The present invention generally relates to injectors for injecting fluid into animal subjects, including humans, and particularly relates to syringe mounts used to operatively connect a syringe to an injector.
During many medical procedures, various fluids are injected into patients for purposes of diagnosis or treatment. An example of one such fluid is contrast media used to enhance angiography, magnetic resonance imaging, or computerized tomography imaging. Such fluids may also be used in other modalities, such as intravenous pyelogram (IVP) and cardiology. The injectors used in these procedures are often automated devices that expel fluid from a syringe, through a tube, and into a patient.
Injectors suitable for these applications generally utilize relatively large volume syringes and tend to be capable of producing relatively large flow rates and injection pressures. For these reasons, injectors for such applications typically include large, high mass injection motors and drive trains. The motor and drive train of an injector are typically housed in an injection head, which is supported by a floor, wall, or a ceiling mounted arm. In order to perform an injection procedure using one of these injectors, a syringe may be operatively connected to an injector (e.g., via a face plate thereof), and a drive ram of the injector may then be moved to expel fluid from the syringe. Thereafter, the drive ram may be retracted, and the used syringe may then be disconnected from the injector.
The present invention relates to a syringe mount that may be utilized to assist in enabling a user to mount a syringe on a medical fluid injector (e.g., in preparation for a medical imaging procedure) and to enable a user to subsequently remove the syringe from the injector (e.g., upon completion of an medical imaging procedure). Certain exemplary aspects of the invention are set forth below. It should be understood that these aspects are presented merely to provide the reader with a brief summary of certain forms the invention might take and that these aspects are not intended to limit the scope of the invention. Indeed, the invention may encompass a variety of features and aspects that may not be set forth below.
A first aspect of the invention is directed to a syringe mount for connecting a syringe to a medical fluid injector. This syringe mount includes a movable actuator that has a wall member, which includes a distally facing wall surface, a proximally facing wall surface, and an orifice defined in the actuator. In addition, the syringe mount also includes a first movable member that is operatively coupled to the actuator and that confronts the distally facing wall surface of the actuator. As used herein, components that are “operatively coupled” may be directly coupled to one another or indirectly coupled to one another, may be integral with one another, or may be separate components.
A second aspect of the invention is also directed to a syringe mount for connecting a syringe to a medical fluid injector. The syringe mount of this second aspect includes a structure (e.g., a plate, a housing, or other structure of the syringe mount), an actuator, and at least one movable member located between the structure and the actuator. Each of the structure and the actuator has an orifice defined therein, and an imaginary reference axis of the syringe mount extends through both of these orifices. The actuator is movable relative to the structure in a direction substantially perpendicular to the reference axis. Further, the moveable member(s) is(are) designed to move (e.g., pivot) toward the reference axis due to movement of the actuator from a first position to a second position and to move (e.g., pivot) away from the reference axis due to movement of the actuator from the second position to the first position.
Yet a third aspect of the invention is directed to a method of using a syringe mount of a medical fluid injector (e.g., to mount a syringe on an injector for an injection procedure). In this method, a syringe is inserted into an orifice defined in a first component (e.g., an actuator) of the syringe mount. The first component of the syringe mount is moved in a direction substantially perpendicular to a longitudinal axis of the syringe while the syringe is located within the orifice. Due to this movement of the first component, a second component (e.g., a movable member) of the syringe mount is moved toward the longitudinal axis of the syringe.
Still a fourth aspect of the invention is directed to a method of using a syringe mount of a medical fluid injector (e.g., to remove a syringe from an injector upon completion of an injection procedure). In this method, a first component (e.g., an actuator) of the syringe mount is moved in a direction substantially perpendicular to a longitudinal axis of a syringe while the syringe is located within an orifice defined in the first component of the syringe mount. A second component (e.g., a movable member) of the syringe mount is moved away from the syringe, and the syringe is removed from the syringe mount after the first and second components of the syringe mount have been moved.
Various refinements exist of the features noted above in relation to the various aspects of the present invention. Further features may also be incorporated in these various aspects as well. These refinements and additional features may exist individually or in any combination. For instance, various features discussed below in relation to one or more of the illustrated embodiments may be incorporated into any of the above-described aspects of the present invention alone or in any combination. Again, the brief summary presented above is intended only to familiarize the reader with certain aspects and contexts of the present invention without limitation to the claimed subject matter.
One or more specific embodiments of the present invention will be described below. In an effort to provide a concise description of these embodiments, all features of an actual implementation may not be described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
Referring to the Figures, an injector 10 includes a syringe mount 12 to facilitate attachment of a syringe 14 to the injector 10 in alignment with a drive ram 16, in order to provide an injection assembly. The syringe 14 for use with the injector 10 generally includes a body 18 (which may be in the form of an exterior cylindrical barrel), which at its forward end 20, is integral with a conical front wall 22. A neck 24, terminating in a discharge tip 26, generally extends forwardly from and may be integral with the conical front wall 22. The body 18 of the syringe 14 may interface with an interior wall of a pressure jacket (not shown) or a cradle 30 when such a pressure jacket or cradle 30 is present on the injector 10. The syringe 14, as used in conjunction with the injector 10 of the present invention, includes a syringe mating section 32, which may be in the form of a radially outwardly extending flange 34. This flange 34 is positioned in a plane substantially perpendicular to a longitudinal axis 36 of the syringe 14 and may generally be integral with the rearward end 38 of the body 18 of the syringe 14. When the syringe 14 is associated with the injector 10, the flange 34 is positioned into and/or in contact with the syringe mount 12 located on the forward end 40 of a housing 42 of the injector 10. The syringe mating section 32 and syringe mount 12 may be utilized to facilitate operative connection of the syringe 14 to the injector 10, as will be described in greater detail below.
The discharge tip 26 of the syringe 14 has an orifice 44 defined in its remote end, which may communicate with an internal syringe cavity 46 defined within the neck 24, the conical front wall 22, and the body 18 of the syringe 14. A rearward end 48 of the cavity 46 may be defined by a generally forward facing surface 50 of a syringe plunger 52. In the illustrated embodiment, this forward facing surface 50 is substantially conical. The surface 50 may be of a slope that conforms to the slope of the interior of the conical front wall 22. The syringe plunger 52 may be snugly slidable within the body 18 of the syringe 14 such that the cavity 46 is of variable volume. Tubing (not shown) may be operatively connected to the discharge tip 26 such that fluid can be expressed from the syringe 14 through the tubing.
Referring now to
The injector 10 may be designed to accommodate prefilled syringes or empty syringes of varying volumes. For example, the injector 10 may be adapted to receive 125 ml prefilled syringes (e.g., Ultraject® syringe commercially available from Mallinckrodt Inc. of St. Louis, Mo.). Such syringes may be used for injecting contrast media into a patient. These 125 ml syringes may be prefilled with any of a range of appropriate amounts of fluid, such as 50 ml, 75 ml, 100 ml, 125 ml, or other amount. Additionally, the injector 10 may accommodate an empty syringe of any of a variety of sizes (e.g., 50 ml, 75 ml, 100 ml, 125 ml, 130 ml, etc.).
Referring now to
The slot 74 is defined by the wall member 58 of the actuator 56 at a base portion 76 thereof. The first and second pins 66, 68 are movable (e.g., slidable and optionally rotatable) within the slot 74. Each of the first and second pins 66, 68 can move from a position proximal to the center 78 of the slot 74, to positions near first and second terminal ends 80, 82 of the slot 74. The first and second pins 66, 68 do not both move on one side of the slot 74. Rather, the first pin 66 is adapted to move within one portion of the slot 74, and the second pin 68 is adapted to move within another portion of the slot 74. In particular, in the illustrated embodiment, a base portion 76 of the wall member 58 includes an opening 84 having a top portion thereof in a shape at least generally similar to a “V.” The first and second pins 66, 68 are disposed in the “V” portion of this opening 84. When the first and second pins 66, 68 are positioned near the intersection of the two legs of the “V,” the first and second movable members 62, 64 are in an open position (see
As can be seen from
The coupling plate 92 includes first and second pivoting shafts 101, 103 projecting from a proximal surface 105 thereof. These first and second pivoting shafts 101, 103 are received in first and second shaft openings 107, 109 defined in the first and second movable members 62, 64, respectively. As such, the first and second movable members 62, 64 are able to exhibit a pivoting motion about the corresponding first and second pivot shafts 101, 103. Stated another way, the first and second movable members 62, 64 are coupled with corresponding the first and second pivoting shafts 101, 103 in a manner such that the movable members 62, 64 can pivot thereabout. The first and second pivoting shafts 101, 103 thus may be said to provide pivot points for the first and second movable members 62, 64.
To initiate loading of the syringe 14 into the syringe mount 12, the flange 34 at the rearward end 38 of the syringe 14 may be passed through an aperture in each of the distal wall portion 90 of the syringe mount 12 and the coupling plate 92 and may be received into the orifice 60 defined in the actuator 56. While the rearward end 38 of the syringe 14 is located in the orifice 60, the syringe 14 may be moved in a first direction substantially perpendicular to the longitudinal axis 54 of the drive ram 16 of the injector 10. Herein, this direction will be referred to as a “downward” direction (as the motion is down relative to the injector 10). However, it will be recognized by those skilled in the art that the motion does not have to be “downward,” but that the components of the syringe mount 12 can be configured such that motion in other directions can effect appropriate engagement of the syringe 14 (including, but not limited to, “upward” movement, “side-to-side” movement, or any other appropriate, substantially perpendicular movement such that the longitudinal axis 36 of the syringe 14 is moved into a substantially coaxial relationship with the longitudinal axis 54 of the drive ram 16). This downward motion, in turn, responsively moves the actuator 56 in the downward direction. The motion of the actuator 56 in the downward direction causes each of the first and second pins 66, 68 to move to the corresponding first and second ends 80, 82 of the slot 74 defined in the base portion 76 of the wall member 58. This movement of the pins 66, 68 occurs because the first and second movable members 62, 64 cannot move in the downward direction due to the first and second pivoting shafts 101, 103 of the fixed coupling plate 92 being located within the first and second shaft openings 107, 109 of the first and second movable members 62, 64. Thus, as the actuator 56 moves in the downward direction, the first and second pins 66, 68 move within the slot 74 to the first and second terminal ends 80, 82 thereof. Because the first and second movable members 62, 64 cannot move downwardly, they instead pivot about the pivot points provided by the first and second pivoting shafts 101, 103. In other words, the first and second movable members 62, 64 rotate about the corresponding first and second pivoting shafts 101, 103 at the respective first and second shaft openings 107, 109. As such, the first and second movable members 62, 64 pivot to engage (e.g., substantially, circumferentially envelop) the rearward end 38 of the syringe 14 (see
In the illustrated embodiment, the first and second movable members 62, 64 are opposite one another and are positioned about the longitudinal axis 54 of the drive ram 16. Further, the first and second movable members 62, 64 each have an arcuate face 102, 104. These arcuate faces 102, 104 are shown as being diametrically opposite one another and located exterior to the body 18 of the syringe 14. When the syringe 14 is properly engaged with the syringe mount 12 of the injector 10, the first and second movable members 62, 64 of the syringe mount 12 are in contact with the side surface of the exterior body 18 of the syringe 14 to hold the syringe 14 in place and in alignment with the drive ram 16 of the injector 10.
In some embodiments, the arcuate faces 102, 104 of the movable members 62, 64 may bear one or more types of engagement enhancing features (e.g., grooves, bumps, indentations, ridges, teeth, combinations thereof, and the like) to improve the ability of the movable members 62, 64 to grip and/or hold the syringe 14. In some embodiments, a grip enhancing coating (e.g., Santoprene® elastomer) may be applied to the arcuate faces 102, 104 of the movable members 62, 64 to facilitate gripping/holding of the syringe 14.
The pivotal movement of the first and second movable members 62, 64 alters the distance between the arcuate faces 102, 104 as they pivot toward and away from one another. In the illustrated embodiment, the first and second movable members 62, 64 are each movable. In some embodiments, it is possible to use a single movable member disposed in spaced relation to an immobile member (e.g., arcuate stop or abutment) toward which the single movable member may be moved.
In some embodiments, first and second movable members 62, 64 are not necessary for appropriate syringe engaging function. In such embodiments, a single gripping member may be used to engage the syringe 14, thereby operatively connecting the syringe 14 to the injector 10. In such embodiments, the single movable member should cover enough of the circumference of the syringe 14, when in contact with the body 18, to hold the syringe 14 against the injector 10. In such embodiments, each arm extending from a center point of the movable member may have a degree of elasticity such that the arms may splay outwardly and inwardly to allow for insertion and/or removal of the syringe 14.
The wall member 58 of the actuator 56 is shown as having a peripheral side surface 110 that includes a first undulating contour 106 and a second undulating contour 108. As shown, the second undulating contour 108 is positioned substantially opposite the first undulating contour 106. Each of these first and second undulating contours 106, 108 includes a first valley 112, a second valley 114, and a ridge 116 disposed therebetween. When positioned within the syringe mount 12 of the injector 10, these first and second undulating contours 106, 108 are confronted by first and second projections 118, 120 (see
To load a syringe 14 into the injector 10, the syringe 14 is positioned relative to the wall member 58 of the actuator 56 such that the flange 34 at the rearward end 38 of the syringe 14 is received within the orifice 60 of the wall member 58 such that at least one contact point 122 on the periphery of the flange 34 contacts or can be brought into contact with a peripheral surface 124 defining the orifice 60. More specifically, the flange 34, in certain embodiments, may be received by a recess 125 in the actuator 56. The actuator 56 is shown in
A user then applies a force to the syringe 14 in a direction substantially perpendicular to, and towards, the longitudinal axis 54 of the drive ram 16. The flange 34 of the syringe 14, contacting the peripheral surface 124 of the wall member 58, is utilized to force the wall member 58 of the actuator 56 to responsively move in a direction substantially perpendicular to the longitudinal axis 54 of the drive ram 16. Enough force is applied to overcome the spring-bias of the first and second projections 118, 120, such that the actuator 56 moves from the first position to the second position. As this occurs, the first and second projections 118, 120 ride along the first and second undulating contours 106, 108 from the first valleys 112, along the ridges 116, and into the second valleys 114. The first and second projections 118, 120 may then be utilized to at least assist in maintaining the wall member 58 in the second position shown in
The movement of the wall member 58 from the first position to the second position cooperatively moves the slot 74 of the wall member 58 in a direction substantially perpendicular to the longitudinal axis 54 of the drive ram. And thus, the slot 74 moves relative to the first and second pins 66, 68, thereby causing the first and second pins 66, 68 to move relative to and within the slot 74. More specifically, in the illustrated embodiment, the first and second pins 66, 68 move within the V-shaped slot from a position proximal to the point of the “V,” to positions proximal to the terminal ends of each leg of the “V” (from the position shown in
As the wall member 58 is moved from the first position to the second position, and the syringe 14 moves with the wall member 58 from a position not engaged by the movable members 62, 64 to a position engaged by the movable members 62, 64, the coupling mechanism 128 at the rearward end 38 of the syringe plunger 52 moves from a position not engaged with the plunger coupling mechanism 126 of the drive ram 16 to a position engaged with the plunger coupling mechanism 126 of the drive ram 16. In the illustrated embodiment (see
A slot 134 is defined in the forward end of the drive ram 16 in a shape to receive the coupling mechanism 128 of the syringe 14, and particularly the cap portion 132 thereof. A cross-section of the plunger coupling element 126 is shown as exhibiting a J-shape (having a slot within a hook portion of the “J” configured to receive the cap portion 132), such that when the syringe plunger 52 is engaged with the drive ram 16, the distal end 136 of the “J” shape is positioned distally of a part of the cap portion 132 of the coupling mechanism 128. Thus, when the syringe 14 is initially inserted into the actuator 56 (in the first position), the cap portion 132 of the coupling mechanism 128 is “above” the plunger coupling element 126 of the drive ram 16. However, as the actuator 56 is moved to the second position, the cap portion 132 of the coupling mechanism 128 is moved to be positioned proximally of the distal end 136 of the plunger coupling mechanism 126 of the drive ram 16. Once engaged, an injection procedure may be run, such as by translating the drive ram 16 forward along its longitudinal axis 54 to dispense a fluid, such as contrast media, from the syringe 14. While the slot 134 and extension 128 of the illustrated embodiment have shapes referred to herein as “J” and “T,” respectively, it will be recognized by those of skill in the art that any shape that facilitates coupling may be used. Additionally, while the illustrated embodiment depicts first a coupling mechanism 128 and plunger coupling mechanism 126 that result in a passive coupling, those of skill in the art will recognize that coupling mechanisms and plunger coupling mechanisms that result in an active coupling (one which involves some degree of positive gripping) may be used.
As described previously, the syringe mount 12 of the present invention allows for the syringe 14 to be removed from the face plate 86 and/or forward end 40 of the injector 10, when the drive ram 16 of the injector 10 is at any position. It does not require the drive ram 16 to be returned to a “home” position before detaching the syringe 14 from the injector 10. Thus, during an injection procedure, the translation of the drive ram 16 may be stopped while the drive ram 16 is in an extended position from the front face place 86 of the injector 10. A user can then grip the syringe 14 and move it in an upward direction, thereby overcoming the spring-biased force of the first and second projections 118, 120 to cause the actuator 56 to move from the second position to the first position. As this occurs, the first and second projections 118, 120 ride along the first and second undulating contours 106, 108 from the second valleys 114, over the ridges 116, and into the first valleys 112. Simultaneously, the first and second pins 66, 68 of the first and second movable members 62, 64 will move within the V-shaped slot of the wall member 58 from a position near the terminal ends 80, 82 of the arms of the V to a position near the point of the V. This causes the first and second movable members 62, 64 to pivot from the closed position to the open position by pivoting about the pivot points created by the interaction of the first and second pivoting shafts 101, 103 with the first and second shaft openings 107109. Due to the positioning of the flange 34 at the rearward end 38 of the syringe 14 within the orifice 60 of the actuator 56, the actuator 56 allows for enough vertical syringe movement for the T-shaped coupling mechanism on the rearward face of the syringe 14 to clear the slot on the forward end of the drive ram 16, thereby allowing removal of the syringe 14 from the injector 10.
Additional advantages and modifications will readily appear to those skilled in the art. The invention in its broader aspects is therefore not limited to the specific details, representative apparatus and methods, and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the scope or spirit of Applicant's general inventive concept.
This patent application is a divisional patent application of, and claims priority to, pending U.S. patent application Ser. No. 11/567,011, that is entitled “SYRINGE MOUNT FOR A MEDICAL FLUID INJECTOR,” that was filed on Dec. 5, 2006, and the entire disclosure of which is hereby incorporated by reference in its entirety herein.
Number | Name | Date | Kind |
---|---|---|---|
3964139 | Kleinmann et al. | Jun 1976 | A |
3983363 | Alter | Sep 1976 | A |
4217993 | Jess et al. | Aug 1980 | A |
4265618 | Herskovitz et al. | May 1981 | A |
4422942 | Allington | Dec 1983 | A |
4460355 | Layman | Jul 1984 | A |
4560979 | Rosskopf | Dec 1985 | A |
4628499 | Hammett | Dec 1986 | A |
4634431 | Whitney et al. | Jan 1987 | A |
4650465 | Langer et al. | Mar 1987 | A |
4743228 | Butterfield | May 1988 | A |
4755172 | Baldwin | Jul 1988 | A |
4812724 | Langer et al. | Mar 1989 | A |
4854324 | Hirschman et al. | Aug 1989 | A |
4913703 | Pasqualucci et al. | Apr 1990 | A |
4931041 | Faeser | Jun 1990 | A |
4950246 | Muller | Aug 1990 | A |
4994984 | Massimo | Feb 1991 | A |
5069225 | Okamura | Dec 1991 | A |
5078698 | Stiehl et al. | Jan 1992 | A |
5135511 | Houghton et al. | Aug 1992 | A |
5178609 | Ishikawa | Jan 1993 | A |
5242408 | Jhuboo et al. | Sep 1993 | A |
D341760 | Armbruster et al. | Nov 1993 | S |
5261884 | Stern et al. | Nov 1993 | A |
5269762 | Armbruster et al. | Dec 1993 | A |
5295966 | Stern et al. | Mar 1994 | A |
5300031 | Neer et al. | Apr 1994 | A |
5322511 | Armbruster et al. | Jun 1994 | A |
5383858 | Reilly et al. | Jan 1995 | A |
5425716 | Kawasaki et al. | Jun 1995 | A |
D360462 | Armbruster et al. | Jul 1995 | S |
5505704 | Pawelka et al. | Apr 1996 | A |
5509901 | Milijasevic | Apr 1996 | A |
5512730 | Spinello | Apr 1996 | A |
5520653 | Reilly et al. | May 1996 | A |
D370974 | Barresi et al. | Jun 1996 | S |
5611784 | Barresi et al. | Mar 1997 | A |
5662612 | Niehoff | Sep 1997 | A |
5672155 | Riley et al. | Sep 1997 | A |
5741232 | Reilly et al. | Apr 1998 | A |
5779675 | Reilly et al. | Jul 1998 | A |
5795333 | Reilly et al. | Aug 1998 | A |
RE35979 | Reilly et al. | Dec 1998 | E |
5873861 | Hitchins et al. | Feb 1999 | A |
5899885 | Reilly et al. | May 1999 | A |
5928197 | Niehoff | Jul 1999 | A |
5938637 | Austin et al. | Aug 1999 | A |
5938639 | Reilly et al. | Aug 1999 | A |
5944694 | Hitchins et al. | Aug 1999 | A |
5947929 | Trull | Sep 1999 | A |
5947935 | Rhinehart et al. | Sep 1999 | A |
5964736 | Lane | Oct 1999 | A |
5968015 | Yamamoto | Oct 1999 | A |
5997502 | Reilly et al. | Dec 1999 | A |
6017326 | Pasqualucci et al. | Jan 2000 | A |
6042565 | Hirschman et al. | Mar 2000 | A |
D422356 | Marano et al. | Apr 2000 | S |
6048334 | Hirschman et al. | Apr 2000 | A |
6059754 | Pasch et al. | May 2000 | A |
6080136 | Trull et al. | Jun 2000 | A |
6090064 | Reilly et al. | Jul 2000 | A |
6090071 | Kriesel | Jul 2000 | A |
6091058 | Faries, Jr. et al. | Jul 2000 | A |
6099502 | Duchon et al. | Aug 2000 | A |
6159183 | Neer et al. | Dec 2000 | A |
6200289 | Hochman et al. | Mar 2001 | B1 |
6221045 | Duchon et al. | Apr 2001 | B1 |
6241708 | Reilly et al. | Jun 2001 | B1 |
6245041 | Kriesel | Jun 2001 | B1 |
6245043 | Villette | Jun 2001 | B1 |
6254572 | Knipfer et al. | Jul 2001 | B1 |
6259067 | Faries, Jr. et al. | Jul 2001 | B1 |
6269340 | Ford et al. | Jul 2001 | B1 |
6312410 | Yamamoto | Nov 2001 | B1 |
6322535 | Hitchins et al. | Nov 2001 | B1 |
RE37487 | Reilly et al. | Dec 2001 | E |
6336913 | Spohn et al. | Jan 2002 | B1 |
6344030 | Duchon et al. | Feb 2002 | B1 |
6368307 | Ziemba et al. | Apr 2002 | B1 |
6371938 | Reilly et al. | Apr 2002 | B1 |
6402717 | Reilly et al. | Jun 2002 | B1 |
6454743 | Weber | Sep 2002 | B1 |
6475192 | Reilly et al. | Nov 2002 | B1 |
6582408 | Buch-Rasmussen et al. | Jun 2003 | B1 |
6607508 | Knauer | Aug 2003 | B2 |
6610033 | Melanson et al. | Aug 2003 | B1 |
6652489 | Trocki | Nov 2003 | B2 |
6656157 | Duchon et al. | Dec 2003 | B1 |
6673033 | Sciulli et al. | Jan 2004 | B1 |
6673048 | Duchon | Jan 2004 | B1 |
6676634 | Spohn et al. | Jan 2004 | B1 |
6676635 | Nemoto | Jan 2004 | B2 |
6716195 | Nolan, Jr. et al. | Apr 2004 | B2 |
6726657 | Dedig et al. | Apr 2004 | B1 |
6733478 | Reilly et al. | May 2004 | B2 |
6743205 | Nolan, Jr. et al. | Jun 2004 | B2 |
6808513 | Reilly et al. | Oct 2004 | B2 |
6821013 | Reilly et al. | Nov 2004 | B2 |
6854620 | Ramey | Feb 2005 | B2 |
6921384 | Reilly et al. | Jul 2005 | B2 |
6958053 | Reilly | Oct 2005 | B1 |
6974443 | Reilly et al. | Dec 2005 | B2 |
6997904 | Sculati | Feb 2006 | B2 |
7025757 | Reilly et al. | Apr 2006 | B2 |
7029459 | Reilly | Apr 2006 | B2 |
7081105 | Reilly et al. | Jul 2006 | B2 |
7101352 | Duchon et al. | Sep 2006 | B2 |
7273477 | Spohn et al. | Sep 2007 | B2 |
20020107481 | Reilly et al. | Aug 2002 | A1 |
20030028145 | Duchon et al. | Feb 2003 | A1 |
20030233069 | Gillespie, Jr. et al. | Dec 2003 | A1 |
20040015124 | Sciulli et al. | Jan 2004 | A1 |
20040068223 | Reilly | Apr 2004 | A1 |
20040092878 | Flaherty | May 2004 | A1 |
20040116861 | Trocki et al. | Jun 2004 | A1 |
20040116893 | Spohn et al. | Jun 2004 | A1 |
20040133153 | Trocki et al. | Jul 2004 | A1 |
20040133161 | Trocki et al. | Jul 2004 | A1 |
20040133162 | Trocki et al. | Jul 2004 | A1 |
20040133183 | Trocki et al. | Jul 2004 | A1 |
20040249276 | Nemoto et al. | Dec 2004 | A1 |
20060106347 | Fago et al. | May 2006 | A1 |
Number | Date | Country |
---|---|---|
1486219 | Dec 2004 | EP |
0137903 | May 2001 | WO |
02056947 | Jul 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20130245438 A1 | Sep 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11567011 | Dec 2006 | US |
Child | 13890815 | US |