Syringe with rotatable element, systems including the syringe, and associated methods

Information

  • Patent Grant
  • 10058656
  • Patent Number
    10,058,656
  • Date Filed
    Tuesday, October 23, 2007
    18 years ago
  • Date Issued
    Tuesday, August 28, 2018
    7 years ago
Abstract
A syringe includes a barrel and a rotatable element on the barrel; for example at a proximal location along the length of the barrel. The rotatable element rotates at least partially around the barrel. When a handle is associated with the rotatable element, the barrel may rotate as the handle his held substantially stationary or the handle may be rotated while the barrel and any peripheral device secured thereto remain substantially stationary. When handles are associated with a rotatable element that may be removed from a barrel, a barrel that is disassembled from the rotatable element may be replaced with another barrel of the same or a different configuration. Methods of using a syringe with a rotatable element on a barrel thereof are also disclosed.
Description
FIELD

The present invention relates generally to syringes and, more specifically, to syringes with circumferentially rotatable elements on the barrels thereof. The present invention also relates to infusion and/or aspiration systems that include syringes with rotatable elements, as well as to methods for using such syringes.


SUMMARY

In one aspect, the present invention includes syringes with slip rings. An embodiment of such a syringe includes a syringe barrel with a ring or other rotatable element concentrically disposed about a section of the barrel. As an example, the rotatable element may be disposed at or near a proximal end of the barrel (i.e., the end into which a plunger is introduced. The rotatable element is configured to rotate relative to the barrel. In some embodiments, at least a portion of the rotatable element is captured within a groove that extends circumferentially around a section of the barrel. In other embodiments, one or more features that protrude (e.g., a lip, a series of aligned protrusions, etc.) circumferentially from the barrel of the syringe engage a groove formed in an inner surface of the rotatable element.


According to another aspect of the present invention, a syringe barrel with a slip ring may be used as part of a more complex syringe, such as a control syringe or a leveraged syringe (e.g., a syringe with leveraged handles). In a complex syringe of this type, the rotatable element may be secured to a handle that is typically held during use of the syringe, while the barrel of the syringe is free to rotate relative to the orientation in which the handle is held.


In a further aspect, an infusion or aspiration system that includes a syringe with a rotatable element and an infusion or aspiration element, such as a catheter, needle, or the like, secured to a distal end of the barrel. In use, the barrel may rotate relative to a handle that has been secured thereto (e.g., in coupling the barrel to a peripheral device, such as a catheter or needle), or the handle may rotate relative to the barrel (e.g., in use of the syringe while the barrel is coupled to a peripheral device). Such a feature eliminates the need for costly rotatable connections between the syringe barrel and the infusion or aspiration element.


Other features and advantages of the present invention will become apparent to those of ordinary skill in the art through consideration of the ensuing description, the accompanying drawings, and the appended claims.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, which depict features of various aspects of the present invention:



FIG. 1 is a perspective view of an embodiment of syringe according to the present invention, which includes a rotatable element around a portion of a syringe barrel;



FIG. 2 is a side assembly view of the embodiment of the syringe shown in FIG. 1;



FIG. 3 is a perspective assembly view of the embodiment of the syringe shown in FIG. 1;



FIG. 4 is a side assembly view of another embodiment of syringe that incorporates teachings of the present invention;



FIG. 5 is a perspective assembly view of an embodiment of syringe with a circumferentially protruding guide for retaining a rotatable element;



FIG. 6 is a perspective view of an embodiment of syringe barrel with control syringe finger rings on a rotatable element;



FIG. 7 is a top view of an embodiment of syringe barrel with hinge elements protruding from a rotatable element;



FIG. 8 is a side view of a syringe with a member of pliers-grip handles coupled to the hinge elements shown in FIG. 7;



FIG. 9 schematically illustrates a system including handles that are configured to be used with a variety of different barrel configurations; and



FIG. 10 is a schematic view of a system including a syringe with a rotatable element around a syringe barrel and an infusion/aspiration element secured to a distal end of the syringe barrel.





DETAILED DESCRIPTION

With reference to FIGS. 1 through 3, an embodiment of syringe 10 with a barrel 20 and a rotatable element 40 that spins about a circumference of the barrel 20 is depicted. Barrel 20 includes an outer wall 22 that defines an outer surface 23 of barrel 20, as well as a receptacle 24 that extends axially through barrel 20.


A main body 30 of barrel 20, including a central portion of barrel 20, has a substantially uniform outer diameter OD30. At its distal tip 26, outer wall 22 tapers to a much smaller outer diameter, which may form a standard coupling element 28, which may be coupled to an injection or aspiration needle (e.g., a hypodermic needle, biopsy needle, etc.), a catheter, or the like. A proximal end 32 of barrel 20 may also have a substantially uniform outer diameter OD32 but, as shown, its outer diameter OD32 may be smaller than outer diameter OD30 of main body 30, such that a proximal ridge 34 at a boundary between main body 30 and proximal end 32.


In the illustrated embodiment, proximal end 32 includes a distally located axle 36, which may have a substantially smooth surface, and a proximally located retention feature 38. As shown, retention feature 38 may comprise threads or other similar engagement features that are configured to receive, engage, and retain a separate locking element 50, an example of which is provided in further detail below.


Rotatable element 40, which may be annular in shape (i.e., ring-shaped), has a substantially constant inner diameter ID40 that is slightly larger than the outer diameter OD32 of proximal end 32 of barrel 20 but smaller than the outer diameter OD30 of main body 30 of barrel 20, allowing rotatable element 40 to be concentrically placed on proximal end 32. More specifically, rotatable element 40 may be placed over axle 36, adjacent to ridge 34. An inner surface 42 of rotatable element 40 may be substantially smooth. Smoothness of one or both of inner surface 42 and axle 36 may facilitate the free rotation of rotatable element 40 at least partially around axle 36.


As noted, syringe 10 may also include a locking element 50. Locking element 50 may have an inner surface 52 with an engagement feature 54 (e.g., the illustrated threads, etc.) that cooperates with a complementary engagement feature of retention feature 38 at proximal end 32 of barrel 20. When locking element 50 is disposed on retention feature 38, an outer surface of axle 36 is circumferentially recessed relative to outer surfaces of main body 30 of barrel 20 and locking element 50; i.e., a circumferential groove 56 (see FIG. 7) is formed between main body 30 and locking element 50. The dimensions (e.g., a depth) of the resulting groove 56 axially retain rotatable element 40 over axle 36.


As an alternative to embodiments that include locking elements 50 that are configured for assembly with a retention feature 38 of a barrel 20 of a syringe 10, another embodiment of barrel 20′ may include a retention feature 38′, as shown in FIG. 4, may facilitate the assembly of a rotatable element 40 with barrel 20′, but prevent its removal from barrel 20′. For example, retention feature 38′ may include tabs 39′ that are configured and oriented to facilitate the placement of rotatable element 40 over axle 36, but prevent rotatable element 40 from being removed from axle 36′. In a more specific embodiment, tabs 39′ may be oriented and configured to protrude somewhat from an outer surface of the remainder of retention feature 38′. When rotatable element 40 is positioned on retention feature 38′ and slid distally toward axle 36′, tabs 39′ may be pressed radially inward, allowing rotatable element 40 to slide thereover and onto axle 36′. Once rotatable element 40 has been positioned properly upon axle 36′, tabs 39′ resiliently rebound to their relaxed state, in which they protrude radially from the surface of the remainder of retention feature 38′ and retain rotatable element 40 in place on axle 36′.



FIG. 5 shows another embodiment of barrel 120, which includes one or more protrusions 136 (e.g., a single fillet or ridge, a plurality of aligned protrusions, etc.) that extend circumferentially about a portion of barrel 120. A rotatable element 140 that is configured for assembly with barrel 120 may have a somewhat annular shape and include a groove 142 for receiving protrusion(s) 136. Groove 142 and protrusion(s) 136 are configured to enable rotatable element 140 to rotate at least partially around barrel 120. Protrusion(s) 136 may be configured to facilitate the assembly of rotatable element 140 with barrel 120 while preventing the disassembly of rotatable element 140 from barrel 120. Alternatively, rotatable element 140 may be configured (e.g., with appropriate positioned slots, a hinge and locking element, etc.) to facilitate its placement over and retention by protrusion(s) 136.


Turning now to FIG. 6, an embodiment of a control syringe 60 according to the present invention includes a barrel 20, 20′ and a rotatable element 40″ with finger loops 64 that protrude therefrom to form a handle 62. Barrel 20, 20′ is particularly useful with a plunger 66 that includes a thumb loop 68 at its proximal end. As those of ordinary skill in the art will appreciate, plunger 66 also includes a distal end 67 capable of being introduced into, residing within, and traveling longitudinally through receptacle 24, 24′ of barrel 20, 20′.


Another variation of rotatable element 40′″ is shown in FIG. 7. Rotatable element 40′″ includes means for coupling to a handle, such as the depicted hinge elements 70. As depicted, hinge elements 70 may protrude from opposite sides of rotatable element 40′″. The axis of rotation of hinge elements 70 may intersect a central axis through rotatable element 40′″. With such an arrangement, when rotatable element 40′″ is in place over an axle 36 (FIGS. 1 through 4) of a syringe barrel 20, 20′ (FIG. 6), the central axis through rotatable element 40′″ will substantially align with a central axis through the length of barrel 20, 20′. Thus, in such an arrangement, the axis of rotation of hinge elements 70 will also intersect the central axis through barrel 20, 20′.


Hinge elements 70 of the variation of rotatable element 40′″ shown in FIG. 7 may facilitate pivotal assembly of rotatable element 40′″ with a member 82 of syringe actuation handle 80, such as that shown in FIG. 8. Member 82 of syringe actuation handle 80 is pivotally associated with another member 84 that is coupled to a syringe plunger 86. Nonlimiting examples of such syringe actuation handles are described in U.S. Pat. No. 7,041,084, in U.S. Patent Application Publication US-2006-0270996-A1, in U.S. patent application Ser. No. 11/431,420, filed May 8, 2006, and in U.S. Provisional Patent Application Ser. No. 60/853,878, filed Oct. 24, 2006, the entire disclosure of each of which is, by this reference, hereby incorporated herein.


As noted previously, in some embodiments, rotatable element 40″, 40′″ may be disassembled from barrel 20 (see, e.g., the embodiment of rotatable element 40 shown in FIGS. 1 through 3). In such embodiments, once a barrel 20 has been used, it may be removed from rotatable element 40″, 40′″, disposed of, and replaced with a different barrel 20a. Thus, the handles (e.g., handle 62 (FIG. 6) or handles 80 (FIG. 8)) that are associated with such a rotatable element 40″, 40′″ may be reused, which may reduce the expenses that have conventionally been incurred when many types of syringes, including, but not limited to, control and leveraged syringes, are used.


By enabling barrel replacement, the use of a rotatable element of the present invention (e.g., rotatable element 40″, 40′″, etc.) in conjunction with reusable handles (e.g., handles 62, 80, etc.) provide a modular system that may be used with syringe barrels 20A, 20B, 20C, 20D (which may, e.g., be configured as barrel 20, 20′, etc.) of a variety of different configurations, as shown in FIG. 9. By way of example only, barrels of a plurality of different volumes, of a plurality of different dimensions, that include a plurality of different optional features (e.g., no optional features, release valves, ports configured for connection to pressure gauges and other apparatus, inlet ports, etc.), or the like may be used with one reusable handle. Of course, differently configured syringe barrels that are configured for use with the same rotatable element may have commonly dimensioned features for engagement by the rotatable element, or may be used in combination with adapters that facilitate their use with the same rotatable element.


Referring now to FIG. 10, in use, a rotatable element that incorporates teachings of the present invention (e.g., rotatable element 40, 40″, 40′″, etc.) allows for some movement of syringe handles (e.g., handle 62, handle 80, etc.) while the barrel (e.g., barrel 20, 20′, etc.) and a distally located peripheral device 90, such as a catheter or needle, remains substantially stationary. Thus, a syringe according to the present invention eliminates the need for relatively complex and expensive rotatable fittings, or coupling elements, such as slip ring leur locks.


In addition to being able to rotate about a barrel (e.g., barrel 20 or 20), a rotatable element (e.g., rotatable element 40, 40″, 40′″, etc.) that embodies teachings of the present invention enables the barrel to rotate as the rotatable element is held (e.g., by a handle 62, 80, etc.) in a stationary or somewhat stationary (accounting for normal movement by a healthcare provider operating the handle) position. This feature may be useful for coupling a syringe of the present invention to a distally located peripheral device that is already in place in a subject's body.


Although the foregoing description contains many specifics, these should not be construed as limiting the scope of the present invention, but merely as providing illustrations of some of the presently preferred embodiments. Similarly, other embodiments of the invention may be devised which do not depart from the spirit or scope of the present invention. Features from different embodiments may be employed in combination. The scope of the invention is, therefore, indicated and limited only by the appended claims and their legal equivalents, rather than by the foregoing description. All additions, deletions and modifications to the invention as disclosed herein which fall within the meaning and scope of the claims are to be embraced thereby.

Claims
  • 1. A syringe comprising: a barrel that comprises: a distal end having a distal tip;a proximal end opposite from the distal end;an axle circumferentially recessed relative to an outer surface of the barrel and located at the proximal end of the barrel;a receptacle defined in and extending axially through the barrel; anda retention feature capable of preventing removal of a rotatable element from the axle;a plunger, a distal end of which is disposed in the receptacle within the barrel and a proximal end of which extends from the proximal end of the barrel;the rotatable element positioned over the axle of the barrel and extending over only a portion of a length of the barrel, a proximal ridge adjacent to the axle capable of retaining the rotatable element on an exterior of the barrel to prevent distal movement of the rotatable element along the barrel while enabling the rotatable element to spin around the axle of the barrel, the rotatable element being located between the retention feature of the barrel and the distal end of the barrel; anda handle protruding from the rotatable element.
  • 2. The syringe of claim 1, wherein the rotatable element is positioned between the proximal ridge and a locking element located on opposite sides of the axle.
  • 3. The syringe of claim 1, wherein the axle comprises a single circumferential protrusion having an annular shape, the single circumferential protrusion engaging a single groove formed in an inner surface of the rotatable element.
  • 4. The syringe of claim 1, wherein the syringe is capable of substantially preventing movement of the rotatable element toward and away from each of the proximal and distal ends of the barrel without preventing rotation of the rotatable element about the axle.
  • 5. The syringe of claim 1, wherein the retention feature is located between the rotatable element and the proximal end of the barrel.
  • 6. The syringe of claim 1, further comprising: a locking element disposed on the barrel toward the proximal end thereof and capable of retaining the rotatable element on the axle.
  • 7. The syringe of claim 6, wherein the axle is also circumferentially recessed relative to an outer surface of the locking element.
  • 8. The syringe of claim 1, wherein the handle comprises finger loops.
  • 9. The syringe of claim 8, wherein the proximal end of the plunger comprises a thumb loop.
  • 10. The syringe of claim 1, wherein the rotatable element comprises a pair of axially aligned hinge elements protruding therefrom.
  • 11. The syringe of claim 10, wherein the handle comprises a syringe actuation handle that includes a pair of members that are pivotally associated with one another, one of the members being pivotally coupled to the axially aligned hinge elements of the rotatable element, and another of the members being pivotally coupled to the plunger.
  • 12. A syringe comprising: a barrel that comprises: a distal tip;a proximal end opposite from the distal tip;the proximal end comprising an axle at an outer surface of the barrel;a wall defining a receptacle that extends axially through the barrel; anda retention feature capable of preventing removal of a rotatable element from the axle;the rotatable element disposed around the axle of the barrel and extending over only a portion of a length of the barrel, a proximal ridge adjacent to the axle capable of preventing distal movement of the rotatable element while enabling the rotatable element to spin around the axle of the barrel, the retention feature of the barrel being located between the rotatable element and the proximal end of the barrel; anda handle protruding from the rotatable element.
  • 13. The syringe of claim 12, further comprising a plunger partially disposed in the receptacle and extending out of the proximal end of the barrel.
  • 14. The syringe of claim 12, wherein the barrel includes a first outer diameter and a second outer diameter smaller than the first outer diameter defining the axle, and wherein the rotatable element is disposed about the second outer diameter.
  • 15. The syringe of claim 12, wherein the axle comprises a single circumferential protrusion having an annular shape, the single circumferential protrusion engaging a single groove formed in an inner surface of the rotatable element.
  • 16. The syringe of claim 12, wherein the syringe is capable of substantially preventing movement of the rotatable element toward and away from the proximal end and the distal tip of the barrel without preventing rotation of the rotatable element about the axle.
  • 17. The syringe of claim 12, wherein the rotatable element is located between the retention feature and the distal tip of the barrel.
  • 18. The syringe of claim 12, further comprising: a locking element disposed on the barrel toward the proximal end thereof and capable of retaining the rotatable element on the axle.
  • 19. The syringe of claim 18, wherein the axle is circumferentially recessed relative to an outer surface of a main body of the barrel and relative to an outer surface of the locking element.
  • 20. The syringe of claim 12, wherein the handle comprises finger loops that protrude from the rotatable element.
  • 21. The syringe of claim 20, further comprising: a plunger, a distal end of which is disposed in the receptacle within the barrel and a proximal end of which extends out from the proximal end of the barrel, wherein the proximal end of the plunger comprises a thumb loop.
  • 22. The syringe of claim 12, wherein the rotatable element comprises a pair of axially aligned hinge elements protruding therefrom.
  • 23. The syringe of claim 22, wherein the handle includes a pair of members pivotally associated with one another, one of the members being pivotally coupled to the hinge elements, and another of the members being pivotally coupled to a plunger.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 60/853,817, filed Oct. 24, 2006, the disclosure of which is hereby incorporated herein, in its entirety, by this reference.

US Referenced Citations (133)
Number Name Date Kind
530187 Lasky Dec 1894 A
870573 Myers Nov 1907 A
901567 Utschig Oct 1908 A
1019207 Ward Mar 1912 A
1218513 Biron Mar 1917 A
1331805 Chance Feb 1920 A
1718596 Smith Aug 1927 A
2532598 Boeger Dec 1950 A
2748767 Wright Jun 1956 A
2904043 Friedman Sep 1959 A
3016897 Kendrick Jan 1962 A
3110310 Cislak Nov 1963 A
3150801 Hamilton Sep 1964 A
3212685 Swan et al. Oct 1965 A
3281023 Bruck et al. Oct 1966 A
3770169 Roach Nov 1973 A
3840007 Fish Oct 1974 A
4020838 Phillips et al. May 1977 A
4187849 Stim Feb 1980 A
4204539 Van Brugge May 1980 A
4330070 Doubleday May 1982 A
4368731 Schramm Jan 1983 A
4425121 Young et al. Jan 1984 A
RE32214 Schramm Jul 1986 E
4712545 Honkanen Dec 1987 A
4738664 Prindle Apr 1988 A
4744789 Johnson May 1988 A
4808165 Carr Feb 1989 A
4832692 Box et al. May 1989 A
4861339 Jonischkeit Aug 1989 A
4917679 Kronner Apr 1990 A
4923096 Ennis, III May 1990 A
4968303 Clark et al. Nov 1990 A
4994065 Gibbs et al. Feb 1991 A
5027605 Hardesty Jul 1991 A
5037399 Reichert et al. Aug 1991 A
5045066 Scheuble et al. Sep 1991 A
5069421 Kishi et al. Dec 1991 A
5078690 Ryan Jan 1992 A
5112307 Haber et al. May 1992 A
5133483 Buckles Jul 1992 A
5135507 Haber et al. Aug 1992 A
5139488 Klein Aug 1992 A
5150488 Yuan et al. Sep 1992 A
5176647 Knoepfler Jan 1993 A
5188610 Rains Feb 1993 A
5213115 Zytkovicz et al. May 1993 A
5228883 Blakely et al. Jul 1993 A
5288285 Carter Feb 1994 A
5279563 Brucker et al. Apr 1994 A
5304147 Johnson et al. Apr 1994 A
5306147 Dragan et al. Apr 1994 A
5308358 Bond et al. May 1994 A
5336201 von der Decken Aug 1994 A
5350365 De Godoy Moreira Sep 1994 A
5368202 Smrt Nov 1994 A
5419775 Haffner et al. May 1995 A
5425743 Nicholas Jun 1995 A
5453093 Haining Sep 1995 A
5480409 Riza Jan 1996 A
5499998 Meade Mar 1996 A
5505704 Pawelka et al. Apr 1996 A
5507727 Crainich Apr 1996 A
5507730 Haber et al. Apr 1996 A
5511556 DeSantis Apr 1996 A
5531708 Woodruff Jul 1996 A
5560373 DeSantis Oct 1996 A
5562655 Mittelstadt et al. Oct 1996 A
5591135 Sullivan Jan 1997 A
5591176 Henderson et al. Jan 1997 A
5645561 Smith et al. Jul 1997 A
5692642 Brattesani Dec 1997 A
5722829 Wilcox et al. Mar 1998 A
5733258 Lane Mar 1998 A
5735874 Measamer et al. Apr 1998 A
5749968 Melanson et al. May 1998 A
5755362 Rodriguez, Jr. et al. May 1998 A
5807340 Pokras Sep 1998 A
5830194 Anwar et al. Nov 1998 A
5851214 Larsen et al. Dec 1998 A
5867911 Yates et al. Feb 1999 A
5881928 Register et al. Mar 1999 A
5893488 Hoag et al. Apr 1999 A
5951517 Lampropoulos et al. Sep 1999 A
5961494 Hogan Oct 1999 A
5961496 Nielsen et al. Oct 1999 A
5964380 Hazzard et al. Oct 1999 A
5964736 Lane Oct 1999 A
5992694 Keller Nov 1999 A
6007515 Epstein et al. Dec 1999 A
6024728 Schulz Feb 2000 A
6030368 Anwar et al. Feb 2000 A
6047861 Vidal et al. Apr 2000 A
6080136 Trull et al. Jun 2000 A
6117158 Measamer et al. Sep 2000 A
6183444 Glines et al. Feb 2001 B1
6213984 Lane et al. Apr 2001 B1
6241708 Reilly et al. Jun 2001 B1
6264637 Hogan Jul 2001 B1
6368307 Ziemba et al. Apr 2002 B1
6406460 Hogan Jun 2002 B1
6439439 Rickard et al. Aug 2002 B1
6585696 Petersen et al. Jul 2003 B2
6607512 Oliver et al. Aug 2003 B2
6752781 Landau et al. Jun 2004 B2
6764466 Staats et al. Jul 2004 B1
6802824 Mickley et al. Oct 2004 B2
7041084 Fojtik May 2006 B2
7097636 Pessin Aug 2006 B2
7125395 Hommann et al. Oct 2006 B2
7988677 Fojtik Aug 2011 B2
8021333 Kaal et al. Sep 2011 B2
8672893 Fojtik Mar 2014 B2
20020022805 Lane Feb 2002 A1
20020183698 Quinn et al. Dec 2002 A1
20030139706 Gray Jul 2003 A1
20030187400 Liao Oct 2003 A1
20030195492 Gobron et al. Oct 2003 A1
20040116873 Fojtik Jun 2004 A1
20040116893 Spohn et al. Jun 2004 A1
20040164097 Orecchia et al. Aug 2004 A1
20040210200 Gerondale et al. Oct 2004 A1
20050070848 Kim et al. Mar 2005 A1
20050070912 Voellmicke Mar 2005 A1
20050137575 Thompson et al. Jun 2005 A1
20060247578 Arguedas et al. Nov 2006 A1
20070010788 Evans Jan 2007 A1
20070106226 Croll et al. May 2007 A1
20070265573 Fojtik Nov 2007 A1
20080004703 Trieu et al. Jan 2008 A1
20100217122 Fumiyama et al. Aug 2010 A1
20110008750 Dillard, III Jan 2011 A1
20140200483 Fojtik Jul 2014 A1
Foreign Referenced Citations (16)
Number Date Country
19647529 May 1998 DE
19732332 Feb 1999 DE
0474218 Mar 1992 EP
0565045 Oct 1993 EP
0919251 Jun 1999 EP
1066797 Jan 2001 EP
1148834 Oct 2001 EP
1301227 Apr 2003 EP
1440706 Jul 2004 EP
2 009 514 Feb 1970 FR
2207728 Jun 1974 FR
20 683 140 May 1993 FR
9908735 Feb 1999 WO
02094343 Nov 2002 WO
04062713 Jul 2004 WO
2007133615 Nov 2007 WO
Non-Patent Literature Citations (3)
Entry
Supplementary Partial European Search Report in European Application No. EP 08 78 0563.6 dated Jan. 15, 2015.
Japanese Patent Office, “Notice of Reason for Rejection,” dated Mar. 30, 2015, in Japanese patent application No. 2014-147359.
United States Patent and Trademark Office Acting as the International Searching Authority, “International Search Report and Written Opinion,” dated Dec. 28, 2015, in international application No. PCT/US2015/052506.
Related Publications (1)
Number Date Country
20080132850 A1 Jun 2008 US
Provisional Applications (1)
Number Date Country
60853817 Oct 2006 US