Syringe plunger with dynamic seal

Information

  • Patent Grant
  • 11969582
  • Patent Number
    11,969,582
  • Date Filed
    Thursday, June 2, 2022
    a year ago
  • Date Issued
    Tuesday, April 30, 2024
    21 days ago
Abstract
A plunger, a syringe, system, and a method for increasing a seal between a sidewall of a plunger and a sidewall of a syringe are disclosed. The plunger includes a support ring and a cover disposed over and coupled to the support ring. A cavity defining a predetermined volume is defined between the support ring and the cover. The syringe includes a barrel defining an inner wall and the plunger inserted therein.
Description
TECHNICAL FIELD

The present disclosure relates generally to medical fluid delivery applications, and, particularly, to fluid injection systems including a fluid injector, a syringe, and a plunger within the syringe. More particularly, the present disclosure is directed to a syringe plunger with a dynamic seal.


BACKGROUND

In many medical diagnostic and therapeutic procedures, a medical practitioner such as a physician injects a patient with a fluid. In recent years, a number of injector-actuated syringes and powered injectors for pressurized injection of fluids, such as contrast media, have been developed for use in imaging procedures such as angiography, computed tomography (CT), ultrasound, and magnetic resonance imaging. In general, these powered injectors are designed to deliver a preset amount of contrast and/or saline at a preset flow rate using one or more disposable or refillable syringes.


Automatic injection mechanisms typically include a syringe connected to a powered injector with a linear actuator. The linear actuator operates a moveable piston that is configured to engage a plunger inserted in the barrel of the syringe. The interface or engagement between the piston and plunger generally includes a reversible mechanical locking structure such as screw threads, undercuts, pins, swivels, snap fit connections, and the like for establishing and maintaining the connection between the piston and plunger.


The plunger/piston interface should be sufficiently strong to retract the plunger in a proximal direction through the barrel to draw fluid into the syringe, as well as to advance the plunger through the barrel in the distal direction to expel the fluid contained therein.


In addition to being sufficiently strong to maintain good connection between the piston and plunger during use, the interface should also be removable so that the syringe and plunger can be disposed of after use. With mechanical locking structures, to disengage the piston from the plunger, the user either orients the piston and plunger for disengagement, such as by rotating the syringe to properly align locking features on the piston and plunger, or pulls the piston away from the plunger with sufficient force to overcome the locking structure. Once the piston is disengaged from the plunger, the used syringe and plunger may be discarded.


A challenge with syringe plunger seals is insufficient sealing during injection procedures. It would be desirable to provide a syringe plunger with a dynamic seal to enhance sealing during injection procedures where compression is generated when the syringe is under injection pressure conditions. Preloading compression is not desirable because over the shelf life of the syringe the plastic components undergo deformation or creep that impairs forming an adequate seal under injection pressure conditions. Furthermore, it is desirable to limit compression due to automated assembly process where it is desirable to have low pressure during manufacturing. Accordingly, various aspects of a syringe plunger with a dynamic seal described herein overcome these deficiencies.


SUMMARY

While automated injectors are well-known, improved fluid delivery systems which make the injection processes simpler for medical staff are always needed. With respect to the present disclosure, a syringe having a plunger with a dynamic seal is set forth. Desirably, the plunger with a dynamic seal which slides easily through the inner wall of the barrel of the syringe, but nevertheless is configured to provide a good effective seal against the inner wall of the barrel during an injection procedure to prevent leaking of the substance contained therein, is also needed.


In view of the foregoing, a need exists for a syringe having a plunger with a dynamic seal which can be used with an injector, such as a powered injector. According to one aspect of the disclosure, the plunger with dynamic seal generates compression under injection pressure conditions. Initially, under relatively low pressure conditions, the compression between the plunger and the inner wall of the barrel is low. The compression increases under injection pressure conditions of the fluid delivery system and thus increases the seal between the plunger and the inner wall of the barrel of the syringe.


In one aspect, a syringe plunger with a dynamic seal is provided. The syringe plunger with a dynamic seal comprises a support ring and a cover disposed over and coupled to the support ring, wherein an air cavity defining a predetermined volume is defined between the support ring and the cover.


In another aspect, a syringe comprising a plunger with a dynamic seal is provided. The syringe comprises a barrel defining an inner wall, and a plunger located within the inner of the barrel. The plunger comprises a support ring and a cover disposed over and coupled to the support ring, wherein an air cavity defining a predetermined volume is defined between the support ring and the cover.


In addition to the foregoing, various other method and/or system and/or program product aspects are set forth and described in the teachings, such as text (e.g., claims and/or detailed description) and/or drawings, of the present disclosure.


The various aspects of the present disclosure are also described in the following clauses.


Clause 1: A plunger, comprising: a support ring; and a cover disposed over and coupled to the support ring, wherein the support ring and the cover define an air cavity therebetween, the air cavity defining a predetermined volume.


Clause 2: The plunger of clause 1, further comprising a conical cap disposed over the cover.


Clause 3: The plunger of clause 2, wherein the conical cap comprises an overmold element disposed over thereon.


Clause 4: The plunger of any of clauses 1 to 3, wherein the cover further comprises first and second annular ribs.


Clause 5: The plunger of any of clauses 1 to 4, wherein the cover comprises: conical cap; a cylindrical sidewall having at least one annular rib; and a flange to engage the support ring.


Clause 6: The plunger of any of clauses 1 to 5, wherein the support ring comprises a conical cap that defines an included angle greater than about 90°.


Clause 7: The plunger of clause 6, wherein the conical cap of the support ring defines an included angle greater than about 90° and less than about 120°.


Clause 8: The plunger of clause 6 or 7, wherein the conical cap of the support ring and the conical cap of the cover define an angle therebetween.


Clause 9: The plunger of clause 8, wherein the angle defined between the conical cap of the support ring and the conical cap of the cover is greater than 0° and less than about 30°.


Clause 10: The plunger of any of clauses 1 to 9, wherein the support ring comprises: a shoulder; and defines an annular groove between the shoulder and the conical cap to receive a flange defined by the cover.


Clause 11: The plunger of any of clauses 1 to 10, wherein the predetermined volume is selected in a range between 0.1 mL and 10 mL.


Clause 12: A syringe, comprising: a barrel defining an inner wall; and a plunger located within the inner wall of the barrel, the plunger comprising: a support ring; and a cover disposed over and coupled to the support ring, wherein an air cavity defining a predetermined volume is defined between the support ring and the cover.


Clause 13: The syringe of clause 12, wherein the plunger comprises a conical cap disposed over the cover.


Clause 14: The syringe of clause 13, wherein the conical cap comprises an overmold element disposed thereon.


Clause 15: The syringe of any of clauses 12 to 14, wherein the cover further comprises first and second annular ribs that form a seal with the inner wall of the barrel.


Clause 16: The syringe of any of clauses 12 to 15, wherein the cover comprises: conical cap; a cylindrical sidewall having at least one annular rib; and a flange to engage the support ring.


Clause 17: The syringe of any of clauses 12 to 16, wherein the support ring comprises a conical cap that defines an included angle greater than about 90°.


Clause 18: The syringe of clause 17, wherein the conical cap of the support ring defines an included angle greater than about 90° and less than about 120°.


Clause 19: The syringe of clause 17 or 18, wherein the conical cap of the support ring and the conical cap of the cover define an angle therebetween.


Clause 20: The syringe of clause 19, wherein the angle defined between the conical cap of the support ring and the conical cap of the cover is greater than 0° and less than about 30°.


Clause 21: The syringe of any of clauses 12 to 20, wherein the support ring comprises: a shoulder; and defines an annular groove between the shoulder and the conical cap to receive a flange defined by the cover.


Clause 22: The syringe of any of clauses 12 to 21, wherein the predetermined volume is selected in a range between 0.1 mL and 10 mL.


Clause 23: A method of making a plunger, the method comprising: providing a support ring, the support ring comprising a first conical cap, a shoulder, and defines an annular groove between the shoulder and the conical cap; attaching a cover to the support ring, the cover comprising a second conical cap, a cylindrical sidewall, and a flange to engage the annular groove of the support ring; and attaching a third conical cap to the second conical cap of the cover.


Clause 24: A method of making a syringe, comprising: providing a syringe barrel; making a plunger in accordance with a method, the method comprising: providing a support ring, the support ring comprising a first conical cap, a shoulder, and defines an annular groove between the shoulder and the conical cap; attaching a cover to the support ring, the cover comprising a second conical cap, a cylindrical sidewall, and a flange to engage the annular groove of the support ring; and attaching a third conical cap to the second conical cap of the cover; and inserting the plunger in the syringe barrel.


The foregoing is a summary and thus may contain simplifications, generalizations, inclusions, and/or omissions of detail; consequently, those skilled in the art will appreciate that the summary is illustrative only and is NOT intended to be in any way limiting. Other aspects, features, and advantages of the devices and/or processes and/or other subject matter described herein will become apparent in the teachings set forth herein.


Further, it is understood that any one or more of the following-described forms, expressions of forms, examples, can be combined with any one or more of the other following-described forms, expressions of forms, and examples.


The foregoing summary is illustrative only and is not intended to be in any way limiting. In addition to the illustrative aspects, aspects, and features described above, further aspects, aspects, and features will become apparent by reference to the drawings and the following detailed description.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the described forms are set forth with particularity in the appended claims. The described forms, however, both as to organization and methods of operation, may be best understood by reference to the following description, taken in conjunction with the accompanying drawings in which:



FIG. 1 is a side view of a syringe, according to one aspect of the present disclosure;



FIG. 2 is a schematic cross-sectional view of a syringe interface having a piston and plunger, according to one aspect of the present disclosure;



FIG. 3 is a sectional view of a syringe plunger system, according to one aspect of the present disclosure;



FIG. 4 is a section view of one aspect of a syringe plunger system with a dynamic seal, according to one aspect of the present disclosure;



FIG. 5A is a section view of one aspect of the syringe plunger system with a dynamic seal shown in FIG. 4 in an initial compression state, according to one aspect of the present disclosure;



FIG. 5B is a section view of one aspect of the syringe plunger system with a dynamic seal shown in FIG. 5A in a compressed state, according to one aspect of the present disclosure;



FIGS. 6-11 illustrate several views of a support ring structure that includes an included angle, where:



FIG. 6 is a perspective view of the support ring, according to one aspect of the present disclosure;



FIG. 7 is a perspective view of the support ring, according to one aspect of the present disclosure;



FIG. 8 is a plan view of the supporting ring, according to one aspect of the present disclosure;



FIG. 9 is an elevational view of the support ring, according to one aspect of the present disclosure;



FIG. 10 is a bottom view of the support ring, according to one aspect of the present disclosure;



FIG. 11 is a sectional view of the support ring taken along section line 1111, as shown in FIG. 10, according to one aspect of the present disclosure;



FIG. 12 is a sectional view of the syringe plunger system with dynamic seal in a shipping configuration, according to one aspect of the present disclosure;



FIG. 13 is a sectional view of the syringe plunger system with dynamic seal shown in FIG. 12 under an initial state of compression, according to one aspect of the present disclosure;



FIG. 14 is a sectional view of the syringe plunger system with a dynamic seal shown in FIG. 12 under operating injection pressure, according to one aspect of the present disclosure;



FIG. 15 is a sectional view of the syringe plunger system 200 with a dynamic seal shown in FIG. 12 under a state of compression near or beyond maximum injection pressure, according to one aspect of the present disclosure;



FIG. 16 is a graphical representation of the maximum pressure that the syringe plunger system described in connection with FIGS. 4-15 withstands after a sustained period of pressurization, according to one aspect of the present disclosure;



FIG. 17 is a graphical representation of how the maximum pressure that the syringe plunger system described in connection with FIGS. 4-15 withstands after a sustained period of pressurization, according to one aspect of the present disclosure;



FIG. 18 is a graphical representation of the relationship of sealing pressure as a function of included angle of the plunger, according to one aspect of the present disclosure; and



FIG. 19 is a graphical representation of an optimal gap size of an air cavity described for dynamic seal of a syringe plunger system, according to one aspect of the present disclosure.





DETAILED DESCRIPTION

Before explaining various forms of syringe plungers with dynamic seals in detail, it should be noted that the illustrative forms are not limited in application or use to the details of construction and arrangement of parts illustrated in the accompanying drawings and description. The illustrative forms may be implemented or incorporated in other forms, variations and modifications, and may be practiced or carried out in various ways. Further, unless otherwise indicated, the terms and expressions employed herein have been chosen for the purpose of describing the illustrative forms for the convenience of the reader and are not for the purpose of limitation thereof.


Further, it is understood that any one or more of the following-described forms, expressions of forms, examples, can be combined with any one or more of the other following-described forms, expressions of forms, and examples.


Various forms are directed to syringe plungers with dynamic seals to provide enhanced sealing during injection procedures under injection pressure conditions. With reference to FIG. 1, in one aspect, a syringe 10 includes a barrel 12, a plunger 14, and a plunger rod 17. The plunger 14 is slidably inserted in the barrel 12. The plunger 14 may be removable or non-removeably or integrally connected to the plunger rod 17. A proximal end 15 of the plunger rod 17 extends outward from a proximal end 13 of the barrel 12 and is configured to form an interface with an external piston (not shown) configured to be driven by a fluid injector, such as a powered or automatic injector. The interface between the plunger rod 17 of the syringe and an external piston may include a connecting surface structure, such as a mating element 20, extending from the proximal end 15 of the plunger rod 17. The mating element 20 is configured to engage with the external piston. The external piston may include a piston rod (not shown). In alternate aspects, plunger 14 may directly interface with the external piston.


In use, the external piston is brought into contact with the mating element 20 of the syringe 10 and engages the mating element 20. In one aspect, the syringe may be disposable. Various techniques may be employed to engage the external piston with the mating element Once engagement is established, the external piston can be retracted to fill the syringe 10 with fluid or driven in the proximal direction to eject fluid contained therein. Once the fluid is ejected, a slider (not shown) is moved in the proximal direction to disengage the external piston from the mating element 20. Once disengaged, a user can dispose of the syringe 10. Additional examples of syringes can be found in commonly assigned US Publication No. 2016/0151570, filed Jul. 9, 2014, and titled VACUUM SYSTEM FOR SYRINGE INTERFACE, U.S. Pat. Nos. 9,173,995; 9,199,033; and 9,700,670, and U.S. application Ser. No. 15/451,573 the disclosures of which are incorporated herein by reference.


Referring to FIG. 2, the syringe 10 includes a barrel 12 that may be cylindrical, and a plunger 14, as well as a method of pushing and retracting the plunger 14 through the barrel 12 as described in connection with FIG. 1. The syringe 10 generally includes the barrel 12, a plunger 14, and a piston 18 for advancing and retracting the plunger 14 through the barrel 12. The piston 18 may include a piston head 16 for engaging the plunger 14. The piston 18 optionally may include a handle (not shown) allowing a user to manually advance the plunger 14. Alternatively, the piston 18 is connected to a mechanical mechanism, such as a powered injector, powered linear actuator, or fluid injector, for automatically driving the piston head 16 and plunger 14 through the barrel 12. The piston 18 can be made of a rigid plastic. Examples of piston to plunger engagement mechanisms may be found, for example, in U.S. Pat. Nos. 9,480,797 and 7,666,169, the disclosures of which are incorporated herein by reference.


The barrel 12 is adapted to contain a fluid F, such as a medicament, biological solution, saline, or contrast agent, to be injected to a patient. The barrel 12 extends longitudinally from a proximal end 21, near the injector apparatus, to a distal end 22 and is configured to expel the fluid F from the distal end 22 of the barrel 12. The distal end 22 may include an outflow port 24, such as a nozzle, needle cannula, or catheter tubing. The barrel 12 may be formed from any suitable biocompatible and medical grade material including glass, metal, ceramic, plastic, rubber, or combinations thereof.


The plunger 14 is adapted to be slidably inserted in the barrel 12, and includes a cylindrical body 26 formed of elastomeric material, a sidewall 28, and a conical cap 30. The plunger 14 has an external diameter ED that corresponds to an inner diameter ID of the barrel 12, such that a fluid seal is formed between the sidewall 28 and an inner wall 29 of the barrel 12. In certain aspects, the sidewall 28 includes one or more annular ribs 32 extending radially from the sidewall 28. The annular ribs 32 are adapted to contact and compress against the inner wall 29 to form a fluid tight seal and are adapted to slide against the inner wall 29 of the barrel 12 as the plunger 14 is advanced or retracted while maintaining the fluid tight seal. The annular ribs 32 reduce the contact surface area against the inner wall 29 of the barrel 12, which lessens the frictional forces between the barrel 12 and plunger 14 and allows the plunger 14 to slide through the barrel 12 more easily.


The plunger 14 may further include an annular shoulder 42 or ring positioned on a proximal end of the plunger 14. The annular shoulder 42 contacts a corresponding portion of the piston 18 or piston head 16 for imparting additional pushing force against the plunger 14.


The sidewall 28 is flexible and can deform outwards to increase the size of the opening and cavity defined by an inner portion of the plunger 14, to accept the piston head 16 and/or support ring 116. In certain aspects, a portion of the sidewall 28 may essentially be hollow and include an annular channel (not shown) to reduce the structural integrity of the sidewalls 28, thereby further increasing the flexibility.


In use, the piston head 16 is inserted into the cavity defined by the plunger 14 establishing a removable engagement therebetween. The engagement is sufficient to maintain the connection between the plunger 14 and piston head 16 both as the plunger 14 is advanced through and retracted from the barrel 12. As such, the engagement must be strong enough to counteract both the initial frictional breakaway force created by the contact between the sidewall 28 and/or annular ribs 32 of the plunger 14 and the inner surface of the barrel 12, as well as the dynamic frictional forces created as the plunger 14 slides through the barrel 12 and at least partial vacuum that is created as plunger 14 is retracted to draw liquid F into the syringe.



FIG. 3 is a sectional view of a syringe plunger system 100 according to one aspect. The syringe plunger system 100 includes an included angle θ1 about 90°, for example from 85° to 95°. As used herein the term “about” when referencing an angle of the plunger system means plus or minus 5°. The syringe plunger system 100 includes a plunger 102 disposed within a barrel 104 of the syringe. The barrel 104 defines an inner wall 106 configured to slidably receive the plunger 102. The plunger 102 includes a support ring 116, a cover 114 disposed and snap fit over the support ring 116, and a conical cap 110 disposed over the cover 114. When the plunger 102 is under injection pressure conditions, the plunger 102 is axially deflected and the cover 114 is radially deflected towards the inner wall 106 of the barrel 104 to provide greater seal under injection pressure conditions. In certain aspects, the conical cap 110 may include an overmold element 112.


The cover 114 includes a cylindrical sidewall 108, a conical cap 160, and a flange 162 such as a projecting rim or edge for coupling the cover 114 to the support ring 116. The cover 114 includes one or more annular ribs, such as a first annular rib 120 and a second annular rib 122. The first annular rib 120 is received in a first annular slot 124 defined by the inner wall 106 of the barrel 104 and the second annular rib 122 is received in an annular slot 126 also defined by the inner wall 106 of the barrel 104.


The support ring 116 includes an annular shoulder 154, a conical cap 152, and an annular groove 118 defined therebetween to receive the flange 162 of the cover 114. The conical cap 152 of the support ring 116 defines an included angle θ1 of about 90° and an annular groove 118 to receive the cover 114 portion of the conical cap 110. The support ring 116 defines an inner volume 132 within the conical cap 160. At least one aperture 134 is defined by the support ring 116 to provide an exit path for the air between the cover 114 and the support ring 116 during injection pressurization. The air is vented through the at least one aperture 134 back outside of the barrel 104 of the syringe and away from the path of the fluid.


An air cavity 128 is defined between the tip 150 of the conical cap 152 of the support ring 116 and the conical cap 160 of the cover 114. The conical cap 160 of the cover 114 is in contact with and supported by the conical cap 152 of the support ring 116 at an interface 130. There is not a gap or air cavity defined at the interface 130.



FIG. 4 is a sectional view of a syringe plunger system 200 with a dynamic seal according to another aspect. The syringe plunger system 200 is shown prior to injection pressurization. The syringe plunger system 200 includes an included angle θ2 greater than about 90°. As will be described hereinbelow, an increase in the included angle θ2 above about increases the sealing pressure limits of the syringe plunger system 200. Alternatively, the syringe plunger system 200 includes an included angle θ2 of about 90° on the conical cap 252 of the support ring 216 and an included angle of less than about 90° on the conical cap 260 of the cover 214. The syringe plunger system 200 includes a plunger 202 disposed within a syringe barrel 204 of the syringe. The syringe barrel 204 defines an inner wall 206 configured to slidably receive the plunger 202. The plunger 202 includes a support ring 216, a cover 214 disposed over and coupled to the support ring 216, and a conical cap 210 disposed over the cover 214. In one aspect, the cover 214 may be snap fit to the support ring 216. When the plunger 202 is under injection pressure conditions, the plunger 202 is axially deflected and the cover 214 is radially deflected towards the inner wall 206 of the syringe barrel 204 to provide a greater seal under injection pressure conditions. The conical cap 210 may include an overmold element 212.


The cover 214 includes a cylindrical sidewall 208, a conical cap 260, and a flange 262 such as a projecting rim or edge for coupling the cover 214 to the support ring 216. The cover 214 includes a first annular rib 220 and a second annular rib 222. The first annular rib 220 is received in a first annular slot 224 defined by the inner wall 206 of the syringe barrel 204 and the second annular rib 222 is received in a second annular slot 226 also defined by the inner wall 206 of the syringe barrel 204.


The support ring 216 includes an annular shoulder 254, a conical cap 252, and an annular groove 218 defined therebetween to receive the flange 262 of the cover 214. The conical cap 252 of the support ring 216 defines an included angle θ2 greater than about 90° and an annular groove 218 to receive the cover 214 portion of the conical cap 210. In the illustrated example, the included angle θ2 is 96°, although the disclosure is not limited in this context, as the included angle θ2 can be calculated to produce an optimal effect of the dynamic seal. The support ring 216 defines an inner volume 232 within the conical cap 252. At least one aperture 234 is defined by the support ring 216 to provide an exit path for the air between the cover 214 and the support ring 216 during injection pressurization. The air is vented through the at least one aperture 234 back outside of the syringe barrel 204 of the syringe and away from the path of the fluid.


The conical cap 252 of the support ring 216 and the conical cap 260 of the cover define a gap or air cavity 230 therebetween. The air cavity 230 or “gap” is defined between the support ring 216 and the cover 214 along the conical portion of the plunger 202. An angle θ3 is defined between the support ring 216 and the cover 214 and defines the air cavity 230. The angle θ3 can vary from a value greater than 0° to less than about 30°, for example, and nominally is about 6°. The air cavity 230 defines a predetermined compliance volume such that when the syringe plunger system 200 undergoes injection pressurization, the overmold element 212 and the cover 214 deform and flex into the compliance volume defined by the air cavity 230. The injection pressure applies an axial force to the overmold element 212 and the cover 214 causing them to deform and compress the air cavity 230, which applies a radial force to the first and second annular ribs 220, 222 to engage the respective first and second annular slots 224, 226 and/or against the inner wall 206 to create a dynamic seal under injection pressure conditions. The volume of the air cavity 230 increases as the included angle θ2 is increased. The volume of the air cavity 230 can be optimized by suitable selection of the included angle θ2. Thus, the compliance volume can be increased or decreased based on the included angle θ2. The included angle θ2 can vary from a value greater than about 90° to less than about 120°, for example, and nominally is about 96°. The compliance volume can vary from about 0.1 mL to 10 mL, for example. With an included angle θ2 of about 96°, as shown in FIG. 4, the compliance volume is about 1 mL. The size of the air cavity 230 or “gap” translates to sealing pressure of the dynamic seal. The optimal size of the air cavity 230 can be calculated to produce an optimal dynamic seal for a particular injector/syringe application. This optimal effect may be equivalent to a maximum added compression for sealing, for example.


While the term “air cavity” is used herein to describe the compressible volume between the conical cap 252 of the support ring 216 and the conical cap 260 of the cover, other compressible materials may also be included in the volume between the conical cap 252 of the support ring 216 and the conical cap 260 of the cover. For example, in certain aspects, the volume between conical cap 252 and conical cap 260 may be filled with a bladder containing a compressible fluid, for example a compressible gas or other fluid. In another aspect, the volume between conical cap 252 and conical cap 260 may be filled with a compressible material, such as an elastic material with a low modulus that can deform under the pressure loads associated with an injection procedure. Non-limiting examples may include a compressible or deformable material, such as thermoplastic elastomer or a foam material, which compresses to allow for a dynamic seal under pressure loads typical of an injection procedure. In certain aspects, predictable compression and thereby, predictable control of the dynamic seal between the plunger sidewall and the inner wall of the syringe may be achieved by selecting a material having a certain strain or compression factor under a desired pressure load. In certain aspects, the compression of the material would reverse in the absence of the pressure load of the injection procedure.


In one aspect the body of the syringe barrel 204 can be made of polyethylene terephthalate commonly abbreviated PET such as Eastman MN052 PET, for example. The support ring 216 can be made of a polycarbonates (PC) thermoplastic polymer or any suitable medical grade polymer that is strong, tough, and may be optically transparent and can be easily worked, molded, and thermoformed, such as Lexan 141, for example. The cover 214 may be made of a thermoplastic elastomer (TPE), sometimes referred to as thermoplastic rubbers, or other mix of polymers such as plastic and a rubber with both thermoplastic and elastomeric properties, such as Santoprene 181-5, for example. The cover 214 may be optically transparent or translucent. Thermoplastics may be desirable due to their relatively ease of use in manufacturing and ability of being injected molded. The overmold element 212 may be made of polypropylene (PP), also known as polypropylene thermoplastic polymer, such as polypropylene P5M4K-046, for example, and may be optically transparent or translucent. The syringe barrel 204, the support ring 216, the cover 214, and the overmold element 212 are made of medical grade plastics and materials.



FIG. 5A is a section view of one aspect of the syringe plunger system 200 with a dynamic seal shown in FIG. 4 in an initial compression state. In the example illustrated in FIG. 5A, the included angle θ2 is about 96°. Nevertheless, as described in connection with FIG. 4, the included angle θ2 may be varied to optimize the dynamic seal. The compliance volume defined by the air cavity 230 is an initial compression state upon the initial application of injection pressure 240, represented by the vertical arrows, and causes axial deflection of the plunger 202 in the direction indicated by the vertical arrows. The injection pressure 240 applied to the overmold element 212 causes the cover 214 to deform or change shape. The change in shape of the cover 214 applies a radial force 242, represented by the horizontal arrows, and causes radial deflection of the plunger 202 in the direction indicated by the horizontal arrows, against the inner wall 206 of the syringe barrel 204 to provide greater seal pressure. The radial force 242 pushes the first and second annular ribs 220, 222 into the respective first and second annular slots 224, 226 to create a dynamic seal against the inner wall 206 of the syringe barrel 204. Accordingly, the seal force between the plunger 202 and the inner wall 206 of the syringe barrel 204 is a dynamic function of the injection pressure 240. Accordingly, syringe barrel 204 swell due to creep is managed since the higher seal force is present only for short durations of time during injections. This function can be employed to define a pressure withstand requirement for the syringe plunger system 200 of injection pressure (PSI) versus time (mS). In one aspect, the syringe plunger system 200 can withstand injection pressures greater than or equal to 355 psi for 30 seconds and can withstand injection pressures greater than or equal to 405 psi for 1 second, as shown in FIG. 16, for example. Elasticity of the plunger 202 enhances the importance of the dynamic seal. Pressure ranges include 0 to 2000 PSI depending on material and type of injection (e.g., CT or CV). For CT injection, maximum injection pressure is about 500 PSI and nominal operating pressure is about 150-350 PSI. For CV injection, maximum injection pressure is about 1500 PSI and nominal operating pressure is about 300-800 PSI.



FIG. 5B is a section view of one aspect of the syringe plunger system 200 with a dynamic seal shown in FIG. 5A in a compressed state. As shown, the injection pressure 240 applied to the overmold element 212 causes the cover 214 to deform or change shape. The change in shape of the cover 214 applies a radial force 242, represented by the horizontal arrows, and causes radial deflection of the plunger 202 in the direction indicated by the horizontal arrows, against the inner wall 206 of the syringe barrel 204 to provide greater seal pressure. The radial force 242 pushes the first and second annular ribs 220, 222 into the respective first and second annular slots 224, 226 and/or against the inner wall 206 to create a dynamic seal against the inner wall 206 of the syringe barrel 204.



FIGS. 6-11 illustrate several views of one aspect of a support ring 216 structure that includes a conical cap 252 that defines an included angle θ2. Further details of support rings such as 216 may be found in U.S. Pat. Nos. 7,666,169; and 9,480,797, incorporated by reference herein. FIGS. 6 and 7 are perspective views of the support ring 216. FIG. 8 is a plan view of the support ring 216. FIG. 9 is an elevational view of the support ring 216. FIG. 10 is a bottom view of the support ring 216 and FIG. 11 is a sectional view of the support ring 216 taken along section line 1111 as shown in FIG. 10. With reference to FIGS. 6-10, the support ring 216 includes a tip 250, a conical cap 252, and an annular shoulder 254. The conical cap 252 defines an included angle θ2 that is greater than about 90° and less than about 120°. In the illustrated example, the included angle θ2 is about 96°, although the included angle θ2 may be optimized to achieve a predetermined dynamic seal force between the plunger 202 and the barrel (FIGS. 4 and 5A,B). The conical cap 252 may define a one or more or even a plurality of apertures 234 to vent air back outside the syringe barrel 204 and away from the fluid path. An annular groove 218 is defined between the conical cap 252 and the annular shoulder 254. The annular groove 218 is configured to snap fit receive the cover 214 (FIGS. 4 and 5A,B). The conical cap 252 of the support ring 216 defines an inner volume 232. While one embodiment of the support ring 216 is illustrated in FIGS. 6-11, other embodiments and configurations of support ring 216 are considered, for example support rings with different piston engagement mechanisms (such as described in U.S. Pat. No. 7,666,169) and/or with configurations having no apertures 234 in the conical cap 252 or, alternatively having one aperture 234. In aspects having no apertures 234 in the conical cap 252, compression during an injection procedure may compress the air in the air cavity 230 or, alternatively force the air in the air cavity 230 out between the plunger cover 214 and the support ring 216.



FIG. 12 is a sectional view of the syringe plunger system 200 with a dynamic seal in a shipping configuration. In the shipping configuration, the plunger 202 is under a pressure that is significantly lower than a nominal injection pressure. The syringe plunger system 200 includes a syringe barrel 204 defining an inner wall 206 and a plunger 202 disposed within the syringe barrel 204. The plunger 202 includes a support ring 216 that defines an included angle θ2 that is greater than about 90°, and in one example is approximately about 96°. As previously described, the included angle θ2 may have a value between about 90° and about 120°, for example. The support ring 216 includes engagement features for reversible engagement with a piston of a medical injector, which reciprocates the plunger 202 within the syringe barrel 204. The support ring 216 defines at least one aperture 234 to vent air back outside of the syringe barrel 204 and away from the fluid path. The plunger 202 further includes a cover 214 that is configured to snap fit over the support ring 216 into the annular groove 218 defined by the support ring 216. The cover 214 also includes first and second annular ribs 220, 222 configured to be received within respective first and second annular slots 224, 226 defined in the inner wall 206 of the syringe barrel 204 to form a dynamic seal under injection pressure conditions. An overmold element 212 may be disposed over the cover 214.


As shown in FIG. 12, an angle θ3 is defined between the support ring 216 and the cover 214 to define an air cavity 230 therebetween. The air cavity 230 defines a predetermined compliance volume such that when the syringe plunger system 200 is under injection pressure, the cover 214 and the overmold element 212 are subjected to axial forces and flexibly distort to compress the compliance volume defined by the air cavity 230. Under injection pressure conditions, the distortion applies a radial force to push the first and second annular ribs 220, 222 into the respective first and second annular slots 224, 226 and/or against the inner wall 206 of the syringe barrel to form primary and secondary dynamic seals, respectively. As previously discussed, the air cavity 230 may be configured to define a predetermined volume ranging from 0.1 mL to 10 mL. A gap 258 is defined between the support ring 216 and the inner wall 206 of the syringe barrel 204 when the plunger 202 is in a shipping configuration and not under injection pressure. Configurations of the syringe plunger system 200 shown in FIG. 12 under various states of compression are described hereinbelow in connection with FIGS. 13-15.



FIG. 13 is a sectional view of the syringe plunger system 200 with a dynamic seal shown in FIG. 12 under an initial state of compression. A typical initial pressure range can vary from just above 0 to 100 PSI, for example. Under an initial state of compression, the angle θ′3 defined between the support ring 216 and the cover 214 is smaller than the angle θ3 shown in FIG. 12 due to the applied pressure of the fluid against the plunger cover 214. As shown in FIG. 13, the gap 258′ defined between the support ring 216 and the inner wall 206 of the syringe barrel 204 is smaller than the gap 258 shown in FIG. 12 due to lateral forces exerted against the first and second annular slots 224, 226 by the first and second annular ribs 220, 222. The included angle θ2 remains substantially the same as the included angle θ2 shown in FIG. 12.



FIG. 14 is a partial sectional view of the syringe plunger system 200 with a dynamic seal shown in FIG. 12 under operating injection pressure. Operating injection pressures can vary from 150 to 800 PSI, depending on material and type of injection (e.g., CT or CV). Under operating pressure, the angle θ″3 defined between the support ring 216 and the cover 214 is smaller than the angle θ′3 defined between the support ring 216 and the cover 214 when the plunger 202 is in the initial state of compression. Accordingly, the gap 258″ defined between the support ring 216 and the inner wall 206 of the syringe barrel 204 when the plunger 202 is under operating injection pressure is smaller than the gap 258′ shown in FIG. 13 because of the additional radial forces exerted against the first and second annular slots 224, 226 by the first and second annular ribs 220, 222. Under operating injection pressures, the first and second annular ribs 220, 222 press against the inner wall 206 to create a dynamic seal. As shown, the included angle θ2 remains substantially the same as the included angle θ2 shown in FIGS. 12 and 13.



FIG. 15 is a partial sectional view of the syringe plunger system 200 with a dynamic seal shown in FIG. 12 under a state of compression near or beyond maximum injection pressure. Maximum injection pressure may vary from 500 to 1500 PSI, depending on material and type of injection (e.g., CT or CV) and in some instances can be as high as 2000 PSI. Under high pressure conditions, the dynamic seal formed by the first and second annular ribs 220, 222 pressing against the inner wall 206 may begin to leak. The threshold pressure at which this occurs is known as blow-by pressure. As shown in FIG. 15, under maximum injection pressure conditions, the angle θ′″3 defined between the support ring 216 and the cover 214 is relatively small or near zero. As shown, the gap 258′″ between the support ring 216 and the cover 214 has been reduced to near zero and substantially the entire air cavity 230 has been eliminated under the maximum injection pressure. As shown in FIG. 15, under maximum injection pressure conditions, the included angle θ2 remains substantially the same as the included angle θ2 shown in FIGS. 12-14.



FIG. 16 is a graphical representation 300 of the maximum pressure that the syringe plunger system 200 described in connection with FIGS. 4-15 can withstand after a sustained period of pressurization in accordance with one aspect. Pressure (PSI) is shown along the vertical axis and Time (mS) is shown along the horizontal axis. The tip 250 of the support ring 216 (FIGS. 6-11) was nominally about 0.005″. The curve 302 represents the application of pressure to the syringe plunger system 200. During a first period T1, the pressure applied to the syringe plunger system 200 is ramped up (increased) from 0 PSI to about 355 PSI, which is approximately the operating pressure for one type of syringe plunger system 200. During a second period T2, the pressure of 355 PSI is held on the syringe plunger system 200. After a sustained period T2, during a third period T3, the pressure is ramped up (increased) until a failure, e.g., leaks, occurs. As shown by the curve 302, failure occurs at about 420 PSI during the third period T3.



FIG. 17 is a graphical representation 350 of the maximum pressure that the syringe plunger system 200 described in connection with FIGS. 4-15 can withstand after a sustained period of pressurization in accordance with another aspect. Pressure (PSI) is shown along the vertical axis and Time (mS) is shown along the horizontal axis. The tip 250 of the support ring 216 (FIGS. 6-11) was nominally about 0.005″. The curve 352 represents the application of pressure to the syringe plunger system 200. During a first period T1, the pressure applied to the syringe plunger system 200 is ramped up (increased) from 0 PSI to about 365 PSI, which is approximately the operating pressure for one type of syringe plunger system 200. During a second period T2, the pressure of 365 PSI is held on the syringe plunger system 200. After a sustained period T2, during a third period T3, the pressure is ramped up (increased) until a failure, e.g., leaks, occurs. As shown by the curve 352, failure occurs at about 400 PSI during the third period T3.



FIG. 18 is a graphical representation 400 of the relationship of sealing pressure as a function of included angle of the plunger system 200 described in connection with FIGS. 4-15 according to one aspect. Pressure (PSI) is shown along the vertical axis and Plunger Included Angle θ2 (Degrees) is shown along the horizontal axis. In this context, the plunger included angle is the included angle θ2 defined by the support ring 216 as described in connection with FIGS. 4-5B, 9, 11, and 12-15, for example. The bar graph 402 illustrates the maximum pressure that the syringe plunger system 200 can withstand as a function of the included angle θ2 of the support ring 216. As shown, at an included angle θ2 of 90° the maximum pressure is about 505 PSI. At an included angle θ2 of 92° the maximum pressure is about 520 PSI. At an included angle θ2 of 94° the maximum pressure is about 575 PSI. At an included angle θ2 of 96° the maximum pressure is about 590 PSI. At an included angle θ2 of 98° the maximum pressure is about 580 PSI. And at an included angle θ2 of 100° the maximum pressure is about 575 PSI. Accordingly, for the example depicted in FIGS. 4-15, the data shows that an included angle θ2 in the range of 90°-100°, the optimal included angle θ2 is about 96° since this angle produces a dynamic seal that can withstand the maximum seal pressure required for certain applications. It will be appreciated, however, that the included angle θ2 can be optimized to provide dynamic seals that can withstand a variety of maximum injection pressures. Accordingly, the specific values of the included angle θ2 and corresponding maximum withstand pressure disclosed herein should not be considered as limiting the scope of the present disclosure.


Accordingly, the volume of the air cavity 230 (see FIGS. 4, 5A, and 12-15), which is defined by the included angle θ2 of the support ring 216 translates to sealing pressure of the dynamic seal. Another way to measure the effect of the dynamic seal is to increase the volume of air cavity 230 and measure the sealing pressure limit of the syringe plunger system 200. The graphical representation 400 shown in FIG. 18 shows how increasing the included angle θ2 of the support ring 216 increases (increasing the volume of the air cavity 230) the dynamic pressure seal limits of the syringe plunger system 200. The plunger 202 sealing capability eventually surpasses the material strength of the syringe barrel 204 at 96°, leading to a plateau in sealing pressure limit.



FIG. 19 is a graphical representation 500 of an optimal gap size of the air cavity 230 described in connection with FIGS. 4, 5A, and 12-15 for dynamic seal of the syringe plunger system 200 described in connection with FIGS. 4-15 according to one aspect of the present disclosure. Radial deflection (inches) is shown along the vertical axis and axial deflection (inches) is shown along the horizontal axis. The data points of the curve 502 can be used to develop an nth order polynomial equation that represents the conical dynamic seal for the syringe plunger system 200 according to one aspect of the present disclosure. The optimal gap size of the air cavity 230 can be calculated to produce the optimal effect of the dynamic seal. This optimal effect is equivalent to maximum added compression for sealing. One non-limiting example of this calculation is shown below. As the gap size of the air cavity 230 is increased, a peak compression is reached before the component collapses in on itself and the compression is actually reduced. Equation (1) below is one example of a 2nd order equation derived from the data points of the curve 502 for a seal radius of 0.9944 inches.

y=1.3722x2+0.2746x−0.001  (1)


While various details have been set forth in the foregoing description, it will be appreciated that the various aspects of the syringe plunger with dynamic seal may be practiced without these specific details. For example, for conciseness and clarity selected aspects have been shown in schematic form rather than in detail.


It is worthy to note that any reference to “one aspect,” “an aspect,” “one form,” or “a form” means that a particular feature, structure, or characteristic described in connection with the aspect is included in at least one aspect. Thus, appearances of the phrases “in one aspect,” “in an aspect,” “in one form,” or “in a form” in various places throughout the specification are not necessarily all referring to the same aspect. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more aspects.


Although various forms have been described herein, many modifications, variations, substitutions, changes, and equivalents to those forms may be implemented and will occur to those skilled in the art. Also, where materials are disclosed for certain components, other materials may be used. It is therefore to be understood that the foregoing description and the appended claims are intended to cover all such modifications and variations as falling within the scope of the disclosed forms. The following claims are intended to cover all such modifications and variations.


All of the above-mentioned U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications, non-patent publications referred to in this specification and/or listed in any Application Data Sheet, or any other disclosure material are incorporated herein by reference, to the extent not inconsistent herewith. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.


One skilled in the art will recognize that the herein described components (e.g., operations), devices, objects, and the discussion accompanying them are used as examples for the sake of conceptual clarity and that various configuration modifications are contemplated. Consequently, as used herein, the specific exemplars set forth and the accompanying discussion are intended to be representative of their more general classes. In general, use of any specific exemplar is intended to be representative of its class, and the non-inclusion of specific components (e.g., operations), devices, and objects should not be taken as limiting.


With respect to the use of substantially any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations are not expressly set forth herein for sake of clarity.


While particular aspects of the present subject matter described herein have been shown and described, it will be apparent to those skilled in the art that, based upon the teachings herein, changes and modifications may be made without departing from the subject matter described herein and its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as are within the true spirit and scope of the subject matter described herein. It will be understood by those within the art that, in general, terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.). It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to claims containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a” and/or “an” should typically be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations.


In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “two recitations,” without other modifiers, typically means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). In those instances where a convention analogous to “at least one of A, B, or C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). It will be further understood by those within the art that typically a disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms unless context dictates otherwise. For example, the phrase “A or B” will be typically understood to include the possibilities of “A” or “B” or “A and B.”


Although various forms have been described herein, many modifications, variations, substitutions, changes, and equivalents to those forms may be implemented and will occur to those skilled in the art. Also, where materials are disclosed for certain components, other materials may be used. It is therefore to be understood that the foregoing description and the appended claims are intended to cover all such modifications and variations as falling within the scope of the disclosed forms. The following claims are intended to cover all such modifications and variations.


In summary, numerous benefits have been described which result from employing the concepts described herein. The foregoing description of the one or more forms has been presented for purposes of illustration and description. It is not intended to be exhaustive or limiting to the precise form disclosed. Modifications or variations are possible in light of the above teachings. The one or more forms were chosen and described in order to illustrate principles and practical application to thereby enable one of ordinary skill in the art to utilize the various forms and with various modifications as are suited to the particular use contemplated. It is intended that the claims submitted herewith define the overall scope.

Claims
  • 1. A method for increasing a seal between a cylindrical sidewall of a plunger and an inner sidewall of a barrel of a syringe, the method comprising: pressurizing a fluid within an interior volume of the syringe to an operating pressure, wherein the plunger comprises: a support ring comprising a first conical cap;a cover disposed over and coupled to the support ring, wherein the cover comprises a second conical cap and the cylindrical sidewall, wherein the cylindrical sidewall comprises at least one annular rib; andan air cavity defined between the first conical cap and the second conical cap, the air cavity defining a predetermined compliance volume such that when the plunger undergoes injection pressurization, the cover deforms and flexes into the compliance volume, wherein a distal portion of the first conical cap forms an angle with a proximal portion of the second conical cap;deforming the cover such that the angle between the distal portion of the first conical cap and the proximal portion of the second conical cap is smaller under operating pressure than when the fluid is not under operating pressure; anddeflecting the at least one annular rib in a radially outward direction against the inner sidewall of the barrel when the angle is smaller.
  • 2. The method of claim 1, wherein the seal between the at least one annular rib and the inner sidewall of the barrel is greater when the at least one annular rib is radially outwardly deflected.
  • 3. The method of claim 1, wherein the at least one annular rib comprises a first annular rib and a second annular rib on the cylindrical sidewall of the plunger.
  • 4. The method of claim 1, wherein the plunger further comprises a third conical cap disposed over a distal surface of the cover.
  • 5. The method of claim 1, wherein the cover further comprises an inner flange to engage an annular groove on the support ring between a shoulder and the first conical cap.
  • 6. The method of claim 1, wherein the at least one annular rib comprises a first annular rib and a second annular rib on the cylindrical sidewall, and wherein deflecting the at least one annular rib in a radially outward direction comprises deflecting the first annular rib and the second annular rib in a radially outward direction against the inner sidewall of the barrel when the angle is smaller.
  • 7. The method of claim 1, wherein pressurizing the fluid within the interior volume of the syringe comprises moving the plunger in a distal direction within the barrel of the syringe.
  • 8. The method of claim 1, wherein the angle between the distal portion of the first conical cap and the proximal portion of the second conical cap is in a range of greater than 0° and less than about 30° when the fluid is not under operating pressure, and wherein deforming the cover comprises deforming the cover when the fluid is under operating pressure such that the angle between the distal portion of the first conical cap and the proximal portion of the second conical cap is less than the range of the angle when the fluid is not under operating pressure.
  • 9. The method of claim 1, wherein the predetermined compliance volume of the air cavity is in a range between 0.1 mL and 10 mL when the fluid is not under operating pressure, and wherein deforming the cover comprises deforming the cover such that a volume of the air cavity under operating pressure is less than the predetermined compliance volume.
  • 10. The method of claim 9, wherein the volume of the air cavity under operating pressure is substantially zero.
  • 11. The method of claim 9, wherein deforming the cover such that the volume of the air cavity under operating pressure is less than the predetermined compliance volume further comprises: venting air in the predetermined compliance volume through at least one aperture defined by the support ring into the barrel of the syringe proximal to the plunger.
  • 12. The method of claim 1, further comprising moving the plunger in a distal direction within the barrel of the syringe.
  • 13. The method of claim 12, further comprising delivering the fluid through an outlet port at a distal end of the syringe.
  • 14. A fluid injection system comprising: a powered fluid injector head comprising at least one piston; andat least one syringe engaged with the at least one piston of the powered fluid injector head,wherein the syringe comprises: a barrel defining an inner wall; anda plunger located within the inner wall of the barrel, the plunger comprising: a support ring comprising a first conical cap;a cover disposed over and coupled to the support ring, wherein the cover comprises a second conical cap and a cylindrical side wall sidewall, wherein the cylindrical sidewall comprises at least one annular rib; andan air cavity defined between the first conical cap and the second conical cap, the air cavity defining a predetermined compliance volume such that when the plunger undergoes injection pressurization, the cover deforms and flexes into the compliance volume,wherein a distal portion of the first conical cap forms an angle with a proximal portion of the second conical cap, andwherein, due to the deforming and flexing of the cover, the angle between the distal portion of the first conical cap and the proximal portion of the second conical cap is smaller when the plunger is under operating pressure than when the plunger is not under pressure, and wherein the at least one annular rib is radially outwardly deflected against the inner wall of the barrel when the angle is smaller.
  • 15. The system of claim 14, wherein the at least one annular rib of the cover of the plunger comprises a first annular rib and a second annular rib on an outer cylindrical sidewall that form a seal with the inner wall of the barrel.
  • 16. The system of claim 14, wherein the first conical cap of the plunger defines an included apex angle greater than about 90°.
  • 17. The system of claim 16, wherein the first conical cap of the support ring defines an included apex angle greater than about 90° and less than about 120°.
  • 18. The system of claim 14, wherein the angle defined between the first conical cap of the support ring and the second conical cap of the cover is in a range of greater than 0° and less than about 30° when the fluid is not under operating pressure.
  • 19. The system of claim 14, wherein a predetermined volume of the air cavity is selected in a range between 0.1 mL and 10 mL.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 16/471,300, filed 19 Jun. 2019, which is a § 371 U.S. national phase application of PCT International Application No. PCT/US2018/012284, filed 4 Jan. 2018, and claims the benefit of U.S. Provisional Patent Application No. 62/443,302, filed 6 Jan. 2017, the disclosures of which are hereby incorporated in their entirety by reference.

US Referenced Citations (376)
Number Name Date Kind
1265537 Ivan May 1918 A
1687323 Cook Oct 1928 A
1988480 Campkin Jan 1935 A
2392196 Smith Jan 1946 A
2419401 Hinds Apr 1947 A
2702547 Glass Feb 1955 A
2842126 Brown Jul 1958 A
3051173 Johnson et al. Aug 1962 A
D203730 Porat Feb 1966 S
3270483 Smoyer et al. Sep 1966 A
3348545 Sarnoff et al. Oct 1967 A
3468471 Linder Sep 1969 A
3604417 Stolzenberg et al. Sep 1971 A
3623474 Heilman et al. Nov 1971 A
3645262 Harrigan Feb 1972 A
3701345 Heilman et al. Oct 1972 A
3705582 Stumpf et al. Dec 1972 A
3720211 Kyrias Mar 1973 A
3738539 Beich Jun 1973 A
3752145 Runnells et al. Aug 1973 A
3796218 Burke et al. Mar 1974 A
3809082 Hurschman May 1974 A
3812843 Wootten et al. May 1974 A
3902491 Lajus Sep 1975 A
3964139 Kleinmann et al. Jun 1976 A
3987940 Tischlinger Oct 1976 A
3998224 Chiquiar-Arias Dec 1976 A
4006736 Kranys et al. Feb 1977 A
4030498 Tompkins Jun 1977 A
4080967 O''Leary Mar 1978 A
4144885 Stait Mar 1979 A
4148316 Xanthopoulos Apr 1979 A
4155490 Glenn May 1979 A
4159713 Prais Jul 1979 A
4180006 Ross Dec 1979 A
4180069 Walters Dec 1979 A
4226236 Genese Oct 1980 A
4252118 Richard et al. Feb 1981 A
4278086 Hodgins et al. Jul 1981 A
4303070 Ichikawa et al. Dec 1981 A
4345595 Whitney et al. Aug 1982 A
4351332 Whitney et al. Sep 1982 A
4356822 Winstead-Hall Nov 1982 A
4424720 Bucchianeri Jan 1984 A
4452251 Heilman Jun 1984 A
4453934 Gahwiler et al. Jun 1984 A
4464265 Joyner Aug 1984 A
4465472 Urbaniak Aug 1984 A
4465473 Ruegg Aug 1984 A
4475666 Bilbrey et al. Oct 1984 A
4476381 Rubin Oct 1984 A
4490256 Nussbaumer et al. Dec 1984 A
4493646 Lacour et al. Jan 1985 A
4500310 Christinger Feb 1985 A
4529401 Leslie et al. Jul 1985 A
4562844 Carpenter et al. Jan 1986 A
4568335 Updike et al. Feb 1986 A
4573978 Reilly Mar 1986 A
4585439 Michel Apr 1986 A
4604847 Moulding, Jr. et al. Aug 1986 A
4612010 Hamacher et al. Sep 1986 A
4617016 Blomberg Oct 1986 A
4628969 Jurgens, Jr. et al. Dec 1986 A
4636198 Stade Jan 1987 A
4648872 Kamen Mar 1987 A
4650475 Smith et al. Mar 1987 A
4652260 Fenton, Jr. et al. Mar 1987 A
4664128 Lee May 1987 A
4676776 Howson Jun 1987 A
4677980 Reilly et al. Jul 1987 A
4677981 Coursant Jul 1987 A
4681566 Fenton, Jr. et al. Jul 1987 A
4685903 Cable et al. Aug 1987 A
4695271 Goethel Sep 1987 A
4705509 Stade Nov 1987 A
4718463 Jurgens, Jr. et al. Jan 1988 A
4722734 Kolln Feb 1988 A
4741732 Crankshaw et al. May 1988 A
4741736 Brown May 1988 A
4749109 Kamen Jun 1988 A
4755172 Baldwin Jul 1988 A
4767406 Wadham et al. Aug 1988 A
4773900 Cochran Sep 1988 A
4791290 Noone et al. Dec 1988 A
4838857 Strowe et al. Jun 1989 A
4840616 Banks Jun 1989 A
4842581 Davis Jun 1989 A
RE32974 Porat et al. Jul 1989 E
4852768 Bartsch Aug 1989 A
4853521 Claeys et al. Aug 1989 A
4854324 Hirschman et al. Aug 1989 A
4863427 Cocchi Sep 1989 A
4869720 Chernack Sep 1989 A
4878896 Garrison et al. Nov 1989 A
4908022 Haber Mar 1990 A
4911695 Lindner Mar 1990 A
4923443 Greenwood et al. May 1990 A
4929238 Baum May 1990 A
4931043 Ray et al. Jun 1990 A
4932941 Min et al. Jun 1990 A
4936833 Sams Jun 1990 A
1945363 Hoffman Jul 1990 A
4943279 Samiotes et al. Jul 1990 A
4950243 Estruch Aug 1990 A
4966601 Draenert Oct 1990 A
4969874 Michel et al. Nov 1990 A
4973309 Sultan Nov 1990 A
4978335 Arthur, III Dec 1990 A
4988337 Ito Jan 1991 A
4997423 Okuda et al. Mar 1991 A
5000735 Whelan Mar 1991 A
5007904 Densmore et al. Apr 1991 A
5019045 Lee May 1991 A
5024663 Yum Jun 1991 A
5033650 Colin et al. Jul 1991 A
5034004 Crankshaw Jul 1991 A
5047014 Mosebach et al. Sep 1991 A
5059179 Quatrochi et al. Oct 1991 A
5062832 Seghi Nov 1991 A
5078683 Sancoff et al. Jan 1992 A
5084017 Maffetone Jan 1992 A
5085638 Farbstein et al. Feb 1992 A
5085643 Larkin et al. Feb 1992 A
5090962 Landry, Jr. et al. Feb 1992 A
5093079 Bakaitis et al. Mar 1992 A
5094148 Haber et al. Mar 1992 A
5104374 Bishko et al. Apr 1992 A
5106372 Ranford Apr 1992 A
5106379 Leap Apr 1992 A
5122118 Haber et al. Jun 1992 A
5135507 Haber et al. Aug 1992 A
5147311 Pickhard Sep 1992 A
5153827 Coutre et al. Oct 1992 A
5176642 Clement Jan 1993 A
5181912 Hammett Jan 1993 A
5226897 Nevens et al. Jul 1993 A
5236416 McDaniel et al. Aug 1993 A
5242408 Jhuboo et al. Sep 1993 A
5246423 Farkas Sep 1993 A
5254086 Palmer et al. Oct 1993 A
5254101 Trombley, III Oct 1993 A
5256154 Liebert et al. Oct 1993 A
5256157 Samiotes et al. Oct 1993 A
5269762 Armbruster et al. Dec 1993 A
5275582 Wimmer Jan 1994 A
5279569 Neer et al. Jan 1994 A
5282792 Imbert Feb 1994 A
5282858 Bisch et al. Feb 1994 A
5300031 Neer et al. Apr 1994 A
5308330 Grimard May 1994 A
5314415 Liebert et al. May 1994 A
5317506 Coutre et al. May 1994 A
5324273 Discko, Jr. Jun 1994 A
5336189 Sealfon Aug 1994 A
5338309 Imbert Aug 1994 A
5342298 Michaels et al. Aug 1994 A
5353691 Haber et al. Oct 1994 A
5354287 Wacks Oct 1994 A
5356375 Higley Oct 1994 A
5356393 Haber et al. Oct 1994 A
5373684 Vacca Dec 1994 A
5380285 Jenson Jan 1995 A
5383858 Reilly et al. Jan 1995 A
5389075 Vladimirsky Feb 1995 A
5397313 Gross Mar 1995 A
5411488 Pagay et al. May 1995 A
5413563 Basile et al. May 1995 A
5425716 Kawasaki et al. Jun 1995 A
5429602 Hauser Jul 1995 A
5429611 Rait Jul 1995 A
5431627 Pastrone et al. Jul 1995 A
5433712 Stiles et al. Jul 1995 A
5439452 McCarty Aug 1995 A
5445622 Brown Aug 1995 A
5451211 Neer et al. Sep 1995 A
5456670 Neer et al. Oct 1995 A
D364461 Liebert et al. Nov 1995 S
5478314 Malenchek Dec 1995 A
5484413 Gevorgian Jan 1996 A
5512054 Morningstar Apr 1996 A
5520653 Reilly et al. May 1996 A
5531698 Olsen Jul 1996 A
5531710 Dang et al. Jul 1996 A
5533981 Mandro et al. Jul 1996 A
5535746 Hoover et al. Jul 1996 A
5540660 Jenson Jul 1996 A
5545140 Conero et al. Aug 1996 A
5558855 Quay Sep 1996 A
5573515 Wilson et al. Nov 1996 A
5593386 Helldin Jan 1997 A
5624408 Helldin Apr 1997 A
5658261 Neer et al. Aug 1997 A
5662612 Niehoff Sep 1997 A
5681285 Ford et al. Oct 1997 A
5681286 Niehoff Oct 1997 A
5683367 Jordan et al. Nov 1997 A
5688252 Matsuda et al. Nov 1997 A
5695477 Sfikas Dec 1997 A
5722951 Marano Mar 1998 A
5735825 Stevens et al. Apr 1998 A
5738655 Vallelunga et al. Apr 1998 A
5738659 Neer et al. Apr 1998 A
5741227 Sealfon Apr 1998 A
5741232 Reilly et al. Apr 1998 A
5779675 Reilly et al. Jul 1998 A
5782803 Jentzen Jul 1998 A
5785682 Grabenkort Jul 1998 A
5795333 Reilly et al. Aug 1998 A
5795337 Grimard Aug 1998 A
5807334 Hodosh et al. Sep 1998 A
5808203 Nolan, Jr. et al. Sep 1998 A
5827219 Uber, III et al. Oct 1998 A
5827262 Neftel et al. Oct 1998 A
5840026 Uber, III et al. Nov 1998 A
RE35979 Reilly et al. Dec 1998 E
D403762 Gabbard et al. Jan 1999 S
5865805 Ziemba Feb 1999 A
5873861 Hitchins et al. Feb 1999 A
D407362 Schardt Mar 1999 S
5879336 Brinon Mar 1999 A
5882343 Wilson et al. Mar 1999 A
5899885 Reilly et al. May 1999 A
5902276 Namey, Jr. May 1999 A
5913844 Ziemba et al. Jun 1999 A
5919167 Mulhauser et al. Jul 1999 A
5938637 Austin et al. Aug 1999 A
5938639 Reilly et al. Aug 1999 A
5944694 Hitchins et al. Aug 1999 A
5947929 Trull Sep 1999 A
5947935 Rhinehart et al. Sep 1999 A
5954697 Srisathapat et al. Sep 1999 A
5954700 Kovelman Sep 1999 A
5997502 Reilly et al. Dec 1999 A
5997511 Curie et al. Dec 1999 A
6004300 Butcher et al. Dec 1999 A
6017330 Hitchins et al. Jan 2000 A
6042565 Hirschman et al. Mar 2000 A
6048334 Hirschman et al. Apr 2000 A
6059756 Yeh May 2000 A
6080136 Trull et al. Jun 2000 A
6083197 Umbaugh Jul 2000 A
6083200 Grimm et al. Jul 2000 A
6090064 Reilly et al. Jul 2000 A
6099502 Duchon et al. Aug 2000 A
6129712 Sudo et al. Oct 2000 A
6162200 Sawa et al. Dec 2000 A
6190363 Gabbard et al. Feb 2001 B1
6196999 Goethel et al. Mar 2001 B1
6221045 Duchon et al. Apr 2001 B1
6224577 Dedola et al. May 2001 B1
6267749 Miklos et al. Jul 2001 B1
6315758 Neer et al. Nov 2001 B1
6322535 Hitchins et al. Nov 2001 B1
RE37487 Reilly et al. Dec 2001 E
6332877 Michels Dec 2001 B1
6336913 Spohn et al. Jan 2002 B1
6339718 Zatezalo et al. Jan 2002 B1
6345262 Madden Feb 2002 B1
6432089 Kakimi et al. Aug 2002 B1
6447487 Cane' Sep 2002 B1
6511459 Fago Jan 2003 B1
6517516 Caizza Feb 2003 B1
6533758 Staats et al. Mar 2003 B1
6582399 Smith et al. Jun 2003 B1
6585700 Trocki et al. Jul 2003 B1
6652489 Trocki et al. Nov 2003 B2
6659979 Neer et al. Dec 2003 B2
6669663 Thompson Dec 2003 B1
6733477 Cowan et al. May 2004 B2
6733478 Reilly et al. May 2004 B2
6752789 Duchon et al. Jun 2004 B2
6764466 Staats et al. Jul 2004 B1
6808513 Reilly et al. Oct 2004 B2
6817990 Yap et al. Nov 2004 B2
6958053 Reilly Oct 2005 B1
6984222 Hitchins et al. Jan 2006 B1
7018363 Cowan et al. Mar 2006 B2
7029459 Reilly Apr 2006 B2
D555802 Coulling et al. Nov 2007 S
7300417 Goethel et al. Nov 2007 B1
7337538 Moutafis et al. Mar 2008 B2
7399293 Oyibo et al. Jul 2008 B2
7419478 Reilly et al. Sep 2008 B1
7455659 Nemoto et al. Nov 2008 B2
7462166 Kowan et al. Dec 2008 B2
7465290 Reilly Dec 2008 B2
7497843 Castillo et al. Mar 2009 B1
7501092 Chen Mar 2009 B2
7540856 Hitchins Jun 2009 B2
7553294 Lazzaro et al. Jun 2009 B2
7566326 Duchon et al. Jul 2009 B2
7666169 Cowan et al. Feb 2010 B2
7682345 Savage Mar 2010 B2
7803134 Sharifi et al. Sep 2010 B2
D632389 Maeda et al. Feb 2011 S
D637492 Baird et al. May 2011 S
7972306 Shearn Jul 2011 B2
8012124 Fago et al. Sep 2011 B1
8012125 Fago et al. Sep 2011 B1
8038656 Lloyd et al. Oct 2011 B2
8070732 Rochette Dec 2011 B2
8105293 Pickhard Jan 2012 B2
8172814 Cane et al. May 2012 B2
8177757 Nemoto et al. May 2012 B2
D665498 Tamura et al. Aug 2012 S
8308689 Lewis Nov 2012 B2
8353879 Goethel et al. Jan 2013 B2
D686322 Maeda et al. Jul 2013 S
8475415 Schiller et al. Jul 2013 B2
8480631 Wotton et al. Jul 2013 B2
8585658 Forstreuter Nov 2013 B2
8628495 Horton et al. Jan 2014 B2
8721596 Trocki et al. May 2014 B2
8740854 Schiller et al. Jun 2014 B2
8740856 Quinn et al. Jun 2014 B2
8748544 Abe et al. Jun 2014 B2
8845596 Berman et al. Sep 2014 B2
8851866 Moutafis et al. Oct 2014 B2
8857674 Nighy et al. Oct 2014 B2
8864712 Fago et al. Oct 2014 B1
8932255 Fago et al. Jan 2015 B1
8945051 Schriver et al. Feb 2015 B2
9173995 Tucker et al. Nov 2015 B1
9174003 Cowan et al. Nov 2015 B2
9199033 Cowan et al. Dec 2015 B1
9474857 Riley et al. Oct 2016 B2
9480797 Swantner Nov 2016 B1
9700670 Tucker et al. Jul 2017 B2
11351306 Swantner Jun 2022 B2
20030004468 Righi et al. Jan 2003 A1
20030009133 Ramey Jan 2003 A1
20030120219 Nielsen et al. Jun 2003 A1
20030153877 Huang et al. Aug 2003 A1
20030163089 Bynum Aug 2003 A1
20030216683 Shekalim Nov 2003 A1
20030236800 Goeltzenleuchter et al. Dec 2003 A1
20040006314 Campbell et al. Jan 2004 A1
20040039368 Reilly et al. Feb 2004 A1
20040064041 Lazzaro et al. Apr 2004 A1
20040074453 Roelle et al. Apr 2004 A1
20040116861 Trocki et al. Jun 2004 A1
20040122370 Joyce et al. Jun 2004 A1
20040133153 Trocki et al. Jul 2004 A1
20040133183 Trocki et al. Jul 2004 A1
20040186437 Frenette et al. Sep 2004 A1
20040243022 Carney et al. Dec 2004 A1
20040243067 Sibbitt Dec 2004 A1
20050182371 Wagner Aug 2005 A1
20050240149 Lu Oct 2005 A1
20060129104 Cowan et al. Jun 2006 A1
20060173411 Barere Aug 2006 A1
20070123830 Johannes et al. May 2007 A1
20070191785 Barere et al. Aug 2007 A1
20070219508 Bisegna et al. Sep 2007 A1
20090124995 Bruce May 2009 A1
20090247957 Heutschi Oct 2009 A1
20100016796 Derichs Jan 2010 A1
20100130935 Hieb et al. May 2010 A1
20100280370 Namey, Jr. Nov 2010 A1
20100318030 Jenkins Dec 2010 A1
20110106015 Liscio et al. May 2011 A1
20110178500 Shang et al. Jul 2011 A1
20110224611 Lum et al. Sep 2011 A1
20120039809 Levinson et al. Feb 2012 A1
20120184920 Okihara et al. Jul 2012 A1
20130211325 Wang et al. Aug 2013 A1
20130317427 Brereton et al. Nov 2013 A1
20130317480 Reber et al. Nov 2013 A1
20130338605 Chen Dec 2013 A1
20140031763 Soma et al. Jan 2014 A1
20140200483 Fojtik Jul 2014 A1
20140330216 Weaver et al. Nov 2014 A1
20150217059 Ashby et al. Aug 2015 A1
20160151570 Rhinehart et al. Jun 2016 A1
20160325048 Berry et al. Nov 2016 A1
20170209648 Butts et al. Jul 2017 A1
Foreign Referenced Citations (78)
Number Date Country
317487 Jan 2008 AU
101801442 Aug 2010 CN
2919978 Nov 1980 DE
3227417 Feb 1983 DE
4017920 Dec 1991 DE
19601214 Aug 1996 DE
19633530 Feb 1998 DE
0111724 Jun 1984 EP
0160303 Nov 1985 EP
0164904 Dec 1985 EP
0308380 Mar 1989 EP
0319275 Jun 1989 EP
0320168 Jun 1989 EP
0323321 Jul 1989 EP
0346950 Dec 1989 EP
0364010 Apr 1990 EP
0384657 Aug 1990 EP
0482677 Apr 1992 EP
0523343 Jan 1993 EP
0523434 Jan 1993 EP
0567944 Nov 1993 EP
0567945 Nov 1993 EP
0584531 Mar 1994 EP
0736306 Oct 1996 EP
0749757 Dec 1996 EP
0900573 Mar 1999 EP
0919251 Jun 1999 EP
0951306 Oct 1999 EP
1002551 May 2000 EP
1166807 Jan 2002 EP
847914 Sep 1960 GB
1380873 Jan 1975 GB
2108852 May 1983 GB
S61500415 Mar 1986 JP
S6327770 Feb 1988 JP
S6368177 Mar 1988 JP
2001029466 Feb 2001 JP
4462798 May 2010 JP
D1398129 Oct 2010 JP
D1398130 Oct 2010 JP
D1400385 Nov 2010 JP
D1400386 Nov 2010 JP
D1400551 Nov 2010 JP
D1400552 Nov 2010 JP
8002376 Nov 1980 WO
8500292 Jan 1985 WO
8502256 May 1985 WO
8906145 Jul 1989 WO
8909071 Oct 1989 WO
8911310 Nov 1989 WO
9001962 Mar 1990 WO
9104759 Apr 1991 WO
9221391 Dec 1992 WO
9413336 Jun 1994 WO
9425089 Nov 1994 WO
9632975 Oct 1996 WO
9707841 Mar 1997 WO
9736635 Oct 1997 WO
9820920 May 1998 WO
9910032 Mar 1999 WO
9965548 Dec 1999 WO
0137903 May 2001 WO
0137905 May 2001 WO
0204049 Jan 2002 WO
03101527 Dec 2003 WO
2004035289 Apr 2004 WO
2005053771 Jun 2005 WO
2006109272 Oct 2006 WO
2007130061 Nov 2007 WO
2009036496 Mar 2009 WO
2010139793 Dec 2010 WO
2012124028 Sep 2012 WO
2012155035 Nov 2012 WO
2014139913 Sep 2014 WO
2015006430 Jan 2015 WO
2016069711 May 2016 WO
2016069714 May 2016 WO
2018129116 Jul 2018 WO
Non-Patent Literature Citations (10)
Entry
“International Preliminary Report on Patentability from PCT Application No. PCT/US2018/012284”, dated Jul. 18, 2019.
Brochure for “Angiomat CT” of Liebel-Farsheim, 2111 E. Galbraith Road, Cincinnati, OH 45215, © 1988.
Brochure for “Cordis Lymphography Injector,” Cordis Corporation, Miami, FL 33137 (1972).
Brochure for “PercuPump 1A” of E-Z-Em, Inc, 717 Main Street, Westbury, NY 11590, © 1990.
Brochure for the “The First and Only True Injection System,” Medrad Mark V System, Control No. 85106-00-BA-02, Nov. 1988.
Injektron 82 MRT User Instructions, Version MR2, CEO535, Med-Tron GmbH(Mar. 10, 1999).
Liebel-Flarsheim company—Angiomat 6000 Digital Injection System Operator's Manual, 600950 Rev 1 (1990); p. 3-6 to 3-8, 4-52 to 4-56.
Medrad Envision CT Injector Operation Manual, EOM 700E, 92401-T-123 Rev E, Copyright 1995.
Medrad Envision CT Injector Operation Manual, EOM 700E, 92401-T-123 Rev E, pp. 2-10 to 2-11 and pp. 2-30 to 2-35(Copyright 1995).
Medrad, Mark V/Mark V Plus Injector Operation Manual, Kmp 805P Rev. B (1990); pp. 1-18 to 1-28, 3-7 to 3-13, 14-1 to 14-4.
Related Publications (1)
Number Date Country
20220288322 A1 Sep 2022 US
Provisional Applications (1)
Number Date Country
62443302 Jan 2017 US
Continuations (1)
Number Date Country
Parent 16471300 US
Child 17830604 US