The present invention relates to syringe assemblies and particularly to syringe assemblies comprising a disinfecting reservoir collar to ensure adherence to aseptic techniques for use in flush procedures for vascular access devices (VAD's).
VAD's are commonly used therapeutic devices and include intravenous (IV) catheters. There are two general classifications of VAD's, peripheral catheters and central venous catheters. To ensure VAD's are used and maintained correctly, standards of practice have been developed, which include a cleaning procedure, commonly referred to as flushing a catheter.
VAD standards of practice usually recommend that flush procedures be performed after catheter placement, before fluid infusion, and before and after drug administration, blood sampling, transfusions and parenteral nutrition. The goal of these flush procedures is to confirm catheter patency, avoid drug incompatibilities, ensure complete drug dose administration, prevent thrombus formation and minimize the risk of blood stream infections. Flush procedures require different types and amounts of flush solutions. The most commonly used flush solutions are saline and/or heparin lock solution. The type of flush solution and amount vary depending on the specific type of catheter. Flush solution volumes between 5 and 10 ml are most common but can range from 1 ml to 20 ml.
For flush procedures, an IV line refers to a system that can include a VAD, a tubing set with clamp and a VAD connector as a termination. Common types of VAD connectors are covered by pierceable septums or pre-slit septums made of rubber or another elastomeric material, which permits insertion of a sharp needle cannula in order to infuse fluids into or to withdraw fluids from the catheter. Upon withdrawal of the needle cannula, the septum seals itself. Ports having pre-slit septums are used with blunt plastic cannula or the frusto-conically shaped tip of a syringe barrel. The syringe tip or the blunt plastic cannula (which is usually attached to a syringe) is gently pushed through the pre-slit septum to establish fluid communication.
IV valves, another type of VAD connector that does not require a needle having a sharp tip, are activated by the frusto-conically shaped tip of a syringe barrel to allow fluid communication between the interior of the syringe and the catheter. These valves may contain features for delivering fluid from a storage compartment in the valve to the catheter, and are referred to in the art as positive displacement valves. Such a valve is taught in U.S. Pat. No. 6,206,861.
Bacteria and other microorganisms may gain entry into a patient's vascular system from access hubs and ports/valves upon connection to the VAD to deliver the fluid or pharmaceutical. Each access hub (or port/valve or connection) is associated with some risk of transmitting a catheter related bloodstream infection (CRBSI), which can be costly and potentially lethal.
Throughout the sequence of procedures associated with the transmission of a microorganism that can cause a CRBSI, there are many risks of contact or contamination. Contamination can occur during drug mixing, attachment of a cannula, and insertion into the access hub. Because the procedure to connect to a VAD is so common and simple, the risk associated with entry into a patient's vascular system has often been overlooked. Presently, the risk to hospitals and patients is a substantial function of the diligence of the clinician performing the connection, and this diligence is largely uncontrollable.
Current “recommended practice” for aseptic IV line maintenance and IV drug delivery practices require adherence to a stepwise process referred to as “SASH.” During the first step of the process, the clinician cleans/disinfects (generally with an alcohol swab) the VAD connector. Second, a syringe containing saline is used to flush the IV line or catheter (Saline flush), and then the VAD connector is disinfected a second time. Third, the fluid or pharmaceutical therapy is administered through the IV line or catheter (Administer therapy), the VAD connector is disinfected a third time, followed by a second Saline flush step. The final step, which is dependent upon the patient's need and institutional policy, is a final disinfection of the VAD connector followed by a Heparin lock step, where a small amount of heparin is injected into the IV line or catheter to prevent the formation of thrombi or blood clots. At the conclusion of this tedious stepwise process, the inlet port of the VAD connector is left exposed to the environment. This “recommended practice” requires disinfecting the VAD connector after each step, and makes IV line maintenance a very burdensome and time consuming process. Because the process is so cumbersome, clinicians very rarely implement this “recommended practice” in its entirety, and, thus, patients are exposed to the risk of contracting CRBSIs. Microorganisms populate exposed connector inlet surfaces, and, when the “recommended practice” is not adhered to, the microorganisms can enter the IV line during flushing. Furthermore, blood reflux into the IV line or catheter can cause clot formation inside the lines, and microorganisms from the connector inlet surfaces can colonize blood clots inside the lines and infect the patients during flushing.
A product currently available that aims to combat the problems associated with contaminated VAD connectors is the SwabCap®. This device disinfects a VAD connectors by covering the connector and protecting it from touch and airborne contamination after the cap has been applied. As the SwabCap® is twisted onto VAD connector, a foam pad inside the cap is compressed, releasing the isopropyl alcohol that bathes and passively disinfects the top and threads of the VAD connector while the cap is in place. Friction between the SwabCap® and VAD connector is essential to ensure proper swabbing and disinfecting as the twisting action helps focus the alcohol on the targeted areas. However, for several reasons, the SwabCap® falls short of accomplishing the desired goal of effectively cleaning and disinfecting the VAD connector. First, the caps do not always engage the threads on the catheter hub, so that friction during swabbing may be inefficient. Additionally, the caps are small, and thus, may result in touch contamination when they are being removed. Despite the fact that the caps are bright orange in color so that compliance can be visually confirmed, because the SwabCap® is a separate entity, only the most diligent clinician will utilize the cap after every step of the flush process. Thus, the cap does not ensure compliance with aseptic technique.
Substantial morbid and mortal risk is, therefore, associated with a number of routine procedures defined primarily by the uncontrollable diligence of the clinician administering the therapy. Unfortunately, the result is that a substantial degree of unnecessary risk and injury, in the form of CRBSIs, to patients occurs. There is a need, therefore, for a flush syringe assembly that promotes compliance with aseptic technique by eliminating the additional swabbing and disinfecting steps.
Embodiments of the present invention are directed to a syringe assembly for use in flush applications. Syringe assemblies according to a first aspect of the present invention include a plunger rod, a syringe barrel, and a reservoir collar that permit disinfection of the hub of a VAD connector upon connection to the device. The features providing for disinfection allow the clinician to substantially achieve the effects of aseptic techniques without the need for added swabbing steps and diligence on the part of the clinician.
In one or more embodiments, the disinfection is provided by a reservoir collar that contains a disinfectant housed within a compartment in the reservoir collar.
In one variant, the reservoir collar contains an absorbent material that surrounds a tip that is adapted for connection to a VAD. The absorbent material absorbs the disinfectant, and, upon connection to the hub of a VAD connector, compresses toward the syringe barrel while disinfecting the hub. The disinfectant can be a fluid, a foam, or a gel.
In a specific embodiment, the reservoir collar surrounds a connector collar adapted for connection to the hub of a VAD connector. In another specific embodiment, the connector collar is a luer connector.
A second aspect of the present invention pertains to a method of disinfecting a VAD connector. The method according to one embodiment comprises connecting a flush syringe assembly to the hub of a VAD connector, wherein the flush syringe assembly includes a plunger rod, a syringe barrel, and a reservoir collar that permits disinfection of the hub of a VAD connector upon connection to the device. The method allows the clinician to substantially achieve the effects of aseptic techniques without the need for added swabbing steps and diligence on the part of the clinician.
In a specific embodiment, the method comprises connecting a flush syringe assembly to a hub of the vascular access device, wherein connecting includes frictionally engaging a reservoir having a collar and a tip on the flush syringe with the hub vascular access device such that the hub contacts an antimicrobial agent contained within the reservoir. As noted above, the reservoir can contain an absorbent material, and the reservoir can include a first tip and a second tip, and the flush syringe includes a seal covering the reservoir and the first and second tip. In such construction, upon connecting the flush syringe assembly to the hub, the seal is broken to expose the second tip to the antimicrobial agent. The reservoir further can comprises threads that engage threads on the hub, and connecting occurs by engaging the threads on the hub and the reservoir by twisting the vascular access device with respect to the flush syringe. Upon connection, the hub contacts the antimicrobial agent and the absorbent material.
Before describing several exemplary embodiments of the invention, it is to be understood that the invention is not limited to the details of construction or process steps set forth in the following description. The invention is capable of other embodiments and of being practiced or being carried out in various ways.
With respect to terms used in this disclosure, the following definitions are provided.
Reference to “flush syringe assembly” includes syringes that are indicated for use in the flushing of VADs. The practice of flushing ensures and maintains catheter patency and helps prevent the mixing of incompatible pharmaceuticals.
As used herein, the use of “a,” “an,” and “the” includes the singular and plural.
As used herein, the term “catheter related bloodstream infection” or “CRBSI” refers to any infection that results from the presence of a catheter or IV line.
As used herein, the term “microorganism” refers to a microbe or organism that is unicellular or lives in a colony of cellular organisms. Microorganisms are very diverse; they include, but are not limited to bacteria, fungi, archaea, and protozoans. Microorganisms are often the cause of CRBSIs. The most common microorganisms associated with CRBSIs include, but are not limited to, Staphylococcus aureus and epidermis, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans.
As used herein, the terms “antimicrobial agent” or “antimicrobial” refers to substances that kill or inhibit the growth of microorganisms such as bacteria, fungi, archaea, or protozoans. Antimicrobial agents either kill microbes, or prevent the growth of microbes.
As used herein, the term “disinfectant” refers to antimicrobial substances that are used on non-living objects or outside the body, e.g., on the skin.
In one or more embodiments, disinfectants or antimicrobial agent include, but are not limited to, ethanol, 2-propanol, butanol, methylparaben, ethylparaben, propylparaben, propyl gallate, butylated hydroxyanisole (BHA), butylated hydroxytoluene, t-butyl-hydroquinone, chloroxylenol, chlorohexidine, dichlorobenzyl alcohol, dehydroacetic acid, hexetidine, triclosan, hydrogen peroxide, colloidal silver, and mixtures thereof.
As used herein, the term “absorbent material” refers to a material having capacity or tendency to absorb or soak up another substance. In one or more embodiments, the absorbent material has a tendency to absorb a disinfectant or antimicrobial. Absorbent materials may include sponges, absorbent cottons, other absorbent fabrics, and synthetic polymer matrices.
As used herein, the term “Luer connector” refers to a connection collar that is the standard way of attaching syringes, catheters, hubbed needles, IV tubes, etc. to each other. The Luer connector consists of male and female interlocking tubes, slightly tapered to hold together better with even just a simple pressure/twist fit. Luer connectors can optionally include an additional outer rim of threading, allowing them to be more secure. The Luer connector male end is generally associated with a flush syringe and can interlock and connect to the female end located on the VAD. A Luer connector comprises a distal end, a proximal end, an irregularly shaped outer wall, a profiled center passageway for fluid communication from the chamber of the barrel of a syringe to the hub of a VAD. A Luer connector also has a distal end channel that releasably attaches the Luer connector to the hub of a VAD, and a proximal end channel that releasably attaches the Luer connector to the barrel of a syringe.
Provided are syringe assemblies that include a plunger rod and a syringe barrel, that incorporate an element for disinfecting the hub of a VAD. The assembled syringe assembly is shown in
An plunger rod 37 includes distal portion 38 and a proximal portion 39, the plunger rod further comprising a distal end including a stopper slidably positioned in fluid-tight engagement with the inside surface of the barrel for drawing fluid into and driving fluid out of the chamber by movement of the stopper relative to the barrel, the plunger rod 37 extending outwardly from the open proximal end 27 of the barrel, the stopper having a distal surface.
A reservoir collar 40 mounted on the distal end 28 of the barrel and surrounding the first tip 31, the reservoir collar 40 including at least one side wall 41 having an inside surface 42 defining a compartment 43 containing a disinfectant or antimicrobial agent, a sealed distal end 45, and a proximal end 46 adjacent the distal wall 29 of the barrel, with a second tip 51 extending distally therefrom having a second passageway 52 therethrough in fluid communication with said first passageway 32, the second tip 51 adapted for connection to a hub of a vascular access device. The reservoir collar 40 may comprise a plurality of threads 47 on the inside surface for connection to a vascular access device. The reservoir collar 40 may comprise a plurality of threads on the proximal end for attachment to the distal wall 29 of the barrel. Referring to
The reservoir collar 40 may comprise an absorbent material 44 surrounding the second tip 51 for soaking up the disinfectant or antimicrobial agent that is housed within the compartment 43. The disinfectant or antimicrobial agent can be a fluid or a gel selected from the group consisting of selected from the group consisting of ethanol, 2-propanol, butanol, methylparaben, ethylparaben, propylparaben, propyl gallate, butylated hydroxyanisole (BHA), butylated hydroxytoluene, t-butyl-hydroquinone, chloroxylenol, chlorohexidine, dichlorobenzyl alcohol, dehydroacetic acid, hexetidine, triclosan, hydrogen peroxide, colloidal silver, and mixtures thereof.
The sealed distal end 45 of the reservoir collar 40 may comprise a removable seal 48. The removable seal 48 can comprise an aluminum peal back top. The seal can be a plastic sealed aluminum, and can be chemically-resistant, light-blocking, non-permeable, or sterile.
The reservoir collar 40 may comprise an aluminum lining adhered to the inside surface 42 of at least one side wall 41. The aluminum lining can prevent degradation of the disinfectant or antimicrobial agent, and can also provide a mechanism for ensuring compliance with aseptic conditions.
The reservoir collar 40 may be removable from the syringe assembly 20. When removable, the reservoir collar 40 comprises a pierceable seal 49 on the proximal end 46 of the reservoir collar 40. The pierceable seal 49 can be pierced by the first tip 31 upon connection to the distal wall 29 of the barrel. The pierceable seal 49 can comprise an aluminum seal. The aluminum seal can be a plastic sealed aluminum, and can be chemically-resistant, light-blocking, non-permeable, or sterile.
In an embodiment, the reservoir collar 40 surrounds a connector collar adapted for connection to the hub of the vascular access device. The connector collar can further comprise an absorbent material 44 for soaking up the disinfectant or antimicrobial agent dispersed within the connector collar. The disinfectant or antimicrobial agent can be a fluid or a gel. In a further embodiment, the reservoir collar 40 surrounds a connector collar adapted for connection to the hub of the vascular access devices, wherein the connector collar is a Luer connector.
Referring to
The syringe assembly 20 is filled with flush solution using known methods. Additionally, the syringe assembly 20 may be provided pre-filled from the manufacturer or supplier. The flush solution may be any solution intended for flushing or maintaining performance of VAD's. It is preferred that the flush solution be selected from the group consisting of saline flush solution and heparin lock flush solution. These solutions are known in the art and are readily available. An example of a saline flush solution includes, but is not limited to, 0.9% sodium chloride USP for injection. An example of a heparin lock flush solution includes but is not limited to 0.9% sodium chloride with 100 USP units of heparin sodium per mL or 10 USP units of heparin sodium per mL. When the first tip 31 interlocks with the second tip 51, the flush solution is communicated from the barrel 21 through the now integral first passageway 32 and second passageway 52 to a vascular access device.
The syringe assembly 20 is now ready for use in flushing a vascular access device such as a catheter or IV set. IV sets can be very complex and may include multiple injection ports, valves, and/or other components. For the purpose of illustrating the present invention, a simplified IV set or catheter hub 60 is illustrated in
There are two general classifications of VAD's, peripheral catheters and central venous catheters. Peripheral catheters are used to access veins in the peripheral extremities such as the hand and arm. Peripheral catheters are relatively short in length ranging from about 14 mm to 48 mm in length, and are available in gauge sizes from about 16 to 24. It is believed that the most commonly used peripheral catheters are 20 gauge having an ID of about 0.81 mm (0.032 inch) and 22 gauge having an ID of about 0.66 mm (0.026 inch), and having a length of about 25 mm to 32 mm. As used herein, the term “peripheral catheter” is intended to refer to a 20 or 22 gauge catheter having a length of about 25 mm. Central venous catheters are substantially longer than peripheral catheters and are inserted in the patient and terminate near the heart.
Referring to
Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as disclosed.
This application is a continuation of U.S. patent application Ser. No. 13/250,097 filed Sep. 30, 2011, the disclosure of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1798188 | Brown | Mar 1931 | A |
2677373 | Barradas | May 1954 | A |
2961682 | Wurmbock et al. | Nov 1960 | A |
3559645 | Schaller | Feb 1971 | A |
3890971 | Leeson et al. | Jun 1975 | A |
3976311 | Spendlove | Aug 1976 | A |
4240427 | Akhavi | Dec 1980 | A |
4243035 | Barrett | Jan 1981 | A |
4273123 | Lemelson | Jun 1981 | A |
4280632 | Yuhara | Jul 1981 | A |
4282891 | Duceppe | Aug 1981 | A |
4343306 | Mericle | Aug 1982 | A |
4354490 | Rogers | Oct 1982 | A |
4432764 | Lopez et al. | Feb 1984 | A |
4440207 | Genatempo et al. | Apr 1984 | A |
4444310 | Odell | Apr 1984 | A |
4624664 | Peluso et al. | Nov 1986 | A |
4626664 | Grise | Dec 1986 | A |
4655762 | Rogers | Apr 1987 | A |
4671306 | Spector | Jun 1987 | A |
4728321 | Chen | Mar 1988 | A |
4778447 | Velde et al. | Oct 1988 | A |
4799926 | Haber | Jan 1989 | A |
4874384 | Nunez | Oct 1989 | A |
4883470 | Haindl | Nov 1989 | A |
4991629 | Ernesto et al. | Feb 1991 | A |
5000742 | Morrison | Mar 1991 | A |
5026345 | Teringo | Jun 1991 | A |
5125415 | Bell | Jun 1992 | A |
5190534 | Kendell | Mar 1993 | A |
5195957 | Tollini | Mar 1993 | A |
5242421 | Chan | Sep 1993 | A |
5242425 | White et al. | Sep 1993 | A |
5334388 | Hoang et al. | Aug 1994 | A |
5336192 | Palestrant | Aug 1994 | A |
5342320 | Cameron | Aug 1994 | A |
5527283 | Swisher, III | Jun 1996 | A |
5536258 | Folden | Jul 1996 | A |
5547662 | Khan et al. | Aug 1996 | A |
5554135 | Menyhay | Sep 1996 | A |
5639310 | Giampaolo, Jr. | Jun 1997 | A |
5694978 | Heilmann et al. | Dec 1997 | A |
5706944 | Hoang et al. | Jan 1998 | A |
5792120 | Menyhay | Aug 1998 | A |
5807352 | Tamaro | Sep 1998 | A |
5817344 | Hoang et al. | Oct 1998 | A |
5894015 | Rechtin | Apr 1999 | A |
5954957 | Chin-Loy et al. | Sep 1999 | A |
6045539 | Menyhay | Apr 2000 | A |
6116468 | Nilson | Sep 2000 | A |
6117114 | Paradis | Sep 2000 | A |
6206861 | Mayer | Mar 2001 | B1 |
6227391 | King | May 2001 | B1 |
6708363 | Larsen | Mar 2004 | B2 |
6911025 | Miyahara | Jun 2005 | B2 |
6994315 | Ryan et al. | Feb 2006 | B2 |
RE39107 | Shaw | May 2006 | E |
7083605 | Miyahara | Aug 2006 | B2 |
7184825 | Leinsing et al. | Feb 2007 | B2 |
7198611 | Connell et al. | Apr 2007 | B2 |
7282186 | Lake, Jr. et al. | Oct 2007 | B2 |
7452349 | Miyahara | Nov 2008 | B2 |
D607325 | Rogers et al. | Jan 2010 | S |
7682561 | Davis et al. | Mar 2010 | B2 |
7704935 | Davis et al. | Apr 2010 | B1 |
7755071 | Polsinelli | Jul 2010 | B2 |
7762524 | Cawthon et al. | Jul 2010 | B2 |
7780794 | Rogers et al. | Aug 2010 | B2 |
7794675 | Lynn | Sep 2010 | B2 |
7887516 | Young | Feb 2011 | B2 |
7922701 | Buchman | Apr 2011 | B2 |
7985302 | Rogers et al. | Jul 2011 | B2 |
8065773 | Vaillancourt et al. | Nov 2011 | B2 |
8113731 | Cable, Jr. et al. | Feb 2012 | B2 |
8167847 | Anderson et al. | May 2012 | B2 |
8172825 | Solomon et al. | May 2012 | B2 |
8177761 | Howlett et al. | May 2012 | B2 |
8206514 | Rogers et al. | Jun 2012 | B2 |
8231587 | Solomon et al. | Jul 2012 | B2 |
8231602 | Anderson et al. | Jul 2012 | B2 |
8328767 | Solomon et al. | Dec 2012 | B2 |
8343112 | Solomon et al. | Jan 2013 | B2 |
8419713 | Solomon et al. | Apr 2013 | B1 |
8523830 | Solomon et al. | Sep 2013 | B2 |
8523831 | Solomon et al. | Sep 2013 | B2 |
D695398 | Solomon et al. | Dec 2013 | S |
8628501 | Hadden | Jan 2014 | B2 |
8641681 | Solomon et al. | Feb 2014 | B2 |
8647308 | Solomon et al. | Feb 2014 | B2 |
8647326 | Solomon et al. | Feb 2014 | B2 |
8784388 | Charles | Jul 2014 | B2 |
20030153865 | Connell et al. | Aug 2003 | A1 |
20030181849 | Castellanos | Sep 2003 | A1 |
20040004019 | Busch | Jan 2004 | A1 |
20040039341 | Ranalletta | Feb 2004 | A1 |
20040258560 | Lake, Jr. et al. | Dec 2004 | A1 |
20040267182 | Davis | Dec 2004 | A1 |
20050054991 | Tobyn | Mar 2005 | A1 |
20050124970 | Kunin et al. | Jun 2005 | A1 |
20050147524 | Bousquet | Jul 2005 | A1 |
20060030827 | Raulerson | Feb 2006 | A1 |
20070113861 | Knudsen et al. | May 2007 | A1 |
20070179452 | Kosinski | Aug 2007 | A1 |
20070202177 | Hoang | Aug 2007 | A1 |
20070225660 | Lynn | Sep 2007 | A1 |
20080027399 | Harding et al. | Jan 2008 | A1 |
20080147047 | Davis et al. | Jun 2008 | A1 |
20080177250 | Howlett et al. | Jul 2008 | A1 |
20080235888 | Vaillancourt et al. | Oct 2008 | A1 |
20090028750 | Ryan | Jan 2009 | A1 |
20090062766 | Howlett | Mar 2009 | A1 |
20090099529 | Anderson et al. | Apr 2009 | A1 |
20090149819 | Chelak | Jun 2009 | A1 |
20100000040 | Shaw et al. | Jan 2010 | A1 |
20100047123 | Solomon et al. | Feb 2010 | A1 |
20100049170 | Solomon | Feb 2010 | A1 |
20100242993 | Hoang et al. | Sep 2010 | A1 |
20100331726 | Steube et al. | Dec 2010 | A1 |
20110030726 | Vaillancourt et al. | Feb 2011 | A1 |
20110054440 | Lewis | Mar 2011 | A1 |
20110232020 | Rogers et al. | Sep 2011 | A1 |
20120022469 | Alpert | Jan 2012 | A1 |
20120039765 | Solomon et al. | Feb 2012 | A1 |
20120109073 | Anderson et al. | May 2012 | A1 |
20120296284 | Anderson et al. | Nov 2012 | A1 |
20130006194 | Anderson et al. | Jan 2013 | A1 |
20130072909 | Solomon et al. | Mar 2013 | A1 |
20130338644 | Solomon et al. | Dec 2013 | A1 |
Number | Date | Country |
---|---|---|
201046284 | Apr 2008 | CN |
101405042 | Apr 2009 | CN |
2007-532186 | Nov 2007 | JP |
2009-544451 | Jan 2008 | JP |
2008-253775 | Oct 2008 | JP |
2009-526581 | Jul 2009 | JP |
2010-511482 | Apr 2010 | JP |
2006037434 | Apr 2006 | WO |
2008014447 | Jan 2008 | WO |
WO-2008014438 | Jan 2008 | WO |
WO-2008070220 | Jun 2008 | WO |
2009002474 | Dec 2008 | WO |
2011028722 | Mar 2011 | WO |
2011068531 | Jun 2011 | WO |
Entry |
---|
PCT International Preliminary Report on Patentability in PCT/US2012/054787, dated Apr. 1, 2014, 8 pages. |
Final Office Action in U.S. Appl. No. 14/246,723, dated Apr. 3, 2015, 15 pages. |
Final Office Action in U.S. Appl. No. 14/246,723 dated Dec. 13, 2016, 22 pages. |
Final Office Action in U.S. Appl. No. 14/246,723 dated Apr. 23, 2018, 13 pages. |
Non-Final Office Action in U.S. Appl. No. 14/246,723 dated Aug. 27, 2018, 10 pages. |
PCT International Search Report and Written Opinion in PCT/US2012/054787, dated Nov. 22, 2012, 11 pgs. |
Number | Date | Country | |
---|---|---|---|
20140276449 A1 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13250097 | Sep 2011 | US |
Child | 14270878 | US |