The invention relates to a syringe with a seal that is also referred to as a tamper evident that discernibly seals a piston body with regard to a cylindrical part of a syringe body of the syringe.
Tamper evident syringes are already known in a number of variants. For example, U.S. Pat. No. 6,565,529 B1 shows a syringe with a piston body that has been equipped with a stop disc on its piston rod. The stop disc lies pointing backwards against a limiting flange of the syringe body that bends inwardly. The stop disc and limiting flange that stop each other together form a tamper evident. The tamper evident ensures that a sharp needle cannot be stuck along the piston body into the syringe to subsequently illicitly and unnoticed mess with the contents. The tamper evident also ensures that nobody can pull the piston body illicitly and unnoticed from the syringe body. Both operations will lead to visible damage to the limiting flange.
A negative aspect related to this known syringe is that the manufacture and the assembling thereof leave a lot to be desired. The syringe can also be improved with regard to when it is being used. Another negative aspect is that first a number of other operations must be performed before the tamper evident can be made operational. For example, first the different parts of the syringe must be produced, then the syringe must be filled with an injection medium and, thereafter, the piston body must be placed in the cylindrical part of the syringe body. Only then can the tamper evident be activated. This takes place here through a thermal deformation process of the limiting flange to ensure that it is bent inwardly in such a way that this starts to form a limit for the stop disc. This critical sequence of acting limits the production, the assembly and the filling process which, as it where, are intermingled. This also entails the risk that the injection medium and/or other parts of the syringe will be negatively influenced by the thermal deformation process as a result of the high temperatures that are required for this. It is also difficult in practice to continuously impose a uniform deformation on the limiting flange, which may not be beneficial for the end user and/or the patient, for example, if the limiting flange deforms to such an extent internally that it comes to lie too tightly against the piston rod and hinders, due to this, the free internal sliding movement thereof.
The present invention aims to at least partially overcome the aforementioned negative aspects and/or to provide a useable alternative. In particular, the invention aims to provide a reliable and easily to be produced syringe with seal.
This aim is achieved through a syringe in accordance with claim 1. With this the syringe body comprises a cylindrical part that has been equipped with a nozzle at its distal end. The syringe body is closed in a sealing manner on its proximal end by a piston body that can be slid in the cylindrical part. Further a piston seal has been provided that at least comprises one limiting section linked to the syringe body or integrally formed that protrudes inwardly in a radial direction. The piston body is provided with at least one stop section that is linked to this or has been integrally formed on it that protrudes outwardly in a radial direction and that is formed by a stop cam that can be inwardly compressed in the radial direction. The limiting section has radial internal dimensions that are greater than the radial external dimensions of the piston and/or the radial internal dimensions of the cylindrical part of the syringe body. The at least one stop cam has radial external dimensions that are greater than the radial internal dimensions of the limiting section. Furthermore the limiting section is constructed to become discernibly damaged, for example, by clearly breaking, if an attempt is made to pull the piston body from the syringe body. The at least one stop cam will automatically encounter the limiting section that is dimensioned as being smaller in the radial direction when such a pulling out movement occurs and, thus, automatically ensures that a resistance against pulling out is felt and that the limiting section becomes damaged visibly and/or audibly when the pulling-out force is greater. The stop cam and the limiting section together form a piston seal that can be used as a tamper evident. It is advantageously possible with regard to the piston seal in accordance with the invention to put the piston body in the syringe body while the limiting section of the piston seal is already in its operational position. Also it is possible to first place the piston body in the syringe body and only thereafter place the limiting section of the piston seal in its operational position. The piston has smaller radial dimensions and can, therefore, pass the limiting section. Further the stop cam has the freedom to inwardly compress in the radial direction and can, thus, also pass the limiting section. The manufacture and assembly of the syringe can be carried out quickly and easily due to this, including any filling with injection medium, while at the same time more freedom is obtained in the sequence of actions.
By preference, the limiting section is provided as a separate breaking body that has been secured in the proximal end of the syringe body, for example, through a snap connection. The benefit of this is that it is no longer necessary to subject the syringe during assembly and filling to a thermal deformation process with the related high temperatures. Both the breaking body and other parts of the syringe can beneficially be manufactured from plastic, for example, in an injection moulding process.
In a further embodiment, the breaking body is built up from at least two ring-shaped segments that are interlinked through weakened wall sections (breaking walls). The ring-shaped segments can fully enclose the piston rod of the piston body together and, thus, can form a limit over the whole of the perimeter that will prevent, for example, that a sharp hypodermic needle can be stuck inwardly from the rear along the piston body in the syringe body to extract the injection medium from this.
In a variant, the breaking body is built up from a mounting part that is inseparably installed on the syringe body and a ring-shaped breaking-out segment linked to the mounting part through weakened wall sections (breaking walls). The ring-shaped breaking-out segment can then again fully enclose the piston rod and form a limit with regard to the whole of the perimeter.
Advantageously the at least one stop cam that can be inwardly compressed in the radial direction has been integrally formed on the piston body, in particular, on the piston rod thereof. The piston rod can, for example, be equipped with a hollow cylindrical part where a recess has been left free in the cylindrical perimeter wall in which the stop cam has the freedom of inwardly compressing. Furthermore the piston rod can be provided with a differently shaped cross section, for example, solidly and/or with wall sections that are cruciform, star-shaped or the like seen in cross section, in which the at least one compressable stop cam can then be integrated in one or more of such wall sections.
In a further embodiment, the nozzle comprises a separate needle unit that has been inserted into the syringe body from the proximal end before the piston body has been stuck therein. The needle unit can advantageously have been linked from the inside with the syringe body, for example, through a snap connection. Together with the forming of the limiting body that is not integral with the syringe body, this embodiment ensures that the needle unit and the breaking body can be inserted together into the syringe body with one continuous action and can be secured therein at their respective positions through, for example, the aforementioned snap connections.
The breaking body and the needle unit can, in the first instance, be interlinked during manufacture to great advantage. In particular, they can even be manufactured as an integral part with, for example, weakened wall sections as breaking walls in-between. During assembly, the weakened wall sections can be broken as a result of an axial insertion force that is exercised on the needle unit. This will take place automatically if the axial insertion force continues to exert pressure on the needle unit after the breaking body has reached its end position and there has been jammed within the syringe body. The needle unit will then be pressed in the direction of the distal end of the syringe body as a result of the continuous axial insertion force in one continuous movement and will there be jammed in the syringe body.
In a special embodiment, a nozzle seal has been provided as a tamper evident on the distal end besides the piston seal as tamper evident on the proximal end. The nozzle seal is also constructed to become discernibly damaged, for example, by clearly breaking, if an attempt is made to release the outflow opening of the nozzle. Thus, a syringe is created that can resist illicit use on all sides and/or will leave clear traces behind of this.
In a further embodiment, the nozzle seal has been provided as a protective cap that at least protects the outflow opening of the nozzle and that is integrally formed on the distal end of the syringe body as a breaking wall through weakened wall sections. This integral forming is advantageously possible in combination with the simple construction of the piston seal and/or owing to the needle unit that is provided as a separate component that can be fitted from the proximal end into the syringe body.
Preferably, the protective cap is provided in such a way that it lies against the outflow opening of the nozzle and/or the outflow opening of the needle unit, respectively in a sealing position in the non-broken position. This makes a separate sealing of the outflow opening superfluous and prevents unnecessary contamination of the outflow opening and unnecessary loss of injection medium if the protective cap is removed.
The integrally formed protective cap preferably is built up from at least two parts that are interlinked through weakened wall sections as breaking wall. This will give the user the option to adjust a required penetration depth of the nozzle and a needle of the needle unit, respectively, into a body part. By only removing the front part, the user will release a shorter longitudinal part of the nozzle and needle, respectively, than when he removes the entire protective cap.
Further preferred embodiments are defined in the subclaims.
The invention also relates to the use of the syringe for injecting an injection medium into animals, in particular, in a teat of an udder of a milking animal such as a cow or a goat.
The invention will be further explained based on the included drawings in which:
a and 10b show a variant of
In
As a further part before assembly, the syringe 1 comprises an integrally formed assembly of a needle unit 12 that is connected to a breaking body 14 (also see
The needle unit 12 is destined to form a nozzle on the distal end 3a and should be inserted into the syringe body 2 from the proximal end 3b. At the location of the distal end 3a, the needle unit 12 can be permanently connected to the syringe body 2. This takes place through a snap connection with wall sections that complementarily grip into each other, in particular, a spring-groove connection with regard to the embodiment shown here (see
The breaking body 14 comprises two semicircular-shaped segments 18a, 18b that are interlinked through weakened wall sections 19. The breaking body 14 can be permanently connected to the proximal end 3b of the syringe body 2. In the shown embodiment, this connection is also formed through a snap connection, for which each segment 18a, 18b is equipped with a mounting boss 20 that can grip itself into a complementary recess 21 that is provided in a widened part 23 of the proximal end 3b of the syringe body 2 (see
The breaking body 14 comprises an inwardly protruding limiting section 27 in the radial direction that extends closed in the circumferential direction. The limiting section 27 is executed with an internal diameter that is greater than the external diameter of the wall sections 8 of the piston 7 and the internal diameter of the cylindrical part 3, respectively. This ensures that the piston 7 can be stuck through the breaking body 14, in particular after the breaking body 14 has been separated of the needle unit 12 and has been mounted in the proximal end 3b of the syringe body 2. The stop cams 10, in turn, have, however, been executed with radial external dimensions that in the non-compressed position are, on the contrary, greater than the internal diameter of the limiting section 27. If the piston body 5 is stuck through the breaking body 14, the stop cams 10 will be made to inwardly compress in the radial direction as a result of their tapering fronts. Only in this compressed position can the stop cams 10 pass the limiting section 27 of the breaking body 14. When the stop cams 10 have passed the limiting section 27, they will again have the freedom to compress outwardly. From this moment on, the piston body 5 with its stop cams 10 in axial direction is limited by the limiting section 27 of the breaking body 14 (see
If an attempt is made to again pull the piston body 5 from the syringe body 2, this will immediately lead to the breaking body 14 blocking this. The breaking body 14 has been constructed in such a way that it can only again be removed from the syringe body 2 after it has been broken in two or more pieces. As a result of the acting interplay of forces between the stop cams 10 and the limiting section 27, the breaking body 14 will break when a sufficiently extensive pulling out force is exerted on the piston body 5 where the weakened wall sections 19 can be found. This will produce two independent segments 18a, 18b that will have the freedom to be released with their mounting boss 20 from the recess and then be pulled out from the syringe body 2 outwardly together with the piston body 5 (see
A seal is provided on the distal end 3a of the syringe body 2 of the nozzle formed by the needle unit 12. This nozzle seal 30 is here formed by a protective cap 31 that is integrally formed through a weakened perimeter wall section 32 on the syringe body 2. The protective cap 31 has here been provided as a two-piece section where both parts 31a, 31b are again interlinked through a weakened perimeter wall section 33. This ensures that only the front part 31a can be removed or also the back part 31b. As can be seen in
The protective cap 31 of the nozzle seal 30 has been executed in such a way that this rests in a sealing position with its front part 31a against the outflow openings 36 of the needle 35 of the needle unit 12.
To great advantage, the shown syringe 1 comprises only three parts before assembly that can all be made from plastic, in particular, PE, PP and or TPE. If required, sections of these parts, for example, the needle 35 with regard to the rest of the needle unit 12 or the piston 7 with regard to the rest of the piston body 5, can be made of different materials that, for example, have been manufactured through a two-component injection moulded process.
The assembly of the syringe 1 can take place as follows:
The assembly of needle unit 12 and breaking body 14 is placed on a pressure tool (not shown) and positioned in front of the open proximal end 3b of the syringe body 2. The syringe body 2 with this is already equipped with the integrally formed nozzle seal 30. With this, the pressure tool will only be supported on the needle unit 12 in an axial direction and not on the breaking body 14. By pressing the pressure tool together with the assembly of the needle unit 12 and the breaking body 14 in the syringe body 2 inwardly, first the breaking body 14 will snap shut in the widened part 23 of the syringe body 2. Subsequently, the weakened wall sections 13 will be pulled broken after which the needle unit 12 will be pressed further into the syringe body 2 inwardly until this will also snap shut in the distal end 3a of the syringe body 2. The needle 35 of the needle unit 12 will automatically come to lie, within this context, with its outflow openings 36 in the sealing position against the front part 31a of the protective cap 31. The pressure tool can then be removed and the syringe 1 can be filled with an injection medium from the proximal end 3b. Next, the piston body 5 can be installed in the syringe body 2 filled with injection medium where the stop cams 10 pass the limiting section 27 of the breaking body 14, fix themselves behind this and automatically activate the piston seal. Additional operations are not required for either activating the piston seal or activating the nozzle seal. They will automatically become operational during the above described assembly.
A variant is shown in
Another difference with the embodiment of
Before assembly, or rather the situation as shown in
The stop cams 10 will be in the widened part 23 of the syringe body 2 (see
Many variants are possible in addition to the shown embodiments. For example, various parts of the syringe can be given different forms and dimensions. The breaking body can also be provided outside the syringe body instead of in a widened part of the syringe body. Another tamper evident construction can be applied at the distal end instead of the integrally formed nozzle seal in order to reliably seal the distal end. In this case, it is also possible to integrally form a needle unit on the syringe body and/or to apply a needle unit that can be connected to the distal end of the syringe body from the outside. Other types or forms of breaking walls can also be applied as weakened wall sections for the seals that can or cannot be integrally formed. It is even possible to not provide any weakened wall sections. The limiting section will then form, as it where, an unbreakable limit for a piston body that has been stuck passed this with its stop cams. Various variants can also be applied as a needle of which one is shown in
Thus, a syringe is provided constructed from a minimum number of parts in accordance with the invention that can be easily manufactured and assembled and where the seals are not in the way of the assembly and are automatically activated as a direct result of this assembly. The syringe can be inexpensively manufactured and filled with injection medium during the assembly process of the various parts. The syringe can be effectively used for injecting an injection medium into an animal, into a teat of an udder of a milking animal such as a cow or goat, for example, an ointment with antibiotic properties and/or a hardening medium that can temporarily seal the teat.
Number | Date | Country | Kind |
---|---|---|---|
2001258 | Feb 2008 | NL | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/NL09/00012 | 1/22/2009 | WO | 00 | 10/25/2010 |