The present invention generally relates to the field of encoding and sensing of information and, more particularly, to the field of encoding information on a syringe assembly for sensing by a power injector.
Parameters of an injection procedure are determined by a number of variables, including, for example, syringe diameter, syringe length, syringe material and fluid composition/concentration. Among the affected injection procedure parameters are fluid volume delivered, flow rate, fluid pressure, and limits of injector piston travel. In current injector systems, syringe size may be generally determined: (1) manually by action of an operator who enters the syringe size or type into the injector software; (2) automatically by means of switches on the injector head which are mechanically coupled to raised or sunken elements on the syringe; or (3) by machine reading of information associated with the syringe (e.g., barcodes, Radio Frequency Identification (RFID) tags).
As used herein, the term “syringe configuration” is used to encompass information about a particular syringe, including, but not limited to, information about the mechanical properties of a syringe (e.g., material, length and/or diameter) as well as information about the contents of the syringe (e.g., volume and/or composition). The information on syringe configuration may be used by a powered injector (alternately referred to herein as a power injector) to control the injection procedure as a function of defined syringe configuration/injection parameters. Moreover, a record of data associated with an injection procedure may be kept, for example, to satisfy accurate billing and cost information requirements under managed health care. A record may be maintained of information such as the type of syringe used, the amount of contrast medium used, the type of contrast medium used, the sterilization date, the expiration date, lot codes, the properties of the contrast media, and/or other relevant information. Such information can be recorded digitally for sharing with computerized hospital billing systems, inventory systems, control systems, and/or any other appropriate system.
The first through third aspects of the present invention are each embodied by a syringe assembly. The syringe assembly includes a body that includes a longitudinal syringe axis. The syringe assembly further includes a portion adapted to propagate energy therethrough in a direction substantially parallel to the longitudinal syringe axis. The portion includes at least two indicators disposed at predetermined positions adapted to interact with the propagating energy in a manner that is detectable. The syringe assembly further includes an indicator block disposed to block the propagation of energy from at least one of the at least two indicators to provide information about the syringe assembly configuration.
In the case of the first aspect, the syringe assembly is for use with an injector having a plurality of sensors located at different predetermined longitudinal positions on the injector. The syringe assembly of the first aspect includes a body including a wall and defining the longitudinal syringe axis. The syringe assembly further includes an mounting mechanism to enable the syringe assembly to be mounted to the injector. The syringe assembly further includes a length of material disposed along at least a portion of the wall. The length of material is adapted to propagate electromagnetic energy therethrough in a direction substantially parallel to the longitudinal syringe axis. The length of material comprises the at least two indicators. Each of the indicators is located at a different predetermined longitudinal position along the length of material and is positioned to align with a corresponding sensor when the syringe assembly is attached to the injector. Each of the indicators is adapted to interact concurrently with at least a portion of the energy being propagated through the length of material in a manner that is readily detectable by the corresponding sensor. The indicator block and the at least two indicators provide information about the syringe assembly configuration in the form of a binary code on the basis of presence or absence of electromagnetic energy from one or more of the indicators at predetermined longitudinal positions along the length of material reaching corresponding sensors. The length of material may be a portion of the wall and/or it may be a separate member positioned along at least a portion of the wall.
In the case of the second aspect, the syringe assembly includes a body defining the longitudinal syringe axis. The syringe assembly further includes a plunger movably disposed within the body. The syringe assembly further includes a length of material disposed along at least a portion of the body. The length of material is adapted to propagate light energy therethrough in a direction substantially parallel to the longitudinal syringe axis. The length of material comprises the at least two indicators. Each of the indicators is located at unique predetermined positions along the length of material. Each of the indicators is adapted to redirect at least a portion of the light energy outside of the body in a manner that is detectable. Each of the indicators is positioned at a different depth within the length of material. The indicator block is disposed to block the propagation of light energy from at least one of the at least two indicators to a corresponding sensor. The light redirected from the indicators, and not blocked by the indicator block, provides a code that provides the information about the syringe assembly configuration. The syringe assembly further includes at least one mounting flange associated with the body. The length of material may be a portion of the body and/or it may be a separate member positioned along at least a portion of the wall.
In the case of the third aspect, the syringe assembly includes a body including a wall and defining the longitudinal syringe axis. A length of the wall is adapted to propagate electromagnetic energy therethrough in a direction substantially parallel to the longitudinal syringe axis. The length of the wall includes the at least two indicators. Each of the indicators is positioned at a different depth within the wall. Each of the indicators is adapted to interact concurrently with at least a portion of the electromagnetic energy being propagated through the wall to redirect light outside of the wall in a manner that is detectable. The indicator block is disposed to block the propagation of electromagnetic energy from at least one of the at least two indicators to a corresponding sensor. The light redirected from the indicators, and not blocked by the indicator block, provides a code that provides the information about the syringe assembly configuration.
A number of feature refinements and additional features are applicable to each of the above-noted first, second, and third aspects of the present invention. These feature refinements and additional features may be used individually or in any combination in relation to each of the first, second, and third aspects. As such, each of the following features that will be discussed may be, but are not required to be, used with any other feature or combination of features of each of the first, second, and third aspects. The following discussion is applicable to each of the first, second, and third aspects, up to the start of the discussion of the fourth aspect of the present invention.
Embodiments of the syringe assembly of the first, second, and/or third aspects may be configured such that the total number of indicators may be equal to the total number of sensors in a corresponding injector to which the syringe assembly has been mounted.
Each consecutive pair of the at least two indicators may be separated by an intermediate region that includes an opaque portion of the length of material and/or wall that prevents the energy being propagated parallel to the longitudinal syringe axis from leaving the syringe assembly in a direction away from the syringe assembly (e.g., perpendicular to the longitudinal syringe axis). Each consecutive pair of the at least two indicators may be separated by an intermediate region of the length of material and/or wall that is free from a feature designed to redirect the energy away from a direction substantially parallel to the longitudinal syringe axis.
The syringe assembly may include any appropriate number of the indicators. For example, the syringe assembly may include five of the indicators. The indicator block may be in the form of a label. The indicator block may be adhesive-backed. The indicator block may include indicia related to contents of the syringe. The indicia may be human and/or machine readable. The indicator block may include at least one opaque region disposed between one of the indicators and its corresponding sensor. In an embodiment, the indicator block may include at least one transparent region disposed between one of the indicators and its corresponding sensor and at least one opaque region disposed between another one of the indicators and its corresponding sensor. The indicator block may encircle an entirety of the syringe assembly.
A fourth aspect of the present invention is embodied by a method of encoding a syringe for automated identification of the syringe. In this method, the syringe is filled with a predetermined medical fluid type and a label is selected corresponding to the predetermined medical fluid type. The selected label is then applied to the syringe such that an opaque region of the selected label is disposed over a first indicator of the syringe, while at least a second indicator of the syringe is free from having an opaque region disposed thereover. The syringe comprises a body comprising a wall and defining a longitudinal syringe axis. The first and second indicators are adapted to interact concurrently with at least a portion of energy propagated through a length of the syringe in a direction substantially parallel to the longitudinal syringe axis in a manner that is readily detectable by corresponding sensors in alignment with the first and second indicators.
A number of feature refinements and additional features are applicable to the above-noted fourth aspect of the present invention. These feature refinements and additional features may be used individually or in any combination in relation to the fourth aspect. As such, each of the following features that will be discussed may be, but are not required to be, used with any other feature or combination of features of the fourth aspect. The following discussion is applicable to the fourth aspect, up to the start of the discussion of the fifth aspect of the present invention.
The applying step of the method may further include applying the selected label such that a transparent region of the selected label is disposed over the second indicator. The applying step may further include peeling a disposable backing away from the label to expose adhesive disposed on a back side of the label, aligning one of the opaque regions with the first indicator, and contacting the back side of the label to the syringe after the aligning and peeling steps. In this regard, the label may be affixed to the syringe. The method may include shipping the syringe after the filling and applying steps such that during shipping, the syringe comprises a pre-filled syringe. In this regard, pre-filled, encoded syringes may be shipped and/or supplied to medical institutions for administration to patients.
A fifth aspect of the present invention is embodied by a syringe assembly that includes a body, a plunger, and an indicator block. The body includes a plurality of optical encoding elements adapted to transmit an optical signal. The plunger includes a plunger head movably disposed within the body. The indicator block is separately mounted on the body in position to block transmission of an optical signal from at least one of the optical encoding elements.
A number of feature refinements and additional features are applicable to the above-noted fifth aspect of the present invention. These feature refinements and additional features may be used individually or in any combination in relation to the fifth aspect. As such, each of the following features that will be discussed may be, but are not required to be, used with any other feature or combination of features of the fifth aspect. The following discussion is applicable to the fifth aspect, up to the start of the discussion of the terms “position,” “positioning” and related terms used herein.
In an embodiment, the body may include a syringe barrel. The plurality of optical encoding elements may be spaced along a longitudinal axis along which the plunger moves relative to the body.
In an arrangement, a first encoding set may correspond to first encoded information, and a second encoding set may correspond to second encoded information. The first and second encoding sets each may include at least one optical encoding element of the plurality of optical encoding elements having an optical signal that fails to be blocked by the indicator block. In an arrangement, a first encoding set may include a first combination of at least some of the plurality of optical encoding elements and may correspond with first encoded information, and a second encoding set may include a second combination of at least some of the plurality of optical encoding elements and may correspond with second encoded information. The first and second encoding sets may be different. The first encoded information may differ from the second encoded information.
The syringe assembly may include fluid in the body prior to installing the syringe assembly on an injector. The syringe assembly may include a pre-filled syringe.
The indicator block may be in the form of a label. The indicator block may be adhesive-backed. The indicator block may include indicia related to contents of the syringe assembly. The indicia may be human and/or machine readable. The indicator block may include at least one transparent region corresponding to at least one of the plurality of optical encoding elements. The indicator block may encircle an entirety of the syringe assembly.
As used herein with respect to the information provided by the indicators, the terms “position,” “positioning” and related terms refer to absolute and/or relative position. In this regard, information may be provided by the absolute position of energy emanating from one or more indicators relative to the length of material and/or wall. As used herein, the term “absolute position” refers to the position of the indicators on the length material and/or wall with respect to a reference position (e.g., a fixed position on the length of material or on a powered injector). Information may also be provided by the relative positions of a plurality of indicators with respect to each other independent of their absolute positions upon the length of material and/or wall.
As used herein in connection with electromagnetic energy transmitted and/or propagated through the length of material and/or wall, the phrase “interact with” refers generally to, for example, a transmission of the energy, a change in the direction of the energy, a change in the intensity of the energy, a change in the speed of travel of the energy and/or a change in form of the energy being propagated through the length of material. Such interactions may be readily detectable, for example, by using sensors as known in the art. For example, the indicator may be adapted to transmit the energy impinging thereupon without modification thereof, or may be adapted to transform, refract, scatter and/or absorb at least a portion of the energy. In general, the indicators may be discontinuities and/or areas having properties different from the remainder of the length of material and/or wall such that the energy impinging upon an indicator interacts differently from energy that impinges upon a portion of the length of material and/or wall not including an indicator. This different interaction of the indicator with impinging energy may be detectable. For example, an indicator may be an area of the length of material and/or wall through which energy may be transmitted outside of the length of material and/or wall, whereas the remainder of the length of material and/or wall prevents transmission of energy outside of length of material and/or wall. In the case of light energy, for example, indicators may be discontinuities such as angled surfaces formed in the length of material and/or wall that, for example, refract, reflect, scatter or absorb light energy. Indicators may also include a detection material (e.g., a fluorescent material) that may be placed in a detectable state upon impingement of the energy.
In general, a syringe assembly discussed herein may include a plurality of indicators along the length of the material and/or wall positioned at unique predetermined positions (e.g., absolute and/or relative positions). Each of the indicators may be adapted to interact with and/or to modify at least a portion of the energy being transmitted and/or propagated through the length of material in a manner that may be detectable as described above.
In an embodiment, the electromagnetic energy may be light energy and the length of material and/or wall may, for example, have a refractive index greater than the refractive index of an adjacent environment such that light energy may be internally reflected along its length. Internal reflectance may assist in efficiently propagating light energy through the length of the material and/or wall. Indicators suitable for use with light energy include, for example, angled surfaces in the syringe wall adapted to refract and/or reflect light energy outside of the syringe wall.
The length of material may, for example, be formed integrally with the syringe. In one such embodiment, the length of material may be a translucent portion of the syringe wall. Likewise, the length of material may also be separate from the syringe. The length of material may, for example, be associated with and/or attachable to the syringe. The length of material may also form part of a syringe adapter designed to adapt a syringe for use with a particular injector and/or part of a heater jacket used to warm contrast within a syringe as known in the art.
The syringe encoder may, for example, be formed integrally with, be associated with (e.g., shipped in the same container), or be attachable to a syringe assembly or a syringe adapter (designed to adapt a particular syringe for use with a powered injector).
Encoding schemes described herein provide a reliable manner of encoding information of, for example, syringe configuration. Mechanically movable mechanisms may not be required, resulting in increased reliability as compared to many prior encoding schemes. Moreover, the syringe encoders may be readily formed by disposing an appropriate indicator block over one or more indicators of the syringe. In this regard, a single syringe type may be manufactured and then the indicator may be added to identify the syringe configuration, resulting in less costly manufacture than many prior encoding mechanisms.
Furthermore, encoding systems, devices and methods described herein may be well suited for use in magnetic resonance environment. In such an environment, care should be taken to prevent failure of the encoding system or device and to prevent interference with the magnetic resonance imaging equipment. In this regard, the strong magnetic field in a magnetic resonance environment may adversely affect certain types of devices such as electromechanically activated devices. Furthermore, differences in magnetic permeability of materials within such devices and induced eddy currents therein may affect the homogeneity of the MRI magnetic field, generating image artifacts. Likewise, radio frequency energy generated by certain devices may induce unwanted artifacts upon the acquired MRI images. Such problems may be avoided in the syringe encoding systems, devices and methods described herein. For example, electromechanical and other actuators may be unnecessary as no moving elements may be required. Moreover, electromechanical energy used in the encoding systems, devices and methods may be easily selected to prevent interference with magnetic resonance equipment as well as interference from the magnetic resonance equipment. For example, light energy in the infrared, visible or ultraviolet range of the spectrum may be used. Likewise, radio frequency energy outside of frequency range of the MRI scanner may be used.
Any feature of any other various aspects of the present invention that is intended to be limited to a “singular” context or the like will be clearly set forth herein by terms such as “only,” “single,” “limited to,” or the like. Merely introducing a feature in accordance with commonly accepted antecedent basis practice does not limit the corresponding feature to the singular (e.g., indicating that a power injector includes “a syringe” alone does not mean that the power injector includes only a single syringe). Moreover, any failure to use phrases such as “at least one” also does not limit the corresponding feature to the singular (e.g., indicating that a power injector includes “a syringe” alone does not mean that the power injector includes only a single syringe). Finally, use of the phrase “at least generally” or the like in relation to a particular feature encompasses the corresponding characteristic and insubstantial variations thereof (e.g., indicating that a syringe barrel is at least generally cylindrical encompasses the syringe barrel being cylindrical).
Any “logic” that may be utilized by any of the various aspects of the present invention may be implemented in any appropriate manner, including without limitation in any appropriate software, firmware, or hardware, using one or more platforms, using one or more processors, using memory of any appropriate type, using any single computer of any appropriate type or a multiple computers of any appropriate type and interconnected in any appropriate manner, or any combination thereof. This logic may be implemented at any single location or at multiple locations that are interconnected in any appropriate manner (e.g., via any type of network).
Any power injector that may be utilized to provide a fluid discharge may be of any appropriate size, shape, configuration, and/or type. Any such power injector may utilize one or more syringe plunger drivers of any appropriate size, shape, configuration, and/or type, where each such syringe plunger driver is capable of at least bi-directional movement (e.g., a movement in a first direction for discharging fluid; a movement in a second direction for accommodating a loading and/or drawing of fluid and/or so as to return to a position for a subsequent fluid discharge operation), and where each such syringe plunger driver may interact with its corresponding syringe plunger in any appropriate manner (e.g., by mechanical contact; by an appropriate coupling (mechanical or otherwise)) so as to be able to advance the syringe plunger in at least one direction (e.g., to discharge fluid). Each syringe plunger driver may utilize one or more drive sources of any appropriate size, shape, configuration, and/or type. Multiple drive source outputs may be combined in any appropriate manner to advance a single syringe plunger at a given time. One or more drive sources may be dedicated to a single syringe plunger driver, one or more drive sources may be associated with multiple syringe plunger drivers (e.g., incorporating a transmission of sorts to change the output from one syringe plunger to another syringe plunger), or a combination thereof. Representative drive source forms include a brushed or brushless electric motor, a hydraulic motor, a pneumatic motor, a piezoelectric motor, or a stepper motor.
Any such power injector may be used for any appropriate application where the delivery of one or more medical fluids is desired, including without limitation any appropriate medical application (e.g., computed tomography or CT imaging; magnetic resonance imaging or MRI; single photon emission computed tomography or SPECT imaging; positron emission tomography or PET imaging; X-ray imaging; angiographic imaging; optical imaging; ultrasound imaging). Any such power injector may be used in conjunction with any component or combination of components, such as an appropriate imaging system (e.g., a CT scanner). For instance, information could be conveyed between any such power injector and one or more other components (e.g., scan delay information, injection start signal, injection rate).
Any appropriate number of syringes may be utilized with any such power injector in any appropriate manner (e.g., detachably; front-loaded; rear-loaded; side-loaded), any appropriate medical fluid may be discharged from a given syringe of any such power injector (e.g., contrast media, a radiopharmaceutical, saline, and any combination thereof), and any appropriate fluid may be discharged from a multiple syringe power injector configuration in any appropriate manner (e.g., sequentially, simultaneously), or any combination thereof. In one embodiment, fluid discharged from a syringe by operation of the power injector is directed into a conduit (e.g., medical tubing set), where this conduit is fluidly interconnected with the syringe in any appropriate manner and directs fluid to a desired location (e.g., to a catheter that is inserted into a patient for injection). Multiple syringes may discharge into a common conduit (e.g., for provision to a single injection site), or one syringe may discharge into one conduit (e.g., for provision to one injection site), while another syringe may discharge into a different conduit (e.g., for provision to a different injection site). In one embodiment, each syringe includes a syringe barrel and a plunger that is disposed within and movable relative to the syringe barrel. This plunger may interface with the power injector's syringe plunger drive assembly such that the syringe plunger drive assembly is able to to advance the plunger in at least one direction, and possibly in two different, opposite directions.
As used herein, the term “fluidly interconnected” refers to two or more components or entities being connected (directly or indirectly) in a manner such that fluid can flow (e.g., unidirectionally or bidirectionally) in a predetermined flow path therebetween. For example, “an injection device fluidly interconnected to a patient” describes a configuration where fluid can flow from the injection device through any interconnecting devices (e.g., tubing, connectors) and into the patient (e.g., into the vasculature of the patient).
The encoders, encoding systems, and encoding methods described herein may be particularly useful in encoding information related to configurations for syringes and other pumping mechanisms used in medical injection procedures. Several representative embodiments in which electromagnetic (e.g., light) energy may be used in connection with syringe encoders are discussed below.
In the case that light energy is used, one may, for example, take advantage of the properties of light refraction/reflection at an interface between two different media to assist in efficiently propagating light through the length of the media having the higher refractive index. These different media may, for example, be a translucent or transparent syringe wall and the air surrounding the syringe wall.
In one embodiment, syringe 10 may be manufactured from polyethylene terephthalate (PET), for which the index of refraction measured at 632.8 nm (Helium-Neon laser output) is approximately 1.68 for an ambient temperature of 21 degrees C. Given a refractive index of approximately 1.00 for air, this material results in a critical angle for the air-syringe interface of approximately 37 degrees. Therefore, if the light hits the interface at an angle greater than this value, it may be internally reflected. In the case of no scattering or absorption, this reflection is theoretically perfect. Indeed, measurements have shown that the reflection coefficient from a dielectric interface within, for example, a high quality optical fiber exceeds 0.9999. See, for example, Handbook of Optics, McGraw-Hill, p. 13-6. In practice, the reflection coefficient may decrease as imperfections in the material increase.
In
Positioning indicators (e.g., indicators 60a-60c of
Although internal reflectance arising from materials of different refractive indices may be useful in efficiently propagating light energy through the length of a medium, internal reflectance may not be necessary. For example, reflective shields or linings as described in connection with
In several embodiments, steps may be taken to prevent interference from background or ambient light (e.g., light not originating from the light source(s)). For example, narrow bandwidth detection may be used in which the light source(s) and sensor(s) operate over a very narrow range of optical wavelengths. Moreover, synchronous detection may be used in which the light source(s) may be modulated at some frequency and the sensor electronics may be selectively sensitive to signals varying at that frequency. At the simplest level, the difference in detected signal between a source on state and a source off state may be measured. Many other detection schemes as known, for example, in the optical detection arts may be suitable.
In the embodiments of
The lengths of material of
In
Syringe encoder 400 of
Syringe encoder 500 of
As discussed above, the indicators may, for example, extend around the circumference of a syringe or a syringe adapter to a sufficient extent so that the orientation of the syringe, the syringe adapter, or the syringe encoder (e.g., the degree of rotation about its axis) with respect to the injector, light source and/or sensor bank may be irrelevant to the ability of the corresponding sensors to measure how the indicators modify energy propagated through the syringe, the syringe adapter or the syringe encoder. However, orientation may be used to encode more information.
In the embodiment of
Dedicating the use of indicators 610e and 615e as position and/or calibration indicators, the presence or absence of other indicators may be used to set forth binary code(s) of predetermined lengths. In
In
In the above discussion, syringe configuration information may be read in a static fashion. Syringe configuration information may also be read in a dynamic fashion. As prior art syringe encoder 800 is moved to the left in the orientation of
In the case that light energy is used, the light source may be a powered light source such as an LED and/or other powered light source as know in the art. However, ambient light may also be used. In
Light transmitted to a sensor (as measured, for example, in brightness or signal strength) may be sufficient such that the interaction of light with an indicator may be readily detectable using commercially available, inexpensive sensors and light sources. An example of a suitable sensor is the SFH229FA (part number) photodiode produced by OSRAM, a multinational corporation headquartered in Munich, Germany. An example of a suitable light source is the HSDL-4230 (part number) LED produced by Hewlett-Packard, a multinational corporation headquartered in Palo Alto, Calif.
Each indicator 1210a-1210e may be operable to redirect electromagnetic energy propagated through a wall 1470 of syringe 1200′ from source 1450. The wall 1470 may be in the form of a wall 1470 of the syringe 1200′ or may be a length of material as described above. This would be the equivalent of the syringe 1200 of
Any binary code ranging from 00000 (a completely opaque indicator block 1400) to 11111 (a completely transparent indicator block 1400) may be achieved by an appropriately configured indicator block 1400 and the syringe 1200′ that includes indicators 1210a-1210e at every potential location. That is, by appropriately placing opaque portions or transparent portions between appropriate indicators 1210a-1210e and their corresponding sensors 1460a-1460e, respectively, any binary code from 00000 to 11111 may be achieved. Moreover, such syringe assemblies 1440 may be substituted for syringe 1200 for use in the power injectors described herein.
The indicator block 1400 may encircle the entire syringe 1200′ such that regardless of the orientation of the syringe assembly 1440 in the power injector, the sensors 1460a-1460e will be able to correctly read the binary code of the syringe assembly 1440.
Where the electromagnetic energy from the source 1450 is visible light, the transparent portion 1403 may be clear and the opaque portions 1410, 1420 may be opaque to visible light. In an embodiment, the transparent portion 1430 may be replaced by the absence of material. For example, in such an embodiment, the indicator block 1400 of
The indicator block 1400 may be in the form of a label (e.g., an adhesive backed label) that may be installed onto the syringe 1200′ by wrapping the label around the syringe 1200′. In such an embodiment, the label may be sized and/or configured in such a way as to aid in the manual installation and/or inspection of the label. For example, the label may be configured as shown in
The indicator block 1400 may be in any other appropriate form. For example, the indicator block 1400 may be an elastic band that may be operable to fit over the syringe 1200′. In another example, the indicator block 1400 may be operable to press fit onto the syringe 1200′. In yet another example, the indicator block 1400 may be in the form of ink, paint, or the like, that is applied over the appropriate indicators 1210a-1210e.
However, this energy may be selectively blocked. For example, the indicator block 1500 of
Any binary code ranging from 000 (a completely opaque indicator block 1500) to 111 (a completely transparent indicator block 1500) may be achieved by an appropriately configured indicator block 1500 and the syringe 10′ that includes indicators 60a-60c at every potential location. Moreover, such syringe assemblies 1540 may be substituted for syringe 10 for use in the power injector 20. Furthermore, the indicator block 1500 may be configured for attachment to the syringe 10′ in any appropriate manner, such as those discussed above with reference to indicator block 1400.
However, this energy may be selectively blocked. For example, the indicator block 1600 of
Any binary code ranging from 000 (a completely opaque indicator block 1600) to 111 (a completely transparent indicator block 1600) may be achieved by an appropriately configured indicator block 1600 and the syringe 110′ that includes indicators 160a-160c at every potential location. Moreover, such syringe assemblies 1640 may be substituted for syringe 110 for use in the power injector 120. Furthermore, the indicator block 1600 may be configured for attachment to the syringe 110′ in any appropriate manner, such as those discussed above with reference to indicator block 1400.
In general, indicator blocks may be configured to work with any of the syringe embodiments discussed to herein, where the syringe contains indicators at every potential location. Thus, for such syringes, the binary encoding will result from the configuration of an appropriate indicator block. One advantage of such indicator blocks is that the syringes to be used in the power injectors may all be identically configured (e.g., with all potential indicators present), and thus only one type of syringe need be manufactured and kept in inventory. Uniquely encoded syringe assemblies may be achieved by applying appropriate indicator blocks to the syringes. Accordingly, inventory may consist the standard type of syringe (e.g., with all potential indicators present) and a variety of indicator blocks. This may be a lower cost (e.g., lower carrying costs for inventory) system than a system where a variety of uniquely manufactured syringes (e.g., syringes encoded during the manufacturing process by the inclusion/deletion of various indicators) must be kept in inventory.
Another characterization of the syringe assemblies described above in relation to
An indicator or encoding set may be defined by mounting at least one indicator block on the syringe such that it blocks transmission of an optical signal from at least one of the optical encoding elements. Each indicator/encoding set may thereby be in the form of a binary code—for example, a “1” for the case where the optical signal from a particular optical encoding element is able to progress to its corresponding optical detector or sensor and a “0” for the case where the optical signal from a particular optical encoding element is blocked by an indicator block such that this optical signal does not reach its corresponding optical detector or sensor.
The syringe assemblies described in relation to
The indicator blocks 1400, 1500, and 1600 described herein have been described in conjunction with selected syringes 1200′, 10′ and 110′, respectively. It should be noted that appropriately configured indicator blocks may be used with any of the syringes described herein. Furthermore, indicator blocks may be used with other syringe configurations that include indicators in every potential location. Such syringe configurations may include any appropriate total number of potential indicator locations for encoding any appropriate length binary code. Indicator blocks may be operable to work in encoding systems, such as the syringe encoder 600 (
The indicator blocks described herein may also contain additional information in the form of printed matter. For example, human-readable text (e.g., indicia 1480 in
The foregoing description of the present invention has been presented for purposes of illustration and description. Furthermore, the description is not intended to limit the invention to the form disclosed herein. Consequently, variations and modifications commensurate with the above teachings, and skill and knowledge of the relevant art, are within the scope of the present invention. The embodiments described hereinabove are further intended to explain best modes known of practicing the invention and to enable others skilled in the art to utilize the invention in such, or other embodiments and with various modifications required by the particular application(s) or use(s) of the present invention. It is intended that the appended claims be construed to include alternative embodiments to the extent permitted by the prior art.
This application claims priority to U.S. Provisional Patent Application No. 61/167,995 filed on 9 Apr. 2009 entitled “SYRINGE IDENTIFICATION SYSTEM”, the disclosure of which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61167995 | Apr 2009 | US |