matching connector. This threaded portion may be provided at the inside of the connector portion.
Preferably, the barrel has an open proximal end, wherein the plunger extends through the proximal end, which can be considered to be a standard solution for a syringe. Typically the syringe is configured such that the plunger can be axially displaced through an open proximal end of the barrel.
The volume capacity presently disclosed syringe is scalable by shaping and scaling the barrel and the plunger. The volume of the vacuum chamber and the reservoir chamber can then be selected within the limits of the barrel and the plunger. The volume of the barrel and/or the volume of the vacuum chamber may be between 0.1 and 500 mL, more preferred between 1 and 100 mL, more preferred between 2 and 50 mL, more preferred between 3 and 30 mL, more preferred less than 25 mL, more preferred less than 20 mL, more preferred less than 15 mL, more preferred less than 10 mL, most preferred between 5 and 10 mL.
Correspondingly the volume of the hollow body of the plunger and/or the volume of the reservoir chamber is between 0.1 and 500 mL, more preferred between 1 and 100 mL, more preferred between 2 and 50 mL, more preferred between 3 and 30 mL, more preferred less than 25 mL, more preferred less than 20 mL, more preferred less than 15 mL, more preferred less than 10 mL, most preferred between 5 and 10 mL.
The presently disclosed syringe is preferably a single-use disposable syringe. The different components of the syringe (barrel, plunger, plug, valve, valve part, etc.) are preferably suitable for manufacture by means of single cycle injection molding.
One embodiment of the presently disclosed syringe 1 is exemplified in
In
In
In
In
In
Number | Date | Country | Kind |
---|---|---|---|
15175189 | Jul 2015 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2016/065260 | 6/30/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/005590 | 1/12/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2465357 | Correll et al. | Mar 1949 | A |
2465860 | Fleischmann | Mar 1949 | A |
2507244 | Correll | May 1950 | A |
2558395 | Studer | Jun 1951 | A |
2899362 | Sieger et al. | Aug 1959 | A |
3089815 | Kupelwieser et al. | May 1963 | A |
3224434 | Molomut et al. | Dec 1965 | A |
3405712 | Pierick | Oct 1968 | A |
3514518 | Charier-Vadrot | May 1970 | A |
3608593 | McCormick et al. | Sep 1971 | A |
3678933 | Moore et al. | Jul 1972 | A |
3815580 | Oster | Jun 1974 | A |
3869539 | Kring et al. | Mar 1975 | A |
3892876 | Hobday et al. | Jul 1975 | A |
3899606 | Forkner | Aug 1975 | A |
3930052 | De Brou et al. | Dec 1975 | A |
3946732 | Hurscham | Mar 1976 | A |
4002173 | Manning et al. | Jan 1977 | A |
4006220 | Gottlieb | Feb 1977 | A |
4013078 | Feild | Mar 1977 | A |
4098728 | Rosenblatt et al. | Jul 1978 | A |
4107288 | Oppenheim et al. | Aug 1978 | A |
4124705 | Rothman et al. | Nov 1978 | A |
4150744 | Fennimore | Apr 1979 | A |
4160022 | Delaney et al. | Jul 1979 | A |
4164559 | Miyata et al. | Aug 1979 | A |
4179400 | Tsao et al. | Dec 1979 | A |
4194392 | Lombard et al. | Mar 1980 | A |
4208439 | Hsu | Jun 1980 | A |
4256877 | Karlsson et al. | Mar 1981 | A |
4265233 | Sugitachi et al. | May 1981 | A |
4280954 | Yannas et al. | Jul 1981 | A |
4291013 | Wahlig et al. | Sep 1981 | A |
4292972 | Pawelchak et al. | Oct 1981 | A |
4298598 | Schwarz et al. | Nov 1981 | A |
4300494 | Graiff et al. | Nov 1981 | A |
4320201 | Berg et al. | Mar 1982 | A |
4347234 | Wahlig et al. | Aug 1982 | A |
4362567 | Schwarz et al. | Dec 1982 | A |
4377572 | Schwarz et al. | Mar 1983 | A |
4416813 | Ikeda et al. | Nov 1983 | A |
4424208 | Wallace et al. | Jan 1984 | A |
4453939 | Zimmerman | Jun 1984 | A |
4482386 | Wittwer et al. | Nov 1984 | A |
4492305 | Avery | Jan 1985 | A |
4515637 | Cioca | May 1985 | A |
4522302 | Paikoff | Jun 1985 | A |
4536387 | Sakamoto et al. | Aug 1985 | A |
4540410 | Wood et al. | Sep 1985 | A |
4543332 | Jao et al. | Sep 1985 | A |
4549554 | Markham | Oct 1985 | A |
4554156 | Fischer | Nov 1985 | A |
4556156 | Frutin | Dec 1985 | A |
4557377 | Maloney | Dec 1985 | A |
4559304 | Kasai et al. | Dec 1985 | A |
4600574 | Lindner et al. | Jul 1986 | A |
4640834 | Eibl et al. | Feb 1987 | A |
4655211 | Sakamoto et al. | Apr 1987 | A |
4685597 | Hirao et al. | Aug 1987 | A |
4696812 | Silbering | Sep 1987 | A |
4702737 | Pizzino | Oct 1987 | A |
4735616 | Eibl et al. | Apr 1988 | A |
4743229 | Chu | May 1988 | A |
4746514 | Warne | May 1988 | A |
4749689 | Miyata et al. | Jun 1988 | A |
4752466 | Saferstein et al. | Jun 1988 | A |
4803075 | Wallace et al. | Feb 1989 | A |
4818517 | Kwee et al. | Apr 1989 | A |
4832686 | Anderson | May 1989 | A |
4837285 | Berg et al. | Jun 1989 | A |
4851521 | Della Valle et al. | Jul 1989 | A |
4861714 | Dean, Jr. et al. | Aug 1989 | A |
4863856 | Dean, Jr. et al. | Sep 1989 | A |
4885161 | Cornell | Dec 1989 | A |
4887743 | Blake et al. | Dec 1989 | A |
4891359 | Saferstein et al. | Jan 1990 | A |
4920158 | Murray et al. | Apr 1990 | A |
4925677 | Feijen | May 1990 | A |
4936835 | Haaga et al. | Jun 1990 | A |
4946870 | Partain, III et al. | Aug 1990 | A |
4948575 | Cole et al. | Aug 1990 | A |
4965203 | Silbering et al. | Oct 1990 | A |
4982769 | Fournier et al. | Jan 1991 | A |
4997753 | Dean, Jr. et al. | Mar 1991 | A |
5007916 | Linsky et al. | Apr 1991 | A |
5017229 | Burns et al. | May 1991 | A |
5023082 | Friedman et al. | Jun 1991 | A |
5024841 | Chu et al. | Jun 1991 | A |
5037740 | Tanaka et al. | Aug 1991 | A |
5041292 | Feijen | Aug 1991 | A |
5061274 | Kensey | Oct 1991 | A |
5061492 | Okada et al. | Oct 1991 | A |
5062834 | Gross et al. | Nov 1991 | A |
5080893 | Goldberg et al. | Jan 1992 | A |
5108421 | Fowler | Apr 1992 | A |
5112750 | Tanaka et al. | May 1992 | A |
5126141 | Henry | Jun 1992 | A |
5129882 | Weldon et al. | Jul 1992 | A |
5134229 | Saferstein et al. | Jul 1992 | A |
5135751 | Henry et al. | Aug 1992 | A |
5135755 | Czech et al. | Aug 1992 | A |
5140016 | Goldberg et al. | Aug 1992 | A |
5149540 | Kunihiro et al. | Sep 1992 | A |
5162430 | Rhee et al. | Nov 1992 | A |
5165938 | Knighton | Nov 1992 | A |
5178883 | Knighton | Jan 1993 | A |
5180583 | Hedner | Jan 1993 | A |
5192300 | Fowler | Mar 1993 | A |
5196185 | Silver et al. | Mar 1993 | A |
5204382 | Wallace et al. | Apr 1993 | A |
5209776 | Bass et al. | May 1993 | A |
5219328 | Morse et al. | Jun 1993 | A |
5275616 | Fowler | Jan 1994 | A |
5281528 | Boctor et al. | Jan 1994 | A |
5292362 | Bass et al. | Mar 1994 | A |
5300494 | Brode, II et al. | Apr 1994 | A |
5304377 | Yamada et al. | Apr 1994 | A |
5306501 | Viegas et al. | Apr 1994 | A |
5324775 | Rhee et al. | Jun 1994 | A |
5328955 | Rhee et al. | Jul 1994 | A |
5330446 | Weldon et al. | Jul 1994 | A |
5350573 | Goldberg et al. | Sep 1994 | A |
5350581 | Kochinke | Sep 1994 | A |
5352715 | Wallace et al. | Oct 1994 | A |
5356614 | Sharma | Oct 1994 | A |
5356883 | Kuo et al. | Oct 1994 | A |
5384333 | Davis et al. | Jan 1995 | A |
5385606 | Kowanko | Jan 1995 | A |
5387208 | Ashton et al. | Feb 1995 | A |
5394886 | Nabai et al. | Mar 1995 | A |
5397704 | Boctor et al. | Mar 1995 | A |
5399361 | Song et al. | Mar 1995 | A |
5401511 | Margalit | Mar 1995 | A |
5418222 | Song et al. | May 1995 | A |
5428022 | Palefsky et al. | Jun 1995 | A |
5428024 | Chu et al. | Jun 1995 | A |
5437672 | Allyne | Aug 1995 | A |
5441491 | Verschoor et al. | Aug 1995 | A |
5443481 | Lee | Aug 1995 | A |
5447966 | Hermes et al. | Sep 1995 | A |
5456693 | Conston et al. | Oct 1995 | A |
5462860 | Mach | Oct 1995 | A |
5478352 | Fowler | Dec 1995 | A |
5503848 | Perbellini et al. | Apr 1996 | A |
5507744 | Tay et al. | Apr 1996 | A |
5510418 | Rhee et al. | Apr 1996 | A |
5512301 | Song et al. | Apr 1996 | A |
5514379 | Weissleder et al. | May 1996 | A |
5516532 | Atala et al. | May 1996 | A |
5520925 | Maser | May 1996 | A |
5531759 | Kensey et al. | Jul 1996 | A |
5540715 | Katsaros et al. | Jul 1996 | A |
5580923 | Yeung et al. | Dec 1996 | A |
5595735 | Saferstein et al. | Jan 1997 | A |
5599735 | Moslehi | Feb 1997 | A |
5614587 | Rhee et al. | Mar 1997 | A |
5618551 | Tardy et al. | Apr 1997 | A |
5643596 | Pruss et al. | Jul 1997 | A |
5645849 | Pruss et al. | Jul 1997 | A |
5648506 | Desai et al. | Jul 1997 | A |
5658592 | Tanihara et al. | Aug 1997 | A |
5660854 | Haynes et al. | Aug 1997 | A |
5667839 | Berg | Sep 1997 | A |
5669934 | Sawyer | Sep 1997 | A |
5672336 | Sharma | Sep 1997 | A |
5674275 | Tang et al. | Oct 1997 | A |
5690675 | Sawyer et al. | Nov 1997 | A |
5690954 | Ilium | Nov 1997 | A |
5698213 | Jamiolkowski et al. | Dec 1997 | A |
5700476 | Rosenthal et al. | Dec 1997 | A |
5712161 | Koezuka et al. | Jan 1998 | A |
5714370 | Eibl et al. | Feb 1998 | A |
5723308 | Mach et al. | Mar 1998 | A |
5743312 | Pfeifer et al. | Apr 1998 | A |
5749895 | Sawyer et al. | May 1998 | A |
5752974 | Rhee et al. | May 1998 | A |
5770229 | Tanihara et al. | Jun 1998 | A |
5779668 | Grabenkort | Jul 1998 | A |
5791352 | Reich et al. | Aug 1998 | A |
5795330 | Tofighi et al. | Aug 1998 | A |
5798091 | Trevino et al. | Aug 1998 | A |
5804203 | Hang et al. | Sep 1998 | A |
5823671 | Mitchell et al. | Oct 1998 | A |
5824015 | Sawyer | Oct 1998 | A |
5853749 | Hobbs | Dec 1998 | A |
5856356 | Tsouderos et al. | Jan 1999 | A |
5861043 | Carn | Jan 1999 | A |
5863496 | McElhany | Jan 1999 | A |
5874500 | Rhee et al. | Feb 1999 | A |
5876372 | Grabenkort et al. | Mar 1999 | A |
5883078 | Seelich et al. | Mar 1999 | A |
5890610 | Jansen et al. | Apr 1999 | A |
5895412 | Tucker | Apr 1999 | A |
5902832 | Van Bladel et al. | May 1999 | A |
5908054 | Safabash et al. | Jun 1999 | A |
5931165 | Reich et al. | Aug 1999 | A |
5939259 | Harvey et al. | Aug 1999 | A |
5951531 | Ferdman et al. | Sep 1999 | A |
5951583 | Jensen et al. | Sep 1999 | A |
5957166 | Safabash | Sep 1999 | A |
5959735 | Maris et al. | Sep 1999 | A |
5986168 | Noishiki et al. | Nov 1999 | A |
5997895 | Narotam et al. | Dec 1999 | A |
6007613 | Izoret | Dec 1999 | A |
6027741 | Cialdi et al. | Feb 2000 | A |
6042262 | Hajianpour | Mar 2000 | A |
6045570 | Epstein et al. | Apr 2000 | A |
6056970 | Greenawalt et al. | May 2000 | A |
6063061 | Wallace et al. | May 2000 | A |
6066325 | Wallace et al. | May 2000 | A |
6074663 | Delmottet et al. | Jun 2000 | A |
6096309 | Prior et al. | Aug 2000 | A |
6099952 | Cercone | Aug 2000 | A |
6110484 | Sierra | Aug 2000 | A |
6113948 | Heath | Sep 2000 | A |
6129761 | Hubbell | Oct 2000 | A |
6132759 | Schacht et al. | Oct 2000 | A |
6146587 | Morgan | Nov 2000 | A |
6162241 | Coury et al. | Dec 2000 | A |
6166130 | Rhee et al. | Dec 2000 | A |
6168788 | Wortham | Jan 2001 | B1 |
6171276 | Lippe | Jan 2001 | B1 |
6179872 | Bell et al. | Jan 2001 | B1 |
6193670 | van Tassel et al. | Feb 2001 | B1 |
6218176 | Berthold et al. | Apr 2001 | B1 |
6224862 | Turecek et al. | May 2001 | B1 |
6261596 | Li et al. | Jul 2001 | B1 |
6277394 | Sierra | Aug 2001 | B1 |
6280727 | Prior et al. | Aug 2001 | B1 |
6283933 | D'Aiessio et al. | Sep 2001 | B1 |
6300128 | Morota et al. | Oct 2001 | B1 |
6303323 | Laskey et al. | Oct 2001 | B1 |
6312474 | Francis et al. | Nov 2001 | B1 |
6312725 | Wallace et al. | Nov 2001 | B1 |
6321951 | Frutin | Nov 2001 | B1 |
6328229 | Duronio et al. | Dec 2001 | B1 |
6334865 | Redmond et al. | Jan 2002 | B1 |
6361551 | Torgerson et al. | Mar 2002 | B1 |
6364519 | Hughes et al. | Apr 2002 | B1 |
6387413 | Miyata et al. | May 2002 | B1 |
6391343 | Yen | May 2002 | B1 |
6416739 | Rogerson | Jul 2002 | B1 |
6423037 | Hijikata et al. | Jul 2002 | B1 |
6454787 | Maddalo et al. | Sep 2002 | B1 |
6458380 | Leaderman | Oct 2002 | B1 |
6458386 | Schacht et al. | Oct 2002 | B1 |
6458889 | Trollsas | Oct 2002 | B1 |
6461325 | Delmotte et al. | Oct 2002 | B1 |
6472162 | Coelho | Oct 2002 | B1 |
6495127 | Wallace et al. | Dec 2002 | B1 |
6548081 | Sadozai et al. | Apr 2003 | B2 |
6584858 | Miyazawa et al. | Jul 2003 | B1 |
6620436 | Rolf | Sep 2003 | B1 |
6635272 | Leaderman | Oct 2003 | B2 |
6638538 | Hashimoto et al. | Oct 2003 | B1 |
6649162 | Biering et al. | Nov 2003 | B1 |
6706690 | Reich et al. | Mar 2004 | B2 |
6716435 | Farmer et al. | Apr 2004 | B1 |
6733774 | Stimmeder | May 2004 | B2 |
6831058 | Ikada et al. | Dec 2004 | B1 |
6861046 | Appino et al. | Mar 2005 | B1 |
6887974 | Pathak | May 2005 | B2 |
6902543 | Cherif-Cheikh | Jun 2005 | B1 |
7052713 | Stimmeder | May 2006 | B2 |
7056722 | Coelho | Jun 2006 | B1 |
7109163 | Pendharkar et al. | Sep 2006 | B2 |
7125860 | Renier et al. | Oct 2006 | B1 |
7320962 | Reich et al. | Jan 2008 | B2 |
7393674 | Jiang et al. | Jul 2008 | B2 |
7427607 | Suzuki | Sep 2008 | B2 |
7435425 | Qian et al. | Oct 2008 | B2 |
7547446 | Qian et al. | Jun 2009 | B2 |
7833965 | Pendharkar et al. | Nov 2010 | B2 |
7871637 | Qian et al. | Jan 2011 | B2 |
7923431 | Wolff | Apr 2011 | B2 |
7927626 | Pendharkar et al. | Apr 2011 | B2 |
7935371 | Williams | May 2011 | B2 |
8071090 | Senderoff et al. | Dec 2011 | B2 |
8119160 | Looney et al. | Feb 2012 | B2 |
8303981 | Wallace et al. | Nov 2012 | B2 |
8329119 | Pearcy | Dec 2012 | B2 |
8357378 | Wallace et al. | Jan 2013 | B2 |
8512729 | Wallace et al. | Aug 2013 | B2 |
8551941 | Pendharkar et al. | Oct 2013 | B2 |
8603511 | Wallace et al. | Dec 2013 | B2 |
8642831 | Larsen et al. | Feb 2014 | B2 |
8846105 | Koopman et al. | Sep 2014 | B2 |
9048945 | Cordeiro | Jun 2015 | B2 |
9265858 | Larsen | Feb 2016 | B2 |
9376674 | Jorquera Nieto et al. | Jun 2016 | B2 |
9446848 | Jerome et al. | Sep 2016 | B2 |
9533069 | Larsen et al. | Jan 2017 | B2 |
9629798 | Senderoff et al. | Apr 2017 | B2 |
9724078 | Larsen et al. | Aug 2017 | B2 |
9999703 | Larsen | Jun 2018 | B2 |
10111980 | Larsen | Oct 2018 | B2 |
10595837 | Larsen et al. | Mar 2020 | B2 |
20010008636 | Yamamoto et al. | Jul 2001 | A1 |
20010038848 | Donda | Nov 2001 | A1 |
20010041913 | Cragg et al. | Nov 2001 | A1 |
20020006429 | Redmond et al. | Jan 2002 | A1 |
20020010150 | Cortese et al. | Jan 2002 | A1 |
20020010482 | Watt et al. | Jan 2002 | A1 |
20020012982 | Blakesley et al. | Jan 2002 | A1 |
20020015724 | Yang et al. | Feb 2002 | A1 |
20020019062 | Lea et al. | Feb 2002 | A1 |
20020025921 | Petito et al. | Feb 2002 | A1 |
20020026215 | Redmond et al. | Feb 2002 | A1 |
20020027146 | de LaForcade et al. | Mar 2002 | A1 |
20020039594 | Unger | Apr 2002 | A1 |
20020042378 | Reich et al. | Apr 2002 | A1 |
20020061842 | Mansour et al. | May 2002 | A1 |
20020072767 | Zhu | Jun 2002 | A1 |
20020082620 | Lee et al. | Jun 2002 | A1 |
20020111576 | Greene et al. | Aug 2002 | A1 |
20020164322 | Schaufler | Nov 2002 | A1 |
20020173818 | Reever | Nov 2002 | A1 |
20020188196 | Burbank et al. | Dec 2002 | A1 |
20020192271 | Hedner et al. | Dec 2002 | A1 |
20020193448 | Wallace et al. | Dec 2002 | A1 |
20030004449 | Lafratta et al. | Jan 2003 | A1 |
20030008831 | Yang et al. | Jan 2003 | A1 |
20030009194 | Saker et al. | Jan 2003 | A1 |
20030012741 | Furlan et al. | Jan 2003 | A1 |
20030028140 | Greff | Feb 2003 | A1 |
20030032143 | Neff et al. | Feb 2003 | A1 |
20030040701 | Dalmose | Feb 2003 | A1 |
20030064109 | Qian et al. | Apr 2003 | A1 |
20030095993 | Benz et al. | May 2003 | A1 |
20030162708 | Wolff | Aug 2003 | A1 |
20030175410 | Campbell | Sep 2003 | A1 |
20030175419 | Sessa | Sep 2003 | A1 |
20030181659 | Naranda et al. | Sep 2003 | A1 |
20030224056 | Kotha et al. | Dec 2003 | A1 |
20030225378 | Wilkie et al. | Dec 2003 | A1 |
20030232746 | Lamberti et al. | Dec 2003 | A1 |
20040062790 | Constantine et al. | Apr 2004 | A1 |
20040076647 | Biering | Apr 2004 | A1 |
20040079763 | Powell et al. | Apr 2004 | A1 |
20040101546 | Gorman et al. | May 2004 | A1 |
20040120993 | Zhang et al. | Jun 2004 | A1 |
20040186432 | Barry et al. | Sep 2004 | A1 |
20040197388 | Sceusa | Oct 2004 | A1 |
20040214770 | Reich et al. | Oct 2004 | A1 |
20040243043 | McCarthy et al. | Dec 2004 | A1 |
20040267352 | Davidson et al. | Dec 2004 | A1 |
20050008632 | Stimmeder | Jan 2005 | A1 |
20050031691 | McGurk et al. | Feb 2005 | A1 |
20050137512 | Campbell et al. | Jun 2005 | A1 |
20050171001 | Pendharkar et al. | Aug 2005 | A1 |
20050186253 | Lee et al. | Aug 2005 | A1 |
20050214277 | Schaufler | Sep 2005 | A1 |
20050218541 | Peng et al. | Oct 2005 | A1 |
20050239675 | Makansi | Oct 2005 | A1 |
20050245905 | Schmidt et al. | Nov 2005 | A1 |
20050284809 | Looney et al. | Dec 2005 | A1 |
20060002890 | Hersel et al. | Jan 2006 | A1 |
20060002918 | Jiang et al. | Jan 2006 | A1 |
20060052747 | Nishimura | Mar 2006 | A1 |
20060067976 | Ferraro et al. | Mar 2006 | A1 |
20060068013 | DiTizio et al. | Mar 2006 | A1 |
20060115805 | Hansen | Jun 2006 | A1 |
20060121080 | Lye et al. | Jun 2006 | A1 |
20060121104 | Stern | Jun 2006 | A1 |
20060147492 | Hunter et al. | Jul 2006 | A1 |
20060159733 | Pendharkar et al. | Jul 2006 | A1 |
20060167561 | Odar et al. | Jul 2006 | A1 |
20060189516 | Yang et al. | Aug 2006 | A1 |
20060193846 | Stimmeder | Aug 2006 | A1 |
20060204490 | Pendharkar et al. | Sep 2006 | A1 |
20060255053 | Li | Nov 2006 | A1 |
20060282138 | Ota | Dec 2006 | A1 |
20070009578 | Moiler et al. | Jan 2007 | A1 |
20070025955 | Lowinger et al. | Feb 2007 | A1 |
20070054020 | Kumagai | Mar 2007 | A1 |
20070086958 | Drake et al. | Apr 2007 | A1 |
20070128343 | Chappa | Jun 2007 | A1 |
20070160543 | Moiler | Jul 2007 | A1 |
20070215235 | Ranalletta et al. | Sep 2007 | A1 |
20070217282 | Lidgren | Sep 2007 | A1 |
20070250007 | Shekalim | Oct 2007 | A1 |
20070264130 | Mallett | Nov 2007 | A1 |
20070264301 | Cleek et al. | Nov 2007 | A1 |
20070264302 | Cleek et al. | Nov 2007 | A1 |
20080029087 | Kidd, III | Feb 2008 | A1 |
20080085316 | Qian et al. | Apr 2008 | A1 |
20080091277 | Deusch et al. | Apr 2008 | A1 |
20080095830 | Van Holten | Apr 2008 | A1 |
20080109002 | Delmotte | May 2008 | A1 |
20080199539 | Baker et al. | Aug 2008 | A1 |
20080286376 | Qian et al. | Nov 2008 | A1 |
20080311172 | Schapira et al. | Dec 2008 | A1 |
20090087569 | Fan et al. | Apr 2009 | A1 |
20090142396 | Odar et al. | Jun 2009 | A1 |
20090157017 | Ambrosio | Jun 2009 | A1 |
20100028309 | Odar et al. | Feb 2010 | A1 |
20100048758 | Chen et al. | Feb 2010 | A1 |
20100063459 | Preiss-Bloom et al. | Mar 2010 | A1 |
20100113828 | Dalsin et al. | May 2010 | A1 |
20100143447 | Hansen | Jun 2010 | A1 |
20100256671 | Falus | Oct 2010 | A1 |
20100292717 | Petter-Puchner et al. | Nov 2010 | A1 |
20100318048 | Hoeffinghoff et al. | Dec 2010 | A1 |
20110021964 | Larsen et al. | Jan 2011 | A1 |
20110045034 | Nur et al. | Feb 2011 | A1 |
20110059228 | Gillick et al. | Mar 2011 | A1 |
20110270167 | Matusch | Nov 2011 | A1 |
20120128653 | Goessl et al. | May 2012 | A1 |
20120201726 | Pearcy et al. | Aug 2012 | A1 |
20140220130 | Larsen et al. | Aug 2014 | A1 |
20150037314 | Larsen | Feb 2015 | A1 |
20150045830 | Jensen et al. | Feb 2015 | A1 |
20160120527 | Larsen et al. | May 2016 | A1 |
20160354512 | Larsen | Dec 2016 | A1 |
20180243468 | Larsen | Aug 2018 | A1 |
20180264194 | Larsen | Sep 2018 | A1 |
20190015546 | Larsen | Jan 2019 | A1 |
Number | Date | Country |
---|---|---|
0051589 | Jul 1993 | BG |
0099900 | Mar 1997 | BG |
1270240 | Oct 2000 | CN |
2316209 | Oct 1974 | DE |
3146841 | Jun 1983 | DE |
4119140 | Dec 1992 | DE |
4407875 | Sep 1995 | DE |
0132983 | Feb 1985 | EP |
0156649 | Oct 1985 | EP |
0282316 | Sep 1988 | EP |
0341007 | Nov 1989 | EP |
0341745 | Nov 1989 | EP |
0365705 | May 1990 | EP |
0372966 | Jun 1990 | EP |
0385916 | Sep 1990 | EP |
0395758 | Nov 1990 | EP |
0172710 | Mar 1992 | EP |
0478827 | Apr 1992 | EP |
0493387 | Oct 1993 | EP |
0376931 | Jun 1994 | EP |
0702081 | Mar 1996 | EP |
0737467 | Oct 1996 | EP |
0612252 | May 1999 | EP |
0773740 | Nov 1999 | EP |
1005874 | Jun 2000 | EP |
1022031 | Jul 2000 | EP |
1044693 | Oct 2000 | EP |
1053758 | Nov 2000 | EP |
1084720 | Mar 2001 | EP |
1140235 | Oct 2001 | EP |
1174463 | Jan 2002 | EP |
1258256 | Nov 2002 | EP |
1283063 | Feb 2003 | EP |
0790823 | Jul 2003 | EP |
0891193 | Aug 2003 | EP |
1484070 | Dec 2004 | EP |
1 543 842 | Jun 2005 | EP |
1095064 | Jun 2005 | EP |
1649867 | Apr 2006 | EP |
1361906 | Apr 2007 | EP |
1414370 | Apr 2007 | EP |
1059957 | Aug 2007 | EP |
1608230 | Jul 2010 | EP |
2 040 724 | Oct 2011 | EP |
2679772 | May 1993 | FR |
2759980 | Aug 1998 | FR |
648619 | Jan 1951 | GB |
697603 | Sep 1953 | GB |
1037937 | Aug 1966 | GB |
1199887 | Jul 1970 | GB |
1 483 002 | Jul 1975 | GB |
1584080 | Feb 1981 | GB |
1591654 | Jun 1981 | GB |
2266239 | Oct 1993 | GB |
2393120 | Mar 2004 | GB |
2414021 | Nov 2005 | GB |
51-125156 | Nov 1976 | JP |
59-113889 | Jun 1984 | JP |
60214728 | Oct 1985 | JP |
62070318 | Mar 1987 | JP |
62221357 | Sep 1987 | JP |
01130519 | May 1989 | JP |
05308969 | Nov 1993 | JP |
06254148 | Sep 1994 | JP |
H07090241 | Apr 1995 | JP |
08-024325 | Jan 1996 | JP |
9-504719 | May 1997 | JP |
10-507666 | Jul 1998 | JP |
2002513308 | May 2002 | JP |
2004002271 | Jan 2004 | JP |
2004147959 | May 2004 | JP |
2006-296896 | Nov 2006 | JP |
2010228932 | Oct 2010 | JP |
2011212182 | Oct 2011 | JP |
910007847 | Oct 1991 | KR |
100751046 | Aug 2007 | KR |
WO 8301244 | Apr 1983 | WO |
WO 8600912 | Feb 1986 | WO |
WO 8902730 | Apr 1989 | WO |
WO 9013320 | Nov 1990 | WO |
WO 9221354 | Dec 1992 | WO |
WO 9222252 | Dec 1992 | WO |
WO 9306802 | Apr 1993 | WO |
WO 9306855 | Apr 1993 | WO |
WO 9310768 | Jun 1993 | WO |
WO 9321908 | Nov 1993 | WO |
WO 9408552 | Apr 1994 | WO |
WO 9417840 | Aug 1994 | WO |
WO 9427630 | Dec 1994 | WO |
WO 9512371 | May 1995 | WO |
WO 9515747 | Jun 1995 | WO |
WO 9525748 | Sep 1995 | WO |
WO 9531955 | Nov 1995 | WO |
WO 9604025 | Feb 1996 | WO |
WO 9606883 | Mar 1996 | WO |
WO 9607472 | Mar 1996 | WO |
WO 9610374 | Apr 1996 | WO |
WO 9610428 | Apr 1996 | WO |
WO 9612447 | May 1996 | WO |
WO 9614368 | May 1996 | WO |
WO 9616643 | Jun 1996 | WO |
WO 9639159 | Dec 1996 | WO |
WO 9640033 | Dec 1996 | WO |
WO 9717023 | May 1997 | WO |
WO 9717024 | May 1997 | WO |
WO 9717025 | May 1997 | WO |
WO 9729792 | Aug 1997 | WO |
WO 9737694 | Oct 1997 | WO |
WO 9808550 | Mar 1998 | WO |
WO 9831403 | Jul 1998 | WO |
WO 9834546 | Aug 1998 | WO |
WO 9836784 | Aug 1998 | WO |
WO 9843092 | Oct 1998 | WO |
WO 9844963 | Oct 1998 | WO |
WO 9851282 | Nov 1998 | WO |
WO 9904828 | Feb 1999 | WO |
WO 9912032 | Mar 1999 | WO |
WO 9913902 | Mar 1999 | WO |
WO 9938606 | Aug 1999 | WO |
WO 9944901 | Sep 1999 | WO |
WO 9945938 | Sep 1999 | WO |
WO 99051208 | Oct 1999 | WO |
WO 0009018 | Feb 2000 | WO |
WO 0018301 | Apr 2000 | WO |
WO 0027327 | May 2000 | WO |
WO 0061201 | Oct 2000 | WO |
WO 0074742 | Dec 2000 | WO |
WO 0076533 | Dec 2000 | WO |
WO 0113956 | Mar 2001 | WO |
WO 0128603 | Apr 2001 | WO |
WO 0134206 | May 2001 | WO |
WO 0154735 | Aug 2001 | WO |
WO 0166161 | Sep 2001 | WO |
WO 0197826 | Dec 2001 | WO |
WO 0197871 | Dec 2001 | WO |
WO 0218450 | Mar 2002 | WO |
WO 0222059 | Mar 2002 | WO |
WO 0222184 | Mar 2002 | WO |
WO 0240068 | May 2002 | WO |
WO 02058749 | Aug 2002 | WO |
WO 02064182 | Aug 2002 | WO |
WO 02070594 | Sep 2002 | WO |
WO 02072128 | Sep 2002 | WO |
202096488 | Dec 2002 | WO |
WO 03007845 | Jan 2003 | WO |
WO 2003004072 | Jan 2003 | WO |
WO 03024426 | Mar 2003 | WO |
WO 03024429 | Mar 2003 | WO |
WO 03055531 | Jul 2003 | WO |
WO 2003070110 | Aug 2003 | WO |
WO 03074103 | Sep 2003 | WO |
WO 03094983 | Nov 2003 | WO |
WO 04028404 | Apr 2004 | WO |
WO 04028423 | Apr 2004 | WO |
WO 04029095 | Apr 2004 | WO |
WO 04030711 | Apr 2004 | WO |
WO 2004026377 | Apr 2004 | WO |
WO 2004028583 | Apr 2004 | WO |
WO 2004035629 | Apr 2004 | WO |
WO 2004053051 | Jun 2004 | WO |
WO 2004069303 | Aug 2004 | WO |
WO 04075650 | Sep 2004 | WO |
WO 04084869 | Oct 2004 | WO |
WO 04108035 | Dec 2004 | WO |
WO 2004108179 | Dec 2004 | WO |
WO 2004108418 | Dec 2004 | WO |
WO 05000265 | Jan 2005 | WO |
WO 2005002510 | Jan 2005 | WO |
WO 05009225 | Feb 2005 | WO |
WO 05041811 | May 2005 | WO |
WO 05044285 | May 2005 | WO |
WO 05062889 | Jul 2005 | WO |
WO 05063217 | Jul 2005 | WO |
WO 2005072700 | Aug 2005 | WO |
WO 2005084650 | Sep 2005 | WO |
WO 05107713 | Nov 2005 | WO |
WO 2006005340 | Jan 2006 | WO |
WO 2006031358 | Mar 2006 | WO |
WO 06034568 | Apr 2006 | WO |
WO 06063758 | Jun 2006 | WO |
WO 2006058435 | Jun 2006 | WO |
WO 06128471 | Dec 2006 | WO |
WO 2007001926 | Jan 2007 | WO |
WO 2007018887 | Feb 2007 | WO |
WO 2007092618 | Aug 2007 | WO |
WO 2007133699 | Nov 2007 | WO |
WO 2007137839 | Dec 2007 | WO |
2008019127 | Feb 2008 | WO |
WO 2008016983 | Feb 2008 | WO |
2008060475 | May 2008 | WO |
WO 2008051758 | May 2008 | WO |
WO 2008090555 | Jul 2008 | WO |
WO 2009020612 | Feb 2009 | WO |
WO 2009109194 | Sep 2009 | WO |
WO 2009109963 | Sep 2009 | WO |
WO 2009131752 | Oct 2009 | WO |
WO 2011047753 | Apr 2011 | WO |
WO 2011137437 | Nov 2011 | WO |
WO 2011151384 | Dec 2011 | WO |
WO 2011151386 | Dec 2011 | WO |
WO 2011151400 | Dec 2011 | WO |
WO 2012146655 | Nov 2012 | WO |
WO 2013053753 | Apr 2013 | WO |
WO 2013053755 | Apr 2013 | WO |
WO 2013053759 | Apr 2013 | WO |
WO 2013060770 | May 2013 | WO |
WO 2013112579 | Aug 2013 | WO |
WO 2013131520 | Sep 2013 | WO |
WO 2013185776 | Dec 2013 | WO |
WO 2014086996 | Jun 2014 | WO |
WO 20140202760 | Dec 2014 | WO |
WO 2015086028 | Jun 2015 | WO |
WO 2016058612 | Apr 2016 | WO |
WO 2017098493 | Jun 2017 | WO |
Entry |
---|
Notice of Allowability for U.S. Appl. No. 14/980,254, titled: “Dry Haemostatic Composition”, dated Feb. 13, 2018. |
Office Action for U.S. Appl. No. 15/102,994, titled: “Dry Composition Comprising an Extrusion Enhancer”, dated Feb. 22, 2018. |
Notice of Allowance for U.S. Appl. No. 15/102,994, titled: “Dry Composition Comprising an Extrusion Enhancer”, dated Jun. 22, 2018. |
Office Action for U.S. Appl. No. 15/639,237, titled: “Vacuum Expanded Dry Composition and Syringe for Retaining Same”, dated Aug. 8, 2018. |
Final Office Action for U.S. Appl. No. 15/639,237, titled: “Vacuum Expanded Dry Composition and Syringe for Retaining Same”, dated Nov. 30, 2018. |
Final Office Action for U.S. Appl. No. 14/383,461, titled: “Pressurized Container Containing Haemostatic Paste”, dated Jan. 8, 2019. |
Office Action for U.S. Appl. No. 15/639,237, titled: “Vacuum Expanded Dry Composition and Syringe for Retaining Same”, dated May 8, 2019. |
“Formulation and Evaluation of Absorbable Gelatin Sponges,” Chapter 3A of Rupali Kale thesis: Design and Development of Surgical Dressings for Advanced Wound Management (2010). |
“Gelfoam Prescribing Information,” Pharmacia & Upjohn (Nov. 1996). |
“Gelfoam® Product Brochure,” Pharmacia & Upjohn (Jun. 2013). |
26th Annual Symposium: Clinical Update in Anaesthesiology, Surgery and Perioperative Medicine, Jan. 20-25, 2008. |
Ansell, J., et al., “Gelfoam and Autologous Clot Embolization: Effect on Coagulation,” Investigative Radiology, 13: 115-120 (1978). |
Arai, K., et al., “Clinical Effect of Thrombin-Collagen Sponge Sheet in Surgical Field,” Chiryo (Pharmacology and Treatment), 11(5):413-418 (1983). (English translation of Office Action for Japanese counterpart application 2010-547957, Title: Device for Promotion of Hemostasis and/or Wound Healing, being provided to satisfy “concise explanation” requirement under 37 C.F.R. 1.98(a)(3)). |
Barrow, D.L., et al., “The Use of Greater Omentum Vascularized Free Flaps for Neurosurgical Disorders Requiring Reconstruction”, Journal of Neurosurgery, 60: 305-311 (1984). |
Barton, B., et al., “Fibrin Glue as a Biologic Vascular Patch—A Comparative Study,” Journal of Surgical Research, vol. 40, 1 page; abstract retrieved from http://www.ncbi.nlm.nih.gov on Jan. 3, 2001. (1986). |
Baxter, “Product Catalogue: Collagen,” 4 pages, retrieved from http://www.baxter-ecommerce.com/ecatalog on Feb. 2, 2006 (2006). |
Baxter, “TissuFleece E Package Leaflet,” Baxter International Inc., 4 pages, English portion of instructions for use (2003). |
Baxter, “TissuFleece E, TissuCone E and TissuFoil E: Biomaterials,” Basic scientific Information, 9 pages (2003). |
Boland, T., et al., “Application of Inkjet Printing to Tissue Engineering,” Biotechnol. J., 1: 910-917 (2006). |
Boyers, S., et al., “Reduction of Postoperative Pelvic Adhesions in the Rabbit with Gore-Tex Surgical Membrane”, Fertility and Sterility, 49(6,): 1066-1070 (1988). |
Brannon-Peppas, L., et al., “The Equilibrium Swelling Behavior of Porous and Non-Porous Hydrogels,” Absorbent Polymer Technology, Elsevier, Amsterdam, pp. 67-102 (1990). |
Branski, R.C., et al., “Mucosal Wound Healing in a Rabbit Model of Subglottic Stenosis”; Arch Otolaryngol Head Neck Surg, vol. 131, Feb. 2005, p. 153-157. |
Brunt and Klausner, “Growth factors speed wound healing”, Nature Biotechnology, 6(1): 25-30 (1988). |
Campbell, P.G., et al., “Engineered Spatial Patterns of FGF-2 Immobilized on Fibrin Direct Cell Organization,” Biomaterials, 26: 6762-6770 (2005). |
Campbell, P.G., et al., “Tissue Engineering with the Aid of Inkjet Printers,” Expert Opin. Biol. Ther., 7: 1123-1127 (2007). |
Canal, T., et al., “Correlation Between Mesh Size and Equilibrium Degree of Swelling of Polymeric Networks” Biomedical Materials Research, 23: 1183-1193 (1989). |
Cantor, M.O., et al., “Gelfoam® and Thrombin in treatment of massive gastroduodenal hemorrhage—A preliminary report”, American Journal of Surgery, 883-887 (Dec. 1950). |
Cantor, M.O., et al., “Gelfoam and Thrombin in Gastroduodenal Bleeding: An Experimental Study,” Journal of Laboratory and Clinical Medicine, 35(6): 890-893 (1950). |
Cantor, M.O., et al., “Gelfoam and Thrombin in Treatment of Massive Upper Gastrointestinal Hemorrhage,” American Journal of Surgery, 82(2): 230-235 (Aug. 1951). |
Cascone, M.G., et al., “Collagen and hyaluronic acid based polymeric blends as drug delivery systems for the release of physiological concentrations of growth hormone.” Journal of Materials science: Materials in Medicine; 5: 770-774 (1994). |
Changez, M., et al., Abstract of “Efficacy of antibiotics-loaded interpenetrating network (IPNs) hydrogel based on poly (acrylic acid) and gelatin for treatment of experimental osteomyelitis: in vivo study.”, Biomaterials; 26(14): 2095-2104 (2005). |
Chaplin, J .M., et al., “Use of an Acellular Dermal Allograft for Dural Replacement: An Experimental Study,” Neurosurgery, 45(2): 320-327 (1999). |
Cheung, D., et al., “Mechanism of Crosslinking of Proteins by Glutaraldehyde IV: In Vitro and In Vivo Stability of a Crosslinked Collagen Matrix,” Connective Tissue Research, 25: 27-34 (1990). |
Choi, Y.S., et al., “Studies on Gelatin-Based Sponges. Part Ill: A Comparative Study of Cross-linked Gelatin/ Alginate, Gelatin/ Hyaluronate and Chitosan/Hyaluronate Sponges and their Application as a wound dressing in fullthickness skin defect of rat.”, J. of Mat. Sci.; Mat. in Med.; 12: 67-73 (Jan. 2001). |
Choi, Y.S., et al., “Studies on gelatin-containing artificial skin: II. Preparation and characterization of cross-linked gelatin-hyaluronate sponge.”, J. Biomed Mater Res., 48: 631-639 (1999). |
Christensen, F, et al., “Qualitative Description of the Wurster-Based Fluid-Bed Coating Process,” Drug Dev and Industry Pharmacy, 23(5): 451-463 (1977). |
Chronic Wound Care Guidelines © 2007 http://woundheal.org.documents/final_pocket_guide_treatment.aspx. |
Chuang, V.P., et al., “Sheath Needle for Liver Biopsy in High-Risk Patients” Radiology, 166: 261-262 (1988). |
Coenye, K.E., et al., “A Qualitative Morphological comparison of Two Heamostatic Agents in a Porcine Liver Trauma Model,” Surgical Science, 4: 359-364 (2013). |
Collins, D., et al., “Enemata of Gelfoam Milk Suspension Combined with Thrombin-Solution to Control Massive Hemorrhage Following Anorectal Surgery,” The American Journal of Proctology, 2: 60-63 (1951). |
Collins, R., et al., “Use of Collagen Film as a Dural Substitute: Preliminary Animal Studies,” Journal of Biomedical Materials Research, 25: 267-276 (1991). |
De la Torre, R.A., et al., “Hemostasis and Hemostatic agents in minimally invasive surgery”, Surgery, 142(4S): S39-S45 (2007). |
De laco, P.A., et al., “Efficacy of a Hyaluronan Derivative gel in postsurgical adhesion prevention in the presence of inadequate hemostasis.” Surgery, 130(1): 60-64 (2001). |
DeLustro, F., et al., “A Comparative Study of the Biologic and Immunologic Response to Medical Devices Derived From Dermal Collagen,” Journal of Biomedical Materials Research, 20: 109-120 (1986). |
Dembo, M.A., et al., Abstract of “Antiseptic hemostatic preparations, their properties and study”, Lech. Prep. Krovi Tkanei; pp. 139-140 (1974). |
Dodd, G.D., et al., “Minimally invasive treatment of malignant hepatic tumors. At the threshold of a major breakthrough”, Radiographies, 20: 9-27 (2000). |
Drognitz, O., et al., Abstract of “Release of vancomycin and teicoplanin from a plasticized and resorbable gelatin sponge: in vitro investigation of a new antibiotic delivery system with glycopeptides”; lndection Germany (Minich); 34(1): 29-34 (2006). |
Duchene, D., et al., “Pharmaceutical and Medical Aspects of Bioadhesive Systems for Drug Administration,” Drug Dev and Industr Pharmacy, 14(2&3):283-318 (1988). |
Edgerton, M., et al., “Vascular Hamatomas and Hemagiomas: Classification and Treatment,” Southern Medical Journal, 75(12): 1541-1547 (1982). |
Ellegala, D.B., et al., “Use of FloSeal Hemostatic Sealant in Transsphenoidal Pituitary Surgery: Technical Note.”; Neurosurgery, 51: 513-516 (Aug. 2002). |
English Derwent Abstract of Ranjane reference, Nov. 18, 1997. |
Filippi, R., et al., “Bovine Pericardium for Duraplasty: Clinical Results in 32 Patients,” Neurological Review, 20:103-107 (2001). |
Final Office Action for U.S. Appl. No. 14/136,578, titled: “Device for Promotion of Hemostasis and/or Wound Healing”, dated Feb. 26, 2015 “Dry Haemostatic Composition”. |
Final Office Action for U.S. Appl. No. 14/136,578, titled: “Device for Promotion of Hemostasis and/or Wound Healing”, dated Oct. 29, 2015. |
Final Office Action for U.S. Appl. No.: 14/383,461, titled: “Pressurized Container Containing Haemostatic Paste”, dated Dec. 14, 2017. |
Fiss, I., et al., “Use of Gelatin-Thrombin Hemostatic Sealant in Cranial Neurosurgery,” Neurologia Medico-Chirurgica, 47(10):462-467 (2007). |
Flory, P., “Phase Equilibria in Polymer Systems,” Principles of Polymer Chemistry, 13: 541-594 (1953). |
FloSeal Matrix Hemostatic Sealant, Instructions for Use, Retrieved from Internet URL http://www.ctsnet.org/file/vendors/931/pdf/140.pdf [retrieved on Aug. 17, 2005]. |
Fujii, Y., et al., “Safety of GT XIII (Report 2)—Japanese + English translation,” The Clinical Report, 20(17) (Dec. 1986). |
Gall, R.M., “Control of Bleeding in Endoscopic Sinus Surgery: Use of a Novel Gelatin-Based Hemostatic Agent”, Journal of Otolaryngology, 31(5): (2002). |
Gelfoam absorbable powder. Retrieved from Internet URL: http://www.fda.gov/cdrh/pdf/N18286S012c.pdf [retrieved on May 22, 2009]. |
Gibble, J.W., et al., “Fibrin glue: the perfect operative sealant?” Reviews: Transfusion, 30(8): 741-747 (1990). |
Guinto, F., “Preparation of Gelfoam Particles Using an Orthopedic Rasp,” Radiology, 153: 250 (1984). |
Gurny, R., et al.,“Bioadhesive Intraoral Release Systems: Design, Testing and Analysis,” Biomaterials, 5: 336-340 (1984). |
Hae-Won, K., et al., Abstract of “Porus scaffolds of gelatin-hydroxyapatite nanocomposites obtained by biometic approach: Characterization and antibiotic drug release.”; J. of Biomedical Materials Research, 74B(2): 686-698 (2005). |
Harris, W.H., et al., “Topical Hemostatic Agents for Bone Bleeding in Humans,” The Journal of Bone and Joint Surgery, 60-A(4): 454-456 (1978). |
Heller, J., et al., “Release of Norethindrone from Poly(Ortho Esters),” Polymer Engineering and Science, 21: 727-731 (1981). |
Herndon, J., et al., “Compression of the Brain and Spinal Cord Following Use of Gelfoam,” Arch. Surg, 104: 107 (Jan. 1972). |
Hieb, L., et al, “Spontaneous Postoperative Cerebrospinal Fluid Leaks Following Application of Anti-Adhesion Barrier Gel,” Spine, 26(7): 748-751 (2001). |
Hill, et al., “Use of microfibrillar collagen hemostat (avitenet) and thrombin to achieve hemostats after median sternotomy.”; J. Thorac Cardiovasc Surg., 108: 1151-1152 (1994). |
Hill-West, J.L., et al., “Efficiacy of a resorbable hydrogel barrier, oxidized regenerated cellulose and hyaluronic acid in the prevention of ovarian adhesions in a rabbit model.”; Fertility and Sterility, 62(3): 630-634 (1994). |
Hong, S.R., et al., Abstract of “Study on gelatin-containing artificial skin IV: a comparative study on the effect of antibiotic and EGF on cell proliferation during epidermal healing.”; Biomaterials, 22(20): 2777-2783 (2001). |
Hong, Y.M., et al., “The Use of Hemostatic Agents and Sealants in Urology”, The Journal of Urology, 176: 2367-2374 (2006). |
Hood, D., et al., “Efficacy of Topical Hemostat Floseal Matrix in Vascular Surgery,” 24th World Congress of the International Society for Cardiovascular Surgery, Sep. 12-16, 1999, 2 pages. |
Hotz, G., et al., “Collagen and Fibrin as Biologic Binders from Granular Hydroxyapatite,” Deutsche Zeitschrift fur Mund-Kieferund Gesichts-Chirurgie, 13(4): 296-300 (1989). Abstract retrieved from http://www.ncbi.nlm.nih.gov on Jan. 3, 2001. |
International Preliminary Examination Report for International Application No. PCT/DK03/00855, “Gelatine-Based Materials as Swabs”, completed Jun. 2, 2005. |
International Preliminary Report on Patentability (Corrected Version) for International Application No. PCT/DK2005/000063, “Haemostatic Sprays and Compositions”, completed Nov. 6, 2006. |
International Preliminary Report on Patentability for International Application No. PCT/DK2005/000475, “Haemostatic Composition Comprising Hyaluronic Acid”, completed Aug. 16, 2006. |
International Preliminary Report on Patentability for International Application No. PCT/DK2007/050196, “Wound or Tissue Dressing Comprising Lactic Acid Bacteria”, completed May 29, 2009. |
International Preliminary Report on Patentability for International Application No. PCT/DK2009/050048, “Device for Promotion of Hemostasis and/or Wound Healing”, completed Sep. 6, 2010. |
International Preliminary Report on Patentability for International Application No. PCT/DK2013/050054, “Pressurized Container Containing Haemostatic Paste”, dated Sep. 9, 2014. |
International Preliminary Report on Patentability from counterpart International Application No. PCT/DK2011/050082, “A Method for Promotion of Hemostasis and/or Wound Healing”, dated Jul. 6, 2012. |
International Search Report & Written Opinion of the International Searching Authority for International Application No. PCT/DK2007/050196, “Wound or Tissue Dressing Comprising Lactic Acid Bacteria”, dated Apr. 23, 2008. |
International Search Report and Written Opinion of the International Searching Authority from counterpart International Application No. PCT/DK2011/050082, “A Method for Promotion of Hemostasis and/or Wound Healing”, dated Jun. 21, 2011. |
International Search Report for International Application No. PCT/DK2003/000855, “Gelatine-Based Materials as Swabs”, dated Oct. 8, 2004. |
International Search Report for International Application No. PCT/DK2005/000063, “Haemostatic Sprays and Compositions”, dated Jul. 28, 2005. |
International Search Report for International Application No. PCT/DK2005/000475, “Haemostatic Composition Comprising Hyaluronic Acid”, dated Oct. 25, 2005. |
International Search Report for International Application No. PCT/DK2009/050048, “Device for Promotion of Hemostasis and/or Wound Healing”, dated Apr. 6, 2010. |
International Search Report for International Application No. PCT/DK2013/050054, “Pressurized Container Containing Haemostatic Paste”, dated Sep. 10, 2013. |
International Search Report for International Application No. PCT/DK2013/050191, “Dry Haemostatic Composition”, dated Aug. 21, 2013. |
Jeong, B., et al., “Biodegradable Block Copolymers as Injectable Drug-Delivery Systems,” Nature, 388: 860-862 (1997). |
Jonas, R., et al., “A new sealant for knitted Dacron prostheses: Minimally cross-linked gelatin,” Journal of Vascular Surgery, 7(3): 414-419 (1988). |
Katayama, T., et al., “GT XIII safety (3rd report)—Japanese + English translation,” The Clinical Report, vol. 20 (1986). |
Kelly M.J. et al., “The value of an operative wound swab sent in transport medium in the prediction of later clinical wound infection: A controlled clinical and bacteriological evaluation.”, Brit. J. Surgery, 65: 81-88 (1978). |
Kim, K., et al., “Reduction in Leg Pain and Lower-Extremity Weakness with Oxiplex/SP Gel for 1 Year after Laminevtomy, Laminotomy, and Disectomy,” Neurosurgical Focus, 17: 1-6 (2004). |
Kline, D., et al., “Dural Replacement with Resorbable Collagen,” Archives of Surgery, 91: 924-929 (1965). |
Knopp, U., “A New Collagen Foil Versus a Cadaveric Dura Graft for Dural Defects—A Comparative Animal Experimental Study,” European Association of Neurosurgical Societies—Proceedings of the 12th European Congress of Neurosurgery, Lisbon, 17 pages. (2003). |
Koçak, I., et al., “Reduction of adhesion formation with cross-linked hyaluronic acid after peritoneal surgery in rats.”, Fertility and Sterility, 72(5): 873-878 (1999). |
Kofidis, T., et al., “Clinically Established Hemostatis Scaffold (Tissue Fleece) as Biomatrix in Tissue and Organ Engineering Research,” Tissue Engineering, 9: 517-523 (2003). |
Kost J., and Langer R., “Equilibrium Swollen Hydrogels in Controlled Release Applications,” Ch. 5: Hydrogels in Medicine and Pharmacy, vol. III: properties and Applications, N. Peppas ed., pp. 95-108 (1987). |
Krill, D., et al., “Topical Thrombin and Powdered Gelfoam: An Efficient Hemostatic Treatment for Surgery,” Journal of Tennessee Dental Association, 66(2): 26-27 (1986). |
Kuhn, J., et al., “Bilateral Subdural Heamatomata and Lumbar Pseudomeningocele Due to a Chronic Leakage of Liquor Cerebrospinalis after a Lumbar Disectomy with the Application of ADCON-L Gel,” Journal of Neurology, Neurosergery & Psychiatry, 76: 1031-1033 (2005). |
Langer, R., et al., “Chemical and Physical Structure of Polymers as Carriers for Controlled Release of Bioactive Agents: A Review,” Journal of Macromolecular Science-Reviews in Macromolecular Chemistry and Physics, C23: 61-126 (1983). |
Laquerriere, A., et al., “Experimental Evaluation of Bilayered Human Collagen as a Dural Substitute,” Journal of Neurosurgery, 78: 487-491 (1993). |
Larson, P., “Topical Hemostatic Agents for Dermatologic Surgery,” Journal of Dermatologic Surgery & Oncology, 14: 623-632 (1988). |
Larsson, B., et al., “Surgicel®—an absorbable hemostatic material—in prevention of peritoneal adhesion in rats.”; Acta Chir Scand., 26(144): 375-378 (1978). |
Laurent, C., et al., “Hyaluronic acid reduces connective tissue formation in middle ears filled with absorbable gelatin sponge: An experimental study.”, Am. J.Otolaryngol, 7: 181-186 (1986). |
Le, A., et al., “Unrecognized Durotomy After Lumbar Discectomy: A Report of Four Cases Associated with the Use of ADCON-L,” Spine, 26(1): 115-118 (2001). |
Lee, J., et al., “Experimental Evaluation of Silicone-Coated Dacron and Collagen Fabric-Film Laminate as Dural Substitutes,” Journal of Neurosurgery, 27: 558-564 (1967). |
Lee, P., “Interpretation of Drug-Release Kinetics from Hydrogel Matrices in Terms of Time-Dependent Diffusion Coefficients,” Controlled-Release Technology—Pharmaceutical Applications, Ch. 5, ACS Symposium Series 348, pp. 71-83 (1986). |
Leong, K., et al., “Polyanhydrides for Controlled Release of Bioactive Agents,” Biomaterials, 7: 364-371 (1986). |
Leong, K., et al., “Polymeric Controlled Drug Delivery,” Advanced Drug Delivery Reviews, 1: 199-233 (1987). |
Lewis, K., et al., “Comparison of Two Gelatin and Thrombin Combination Hemostats in a Porcine Liver Abrasion Model,” Journal of Investigative Surgery, 26: 141-148 (2013). |
Li, G., et al., “Evaluation of esterified hyaluronic acid as middle ear-packing material.”, Arch Otolaryngol Head Neck Surg, 127: 534-539 (2001). |
Loeb, J, “The Influence of Electrolytes Upon the Osmotic Pressure of Gelatin Solutions”, J. Biol. Chem., 35: 497-508 (1918). |
Luengo, J., et al., “Prevention of peritoneal adhesions by the combined use of Spongostan and 32% Dextran 70: An experimental study in pigs.” Fertility and Sterility, 29(4): 447-450 (1978). |
Masar, E., et al., “Synthesis of Polyurethanes and Investigation of their Hydrolytic Stability,” Journal of Polymer Science: Polymer Symposium, 66: 259-268 (1979). |
Masuzawa, M., et al., “Experimental Study Related to the Hemostasis Action of GT XIII,” The Clinical Report, 20(2): 471-476 (Feb. 1986). |
Matsumoto, K., et al., “A Gelatin Coated Collagen—Polyglycolic Acid Composite Membrane as a Dural Substitute,” American Society for Artificial Internal Organs Journal, 47: 641-645 (2001). |
Maurer, P, et al., “Vicryl (Polyglactin 910) Mesh as a Dural Substitute,” Journal of Neurosurgery, 63:448-452 (1985). |
Maxson, W.S., et al., “Efficacy of a modified oxidized cellulose fabric in the prevention of adhesion formation.” Gynecol. Obstet. Invest., 26: 160-165 (1988). |
McClure, J., et al., “Massive Gastroduodenal Hemorrhage: Treatment with Powdered Gelfoam and Buffered Thrombin Solution,” Surgery, 32: 630-637 (1952). |
McPherson, J., et al., “An Examination of the Biologic Response to Injectable, Glutaraldehyde Cross-linked Collagen Implants,” Journal of Biomedical Materials Research, 20: 93-107 (1986). |
McPherson, J., et al., “Development and Biochemical Characterization of Injectable Collagen,” J. Dermatol. Surg. Oncol., 12(1): 13-20 (Jul. 7, 1988). |
McPherson, J., et al., “The Effects of Heparin on the Physiochemical Properties of Reconstituted Collagen,” Collagen and Related Research, 1: 65-82 (1988). |
McPherson, J., et al., “The Preparation and Physiochemical Characterization of an Injectable Form of Reconstituted, Glutaraldehyde Crosslinked, Bovine Corium Collagen,” Journal of Biomedical Materials Research, 20: 79-92 (1986). |
Meddings, N., et al., “Collagen Vicryl—A New Dural Prosthesis,” Acta Neurochirurgica, 117: 53-58 (1992). |
Mello, L., et al., “Duraplasty with Biosynthetic Cellulose: An Experimental Study,” Journal of Neurosurgery, 86: 143-150 (1997). |
Miller, D., and Peppas, N., “Diffusional Effects During Albumin Adsorption on Highly Swollen Poly(vinyl Alcohol) Hydrogels,” Eur. Polym. J., 24(7): 611-615 (1988). |
Miller, E.D., et al., “Dose-Dependent Cell Growth in Response to Concentration Modulated Patterns of FGF-2 Printed on Fibrin,” Biomaterials, 27: 2213-2221 (2006). |
Millikan, L., “Treatment of Depressed Cutaneous Scars with Gelatin Matrix Implant: A Multicenter Study,” J. Am. Acad. Dermatol., 16: 1155-1162 (1987). |
Min et al., “Molecular Weight Changes of Sodium Hyaluronate Powder and Solution by Heat treatment,” Matrix Biology Institute, Proceedings of Hyaluronan, Oct. 11-16, 2003. |
Mitsuhashi, J., “Invertabrate Tissue Culture Methods,” Springer Lab Manual, p. 407 (2002). |
Moak, E., “Hemostatic Agents: Adjuncts to Control Bleeding,” Today's O.R. Nurse, pp. 6-10 (1991). |
Mueller, K., “Release and Delayed Release of Water-Soluble Drugs from Polymer Beads with Low Water Swelling,” Controlled-Release Technology—Pharmaceutical Applications, Ch. 11, ACS Symposium Series, 348: 139-157 (1986). |
Muranyi, et al., “Development of gel-forming lyophilized formulation with recombinant human thrombin”, Drug Development and Industrial Pharmacy 41(9): (2015) 1566-1573. (Abstract Only). |
Narotam, P., et al., “A Clinicopathological Study of Collagen Sponge as a Dural Graft in Neurosurgery,” Journal of Neurosurgery, 82: 406-412 (1995). |
Narotam, P., et al., “Experimental Evaluation of Collagen Sponge as a Dural Graft,” British Journal of Neurosurgery, 7: 635-641 (1993). |
Nimni, M., et al., “Chemically Modified Collagen: A Natural Biomaterial for Tissue Replacement,” Journal of Biomedical Materials Research, 21: 741-771 (1987). |
Nimni, M., Ph.D., “The Cross-Linking and Structure Modification of the Collagen Matrix in the Design of Cardiovascular Prosthesis,” Journal of Cardiac Surgery, 3: 523-533 (1988). |
Nogueira, L., et al., Comparison of gelatine matrix-thrombin sealants used during laparoscopic partial nephrectomy, BJU International, 102: 1670-1674 (2008). |
Non-Final Office Action for U.S. Appl. No. 14/136,578, titled: “Device for Promotion of Hemostasis and/or Wound Healing”, dated Oct. 2, 2014. |
Non-Final Office Action for U.S. Appl. No. 14/383,461, titled: “Pressurized Container Containing Haemostatic Paste”, dated Jun. 15, 2017. |
Non-Final Office Action for U.S. Appl. No. 14/516,728 dated Apr. 14, 2015 “Dry Haemostatic Composition”. |
Non-Final Office Action for U.S. Appl. No. 14/516,728, titled: “Dry Haemostatic Composition” dated Nov. 25, 2014. |
Non-Final Office Action for U.S. Appl. No. 14/980,254, titled: “Dry Haemostatic Composition”, dated May 8, 2017. |
Notice of Allowability for U.S. Appl. No. 14/895,674, titled: “Vacuum Expanded Dry Composition and Syringe for Retaining Same”, dated Jun. 12, 2017. |
Notice of Allowance for U.S. Appl. No. 14/136,578, titled: “Device for Promotion of Hemostasis and/or Wound Healing” dated Sep. 23, 2016. |
Notice of Allowance for U.S. Appl. No. 14/516,728, titled: “Dry Haemostatic Composition” dated Nov. 27, 2015. |
Notice of Allowance for U.S. Appl. No. 14/895,674, titled: “Vacuum Expanded Dry Composition and Syringe for Retaining Same”, dated May 30, 2017. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/EP2015/080761, “Syringe for Retaining and Mixing First and Second Substances”, dated Feb. 19, 2016. |
Novak, D., “Embolization Materials,” Interventional Radiology, pp. 295-313 (1990). |
O'Neill, P., et al., “Use of Porcine Dermis as a Dural Substitute in 72 Patients,” Journal of Neurosurgery, 61: 351-354 (1984). |
Office Action for U.S. Appl. No. 14/136,578, titled: “Device for Promotion of Hemostasis and/or Wound Healing”, dated Aug. 13, 2015. |
Office Action for U.S. Appl. No. 14/895,674, titled: “Vacuum Expanded Dry Composition and Syringe for Retaining Same”, dated Feb. 6, 2017. |
Ofner, C.M. and Bubnis, W.A., “Chemical and Swelling Evaluations of Amino Group Crosslinking in Gelatin and Modified Gelatin Matrices,” Pharma. Res., 13: 1821-1827 (1996). |
Oyelese, Yinka, et al., “Postpartum Hemhorrage,” Obstetrics and Gynecology Clinics of North America 34.3, 421-441 (2007). |
Oz, M.C., et al., “Controlled clinical trial of a novel hemostatic agent in cardiac surgery.”, Ann Thorac Surg, 69: 1376-1382 (2000). |
Oz, M.C., et al., “Floseal-Matrix: New Generation Topical Hemostatic Sealant”, J. Card. Surg., 18: 486-493 (2003). |
Palm, S., et al., “Dural Closure with Nonpenetrating Clips Prevents Meningoneural Adhesions: An Experimental Study in Dogs,” Neurosurgery, 45(4): 875-882 (1999). |
Parizek, J., et al., “Detailed Evaluation of 2959 Allogeneic and Xenogeneic Dense Connective Tissue Grafts (Fascia Lata, Pericardium, and Dura Mater) Used in the Course of 20 Years for Duraplasty in Neurosurgery,” Acta Neurochirurgica, 139: 827-838 (1997). |
Park, Y-K., et al., “Prevention of Arachnoiditis and Postoperative Tethering of the Spinal Cord with Gore-Tex Surgical Membrane: An Experimental Study with Rats,” Neurosurgery, 42(4): 813-824 (1998). |
Peppas, N. and Barr-Howell, B., “Characterization of the Cross-Linked Structure of Hydrogels,” Ch. 2: Hydrogels in Medicine and Pharmacy, vol. I: Fundamentals, N. Peppas ed., pp. 27-56 (1986). |
Peppas, N. and Brannon-Peppas, L, “Hydrogels at Critical Conditions. Part 1. Thermodynamics and Swelling Behavior,” Journal of Membrane Science, 48: 281-290 (1990). |
Peppas, N. and Khare, A., “Preparation, Structure and diffusional Behavior of Hydrogels in Controlled Release,” Adv. Drug Delivery Reviews, 11: 1-35 (1993). |
Peppas, N. and Korsmeyer, R, “Dynamically Swelling Hydrogels in Controlled Release Applications,” Ch. 6: Hydrogels in Medicine and Pharmacy, vol. III: Properties and Applications, N. Peppas ed., pp. 109-135 (1987). |
Peppas, N. and Lustig, S., “Solute Diffusion in Hydrophilic Network Structures,” Ch. 3: Hydrogels in Medicine and Pharmacy, vol. I: Fundamentals, N. Peppas ed., pp. 57-83 (1986). |
Peppas, N. and Mikos, A., “Preparation Methods and Structure of Hydrogels,” Ch. 1: Hydrogels in Medicine and Pharmacy, vol. I: Fundamentals, N. Peppas ed., pp. 1-25 (1986). |
Peppas, N. and Moynihan, H, “Structure and Physical Properties of Poly(2-Hydroxyethyl Methacrylate) Hydrogels,” Ch. 2: Hydrogels in Medicine and Pharmacy, vol. II: Polymers, N. Peppas ed., pp. 49-64 (1987). |
Peppas, N., “Hydrogels and Drug Delivery,” Current Opinion in Colloid & Interface Science, 2: 531-537 (1997). |
Peppas, N., “Hydrogels in Medicine and Pharmacy,” Hydrogels in Medicine and Pharmacy, vol. 1. Fundamentals, CRC Press, Boca Raton, FL, 180 pages (1986). |
Peppas, N., “Hydrogels in Medicine and Pharmacy,” Hydrogels in Medicine and Pharmacy, vol. 2. Polymers, CRC Press, Boca Raton, FL, 172 pages (1987). |
Peppas, N., “Hydrogels in Medicine and Pharmacy,” Hydrogels in Medicine and Pharmacy, vol. 3. Properties and Applications, CRC Press, Boca Raton, FL, 196 pages (1987). |
Peppas, N., “Hydrogels of Poly (Vinyl Alcohol) and its Copolymers,” Ch. 1: Hydrogels in Medicine and Pharmacy, vol. II: Polymers, N. Peppas ed., pp. 57 pgs (1987). |
Peppas, N., ed., “Other Biomedical Applications of Hydrogels,” Ch. 9: Hydrogels in Medicine and Pharmacy, vol. III: Properties and Applications, pp. 177-186 (1987). |
Pietrucha, K., “New Collagen Implant as Dural Substitute,” Biomaterials, 12: 320-323 (1991). |
Pitt, C., et al., “Biodegradable Drug Delivery Systems Based on Aliphatic Polyesters: Application to Contraceptives and Narcotic Antagonists,” Controlled Release of Bioactive Materials, R. Baker, ed., (NY: Academic Press) pp. 19-43 (1980). |
Porchet, F., et al., “Inhibition of Epidural Fibrosis with ADCON-L: Effect on Clinical Outcome One Year Following Reoperation for Recurrent Lumbar Radiculopathy,” Neurological Research, 21: 551-560 (1999). |
Product leaflet for FloSeal ®Matrix Hemostatic Sealant dated Jul. 2001 (Jul. 2001). |
Pschyrembel®—Klinisches Wörterbuch, 261st edition, de Gruyter (2007). |
Purdy, P.D., et al., “Microfibrillar collagen model of canine cerebral infarction”; Strokes, 20(10): 1361-1367 (Oct. 1989). |
Quintavalla, J., et al., “Fluorescently labeled mesenchymal stem cells (MSCs) maintain mutlilineage potential and can be detected following implantation into Particular cartilage defects.”, Biomaterials, 23: 109-119 (2002). |
Raftery, A., “Absorbable haemostatic materials and intraperitoneal adhesion formation.”; Br. J. Surg. 67; 1980; pp. 57-58. |
Ratner, B., “Hydrogel Surfaces,” Ch. 4: Hydrogels in Medicine and Pharmacy, vol. I: Fundamentals, N. Peppas ed., pp. 85-94 (1986). |
Raul, J.S., et al., “Utilisation du Polyester Urethane (Neuropatch) Comme Substitut Dural,” Neurochirugie, 49: 83-89, English abstract only on p. 83 (2003). |
Reddy, M., et al., “A Clinical Study of a Fibrinogen-Based Collagen Fleece for Dural repair in Neurosergery,” Acta Neurochirurgica, 144: 265-269 (2002). |
Reese, A.C., “Role of fibronectin in wound healing”, Report date: Sep. 12, 1986; Annual rept. Oct. 1, 1985-Mar. 31, 1986, Final rept. Oct. 1, 1983-Mar. 31, 1986. Corporate Author: Medical Coli of Gerogia Augusta Research Institute. Brunt and Klausner, “Growth factors speed wound healing”, Nature Biotechnology, 6(1): 25-30 (1988). |
Reijnen, M.M.P.J., et al., “Prevention of intra-abdominal abscesses and adhesions using a hyaluronic acid solution in a rat peritonitis model.” Arch Surg. 134: 997-1001 (1999). |
Renkens, K., et al, “A Multicenter, Prospective, Randomized Trial Evaluating a New Hemostatic Agent for Spinal Surgery,” Spine, 26(15): 1645-1650 (2001). |
Riley, S., et al. “Percutaneous Liver Biopsy with Plugging of Needle Track: A Safe Method for Use in Patients with Impaired Coagulation,” Lancet, p. 436 (1984). |
Roda, A., et al., “Protein Microdeposition Using a Conventional Ink-Jet Printer,” BioTechniques, 28(3): 492-496 (2000). |
Romanelli, M., et al., “Exudate Management Made Easy”, downloaded from http://www.woundsinternational.com, 6 pgs., (Jan. 29, 2010). |
Rosenblatt, J., et al., “Effect of Electrostatic Forces on the Dynamic Rheological Properties of Injectable Collagen Biomaterials,” Biomaterials, 13: 878-886 (1982). |
Rosenblatt, J., et al., “Injectable Collagen as a pHSensitive Hydrogel,” Biomaterials, 12: 985-995 (1984). |
Ross, J., et al., “Association Between Peridural Scar and Recurrent Radicular Pain After Lumbar Discectomy: Magnetic Resonance Evaluation,” Neurosurgery, pp. 855-863 (1996). |
Rossler, B., et al., “Collagen Microparticles: Preparation and Properties,” Journal of Microencapsulation, 12: 49-57 (1995). |
Sakurabayashi, S., et al., “Clinical evaluation of new hemostatic agent for hemostasis from biopsy wounds in the liver.”; Gastroenterological Endoscopy 30:(10) 29 pgs. (Oct. 1988). |
Sanfilippo, J.S., et al., “Comparison of avitene, topical thrombin and Gelfoam as sole hemostatic agent in tuboplasties.”, Fertility and Sterility, 33(3): 311-316 (1980). |
San-Galli, F., et al., “Experimental Evaluation of a Collagen-Coated Vicryl Mesh as a Dural Substitute,” Neurosurgery, 30: 396-401 (1992). |
Santomaso, A., et al., “Powder flowability and density rations: the impact of granules packing”, Chemical Engineering Science, 58: 2857-2874 (2003). |
Schramm, V., et al., “Gelfoam Paste Injection for Vocal Cord Paralysis,” The Laryngoscope, 88: 1268-73 (1978). |
Schreiber, M.A., et al., “Achieving Hemostasis with Topical Hemostats: Making Clinically and Economically Appropriate Decisions in the Surgical and Trauma Settings”, AORN Journal, 94(5): S1-S20 (2011). |
Shaffrey, C.I., et al., “Neurosurgical Applications of Fibrin Glue: Augmentation of Dural Closure in 134 Patients,” Neurosurgery, 26: 207-210 (1990). |
Shushan, A., et al., “Hyaluronic acid for preventing experimental postoperative intraperitoneal adhesions.”, Journal of Reproductive Medicine, 39(5): 398-402 (1994). |
Shuxian, M. and Zhili, C., “Clinical Observation of the Treatment of Hemoptysis by Ultrasonic Atomizing Inhalation of Thrombin”, Chinese Journal of Critical Care Medicine, 16(2): 30 (1996). |
Sidman, K., et al., “Biodegradable, Implantable Sustained Release Systems Based on Glutamic Acid Copolymers,” Journal of Membrane Science, 7: 227-291 (1979). |
Sigma-Aldrich Datasheet for “Hank's Balanced Salts,” revised Apr. 2007. |
Simamora, P., et al., “Controlled delivery of pilocarpine. 2. In-vivo evaluation of Gelfoam® device,” International Journal of Pharmaceutics, 170(2): 209-214 (1998). |
Smith, A., “New and Nonofficial Remedies: Absorbable Gelatin Sponge—Gelfoam-Upjohn,” Council on Pharmacy and Chemistry, 135(14): p. 921 (1947). |
Smith, K., et al., “Delayed Postoperative Tethering of the Cervical Spinal Cord,” Journal of Neurosurgery, 81: 196-201 (1994). |
Solar Biologicals Inc., “Solar-cult sampling products: Pre-moistened cellulose sponge sampling systems”, available at www.solarbiologicals.com/samp-sys.htm (Jul. 25, 2002). |
Soules , M.R., et al., “The prevention of postoperative pelvic adhesions: An animal study comparing barrier methods with Dextran 70.”, Am. J. Obstet. Gynecol., 143(7): 829-834 (1982). |
Spence et al., “Cerebellar capillary hemangioblastoma: its histogenesis studied by organ culture and electron microscopy.”, Cancer, 35(2): 326-341 (Feb. 1975). |
Spotnitz, W. D., et al., “Hemostatus, Sealants, and Adhesives: Components of the Surgical Toolbox,” Transfusion, 48(7):1502-1516 (2008). |
Springorum, H., “Die Verwendung von Kollagenfolien Zur Uberbruckung von Defekten des Gleitgewebes bei Achillotenotomien and Achillessehnenrupturen,” Akt. Traumatol., 15: 120-121, English abstract only on p. 120 (1985). |
Stief, T. W., “Kallikrein Activates Prothrombin,” Clinical and Applied Thrombosis/Hemostasis, 14.1:97-98 (2008). |
Stricker, A., et al., “Die Verwendung von TissuFoil Membran bei der Sinusbodenaugmentation,” Ellipse, 17: 1-5 (2001). English abstract only on p. 1. |
Stuart Transport medium information sheet [retrieved online on May 27, 2009]. |
Sugitachi, A., et al., “A Newly Devised Chemo-Embolic Agent, G.T. XIIIADM,” Gan. To. Kagaku Ryoho, 12: 1942-1943 (1985). English abstract retrieved from http://www.ncbi.nlm.nih.gov on Jan. 2, 2001. |
Sugitachi, A., et al., “Locoregional Therapy in Patients with Malignant Pleural Effusion—Two Different Kinds of ‘BAC Therapy’,” Gan. To. Kagaku Ryoho, 19: 1640-1643 (1992). English abstract retrieved from http://www.ncbi.nlm.nih.gov on Jan. 3, 2001. |
Sugitachi, A., et al., “Preoperative Transcatheter Arterial Chemo—Embolization for Locally Advanced Breast Cancer: Application for New Thrombotic Materials.” Japanese Journal of Surgery, 13: 456-458 (1992). |
Surgiflo® Essential Prescribing Information, Hemostatic Matrix (Made from Absorbable Gelatin Sponge, U.S.P.), 1 page (2005). |
Surgiflo® haemostatic matrix FlexTip, MS0009, 84 pages (2007). |
Surgiflo® product leaflet, “Surgiflo® Hemostatic Matrix Kit,” 5 pages (2012). |
Surgiflo® product leaflet, “Surgiflo® Hemostatic Matrix,” 12 pages (2009). |
Swann, D.A.,“ Studies on hyaluronic acid-I. The preparation and properties of rooster comb hyaluronic acid”, Biochemica et biophysica acta, 156: 17-30 (1968). |
Taheri, Z., “The Use of Gelfoam Paste in Anterior Cervical Fusion,” Journal of Neurosurgery, 34: 438 (1971). |
Tobin, M., et al., “Plugged Liver Biopsy in Patients with Impaired Coagulation,” Digestive Diseases and Science, 34: 13-15 (1989). |
Tucker, H., “Absorbable Gelatin (Gelfoam) Sponge,” Springfield, Illinois, Charles T. Thomas, pp. 3-125 (1965). |
Van den Bosch, E., et al., “Gelatin degradation at elevated temperature”, International Journal of Biological Macromolecules, 32: 129-138 (2003). |
Vandelli, M.A., et al., “The effect of the crosslinking time period upon the drug release and the dynamic swelling of gelatin microspheres,” Pharmazie, 46: 866-869 (1991). |
Vander-Salm, T.J., et al., Abstract of “Reduction of sternal infection by application of topical vancomycin.”, J. of Thoracic and Cardiovascular Surgery, 98(4): 618-622 (1989). |
Verhoeven, A.G., et al., “XV. The use of microporous polymeric powders for controlled release drug delivery systems,” Controlled Drug Delivery. Ch. 15, International Symposium of the Association for Pharmaceutical Technology (APV), Bad Homburg, Nov. 12-14, 1984, pp. 226-237. |
Vinas, F., et al., “Evaluation of Expanded Polytetrafluoroethylene (ePTFE) versus Polydioxanone (PDS) for the Repair of Dura Mater Defects,” Neurological Research, 21: 262-268 (1999). |
Wachol-Drewek, Z., et al., “Comparative investigation of drug delivery of collagen implants saturated in antibiotic solutions and a sponge containing gentamicin.”, Biomaterials, 17: 1733-1738 (1996). |
Wallace, D., “The Relative Contribution of Electrostatic Interactions to Stabilization of Collagen Fibrils,” Biopolymers, 29: 1015-1026 (1990). |
Wallace, D., et al., “Injectable Cross-Linked Collagen with Improved Flow Properties,” Journal of Biomedical Materials Research, 23: 931-945 (1989). |
Warren, W., et al., “Dural Repair Using Acellular Human Dermis: Experience with 200 Cases: Technique Assessment,” Neurosurgery, 46: 1391-1396 (2000). |
Wassersug, J.D., M.D., “Use of Human Thrombin in Some Cases of Pulmonary Hemorrhage” Pulmonary Hemorrhage, vol. XVII, pp. 354-356 (Mar. 1950). |
Weeks, R., “Microscopy of Soft Materials,” Chapter 1 in Experimental and Computational Techniques in Soft Condensed Matter Physics, Jeffrey Olafsen, Ed, 2010 (2010). |
West et al., “Efficacy of adhesion barriers: Resorbable hydrogel, oxidized regenerated cellulose and hyaluronic acid.”, The Journal of Reproductive Medicine, 41(3) 149-154 (1996). |
Wiesenthal, A.A., et al., Abstract of “New method for packing the external auditory canal, middle ear space, and mastoid cavities after otologic surgery”, The Journal of Otolaryngology; 28(5): 260-265 (1999). |
Wilkinson, H., et al., “Gelfoam Paste in Experimental Laminectomy and Cranial Trephination,” Journal of Neurosurgery, 54: 664-667 (1981). |
Written Opinion for International Application No. PCT/DK2003/000855, “Gelatine-Based Materials as Swabs”, dated Feb. 28, 2005. |
Written Opinion of the International Preliminary Examining Authority for counterpart International Application No. PCT/DK2011/050082, “A Method for Promotion of Hemostasis and/or Wound Healing”, dated Mar. 23, 2012. |
Written Opinion of the International Searching Authority (Corrected Version) for International Application No. PCT/DK2005/000063, “Haemostatic Sprays and Compositions”, dated Jul. 26, 2005. |
Written Opinion of the International Searching Authority for International Application No. PCT/DK2005/000475, “Haemostatic Composition Comprising Hyaluronic Acid”, dated Oct. 24, 2005. |
Written Opinion of the International Searching Authority for International Application No. PCT/DK2009/050048, “Device for Promotion of Hemostatis and/or Wound Healing”, completed Aug. 31, 2010. |
Wu, Y. et al., Abstract of “Design and experimental study of a slow-release antibiotic membrane implant in surgery wound.”, Intern. Des Services de San. Des Forces Armees; 72(7-9): 194-196 (Sep. 1999). |
Xing, Q., et al., “Increasing Mechanical Strength of Gelatin Hydrogels by Divalent Metal Ion Removal”, Sci. Rep., 4: 4706: DOI:10.1038/srep04706(2014). |
Xu, T., et al., “Viability and electrophysiology of neural cell structures generated by the inkjet printing method”, Biomaterials, 27: 3580-3588 (2006). |
Xu, T., et al., “Inkjet Printing of Viable Mammalian Cells,” Biomaterials, 26: 93-99 (2005). |
Yaping, G., “Observation and Nursing of the Treatment of Hemoptysis of Pulmonary Tuberculosis by Ultrasonic Atomizing Inhalation of Thrombin”, Journal of Qilu Nursing, 10(2): 126 (Feb. 2004). |
Youwen, W. et al., “Clinical Observation of the Therapeutic Efficacy of the Treatment of 15 Patients with Hemoptysis by Ultrasonic Atomizing Inhalation of Thrombin”, Chengdu Medical Journal, 30(5): 262 (Oct. 2004). |
Yuki, N., et al., “Effects of Endoscopic Variceal Sclerotherapy Using GT XIII on Blood Coagulation Tests and the Renal Kallikrein-Kinin System,” Gastroentral. Japan, 25: 561-567 (1990). English abstract retrieved from http://www.ncbi.nlm.nih.gov [retrieved on Jan. 2, 2001]. |
Ziegelaar, B., et al., “The Characterisation of Human Respiratory Epithelial Cells Cultured on Resorbable Scaffords: First Steps Towards a Tissue Engineered Tracheal Replacement,” Biomaterials, 23: 1425-1438 (2002). |
Ziegelaar, B., et al., “Tissue Engineering of a Tracheal Equivalent, Doctoral Thesis,” Munich, Germany, Ludwig Maximilians University, 2004, 25 pages (2004). |
Zins, M., et al., “US-Guided Percutaneous Liver Biopsy with Plugging of the Needle Track: A Prospective Study in 72 High-Risk Patients,” Radiology, 184: 841-843 (1992). |
Notice of Allowance for U.S. Appl. No. 14/895,674, titled: “Dry Haemostatic Composition”, dated Jan. 24, 2018. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/EP2016/065260, “Syringe for Mixing Two Components and for Retaining a Vacuum in a Storage Condition”, dated Oct. 4, 2016. |
International Preliminary Report on Patentability for International Application No. PCT/EP2016/065260, “Syringe for Mixing Two Components and for Retaining a Vacuum in a Storage Condition”, date of completion Dec. 6, 2017. |
Notice of Allowance for U.S. Appl. No. 15/534,801, “Syringe for Retaining and Mixing First and Second Substances”, dated Jul. 25, 2019. |
Notice of Allowance for U.S. Appl. No. 15/534,801, titled: “Syringe for Retaining and Mixing First and Second Substances”, dated Jan. 16, 2020. |
Notice of Allowance for U.S. Appl. No. 15/639,237, titled: “Vacuum Expanded Dry Composition and Syringe for Retaining Same”, dated Nov. 27, 2019. |
Office Action for U.S. Appl. No. 15/963,795, titled: “Dry Haemostatic Composition”, dated Feb. 20, 2020. |
Number | Date | Country | |
---|---|---|---|
20180147355 A1 | May 2018 | US |