The present invention relates to a system and a method for controlling and optimizing the RPM of at least one main engine of a vessel, which main engine drives at least one pitch regulated main propeller for propulsion, which main propeller is pitch-regulated which main engine drives at least one main generator, which main generator drives at least one thruster motor, which thruster motor drives at least one thruster propeller which thruster propeller is pitch-regulated.
EP 2226245 relates to a drive system for a vessel, comprising at least one drive shaft driving a propeller, an arrangement of electric drives disposed on the drive shaft, an arrangement of generators for supplying power to the electrical drives, and a control unit. The power supplied to the propeller by means of the electric drives can be controlled by means of the control unit as a function of the characteristic curve of the propeller, which defines the maximum achievable thrust of the propeller as a function of the rotational speed.
It is the object of the invention to reduce the RPM of one ore more main engines of a vessel and by increasing the pitch of the propellers to maintain constant propulsion, and by reducing the RPM of the main engines to reduce the fuel consumption and in this way reduce pollution.
The object can be fulfilled by a system as disclosed in the preamble to claim 1 if further modified if the system analyses the RPM and pitch of the main shaft propeller, which system analyses the RPM and the pitch of the thruster propeller, which system is based on said analysis, which system receives a plurality of input from another control system in the vessel, which system performs regulation of the RPM of the main engine between a low and a high threshold level during normal operation of the vessel, and which system performs regulation of RPM of the main engine by lowering the RPM of the main engine to a level below the low threshold RPM level during a period when the vessel is maintaining a constant position or a constant low speed, which system performs regulation of the pitch of at least the main propeller for compensating for the low RPM level of the main engine.
Normal operation of the vessel is defined as when the vessel is travelling at a certain speed. During normal operation the RPM of the at least one main engine runs at RPM between a low and a high threshold. The low RPM threshold results in the engine running in an idle mode and the high threshold level represents the maximum value at which the main engine can operate during normal propulsion of the vessel.
Hereby it can be achieved, that the engine will be able to conserve fuel, if there is no degradation in performance of the primary regulated quantity, normally the position of the ship. In many situations where vessels such as ships have to be placed at the same position, for example in connection with drilling from oil or gas wells, the vessels must be placed at precisely the same position for a longer period of time. Because current and wind will move the vessels, they must always operate with the main engine rotating and also the main propeller rotating in order to achieve the correct position in water. This process is called Dynamic Positioning. In order to maintain the position of the vessel correctly, there will often also be a number of thruster propellers which are operated by electric motors, and in order to obtain a regulation in the propulsion of the propellers, the propellers are pitch-regulated, so in fact the propellers can rotate without acting any force upon the water. If a propeller has to operate, the pitch will be regulated so that the propeller acts in the water. If a vessel operates with a minimum of revolutions per minute of the main engine, this minimum RPM is probably sufficient most of the time for keeping the vessel in the right position, but also for supplying sufficient electricity for the vessel. This invention deals with a situation where weather conditions are with limited wind and limited current, and the different propellers are rotating at a reduced and controlled speed. In this situation, it is possible to reduce the RPM of the main engine and hereby reduce fuel consumption and thereby also reduce the pollution of operating the vessel. The fuel saving in good weather conditions can be as large as 30-50%. This is achieved by reducing, also mentioned here as optimizing, the RPM of the main engine and therefore also a propeller operating directly at the main shaft and at the same time, and probably also the speed of the thrust propellers, will be reduced, because the electric motors are operating with the frequency of the main generator connected to the main shaft. In order to have the same propulsion, the main propellers have to be regulated in their pitch, and possibly also the thrust propellers have to be regulated in their pitch, so they are operating sufficiently for keeping the correct position of the vessel. By decreasing the RPM of the main engine, it is also possible by increasing the pitch of both the main propeller and of the thruster propellers and thereby achieve sufficient propulsion and still reduce the total energy consumption. Other systems onboard a vessel are also connected to the same main generator as is the power supply, and this main generator will when the RPM is reduced also produce electricity with a reduced frequency. This problem can be overcome by an inverter which by a DC bridge converts the electricity to the correct frequency. The system can reduce the RPM of the Main Engine(s) to save fuel and compensate for this reduced RPM by adjusting the pitch of the Main Propeller(s) thereby maintaining the propulsion required to maintain position. Hereby lower RPM and fuel savings can be achieved while maintaining the propulsion and maintaining position.
The system can adjust the RPM of the main engine, which system performs compensation of the pitch of the one or more thruster propellers in order to maintain the propulsion power from the thruster propeller. Hereby it can be achieved that the thruster propeller can continue operating with the same propulsion as previously and maintain the ship's position by regulating the pitch of the thruster(s) propellers to compensate for the reduced RPM of the Thruster(s) motors due to the reduced AC power frequency delivered by the Shaft Generator(s).
The system can adjust the RPM of the main engine, which system performs compensation of the pitch of the main propeller in order to maintain the propulsion power from the main propeller. Hereby it can be achieved that also the main propeller can deliver the same propulsion power by changing the pitch when the at least one main engine runs with a lowered RPM, i.e. below the normal low threshold.
The system can adjust the pitch of at least one thruster propeller and compensate the pitch to maintain the propulsion power from the thruster propeller when the RPM of the main engine is reduced. Hereby it can be achieved that the thruster propeller is compensated by pitch regulation so that a reduction in the RPM is fully compensated for by change in pitch.
The system can adjust the pitch of at least one main propeller and compensate the pitch to maintain the propulsion power from the main propeller when the RPM of the main engine is reduced. The pitch can be regulated also on the propeller driven by the main engine in a manner by which the propulsion is maintained. Especially here there is a direct influence on the fuel consumption of a main engine.
The system can activate a frequency converter, such as an inverter with a DC bridge, which converts the electricity to the correct frequency for compensating for the lowered RPM level of the main engine, whereby the energy supply remains unaffected by the lowered RPM of the at least one main engine.
The system can comprise at least a first algorithm for adjustment of the RPM of the main engine in steps of fixed RPM. Hereby it can be achieved that different revolutions, for example unpleasant RPM because of resonance in the vessel can be avoided in the steps to be used.
The system can comprise at least a second algorithm for adjustment of the RPM of the main engine by dynamic changing of RPM. Another possibility is that the RPM of the at least one main engine is changed dynamically, i.e. it takes the RPM that is sufficient for the control of the vessel at a certain moment, and that a dynamic change is performed immediately in both directions depending on the actual need for power.
The system can, based on analysis of actual behaviour of the vessel and the actual pitch of the main propeller and the pitch of the thruster propeller, activate a first and/or a second algorithm of the system and disable the RPM adjustment of the main engine. In some situations a vessel may have a behaviour according to, for example, weather conditions or current by which one of the algorithms in the system, after a critical analysis of the behaviour of the vessel, will decide by itself to partly or fully disable the RPM adjustment so that the main engine of the vessel will accelerate to a higher RPM, in order to have sufficient power to avoid critical situations, e.g. because of the weather conditions around the vessel. The algorithm can be but is not limited to a proprietary algorithm to control Main Engine(s) RPM. The said algorithm can receive data about said external factors via various digital communication links with such commercially available systems including, but not limited to: Dynamic Positioning system(s), Power Management System(s), Weather detection or prediction systems, Collision Avoidance Systems, Master Control Systems, on board Fire Detection and Control systems, Vibration, Resonance, and Cavitation Detection Systems, and the ship's master control system.
The system can adjust the RPM of the main engine if the pitch of the thruster propeller enters at least one range of pitch, in order to e.g. suppress resonances, optimize the propulsion power, having sufficient range of available pitch of the thruster propeller. Hereby it can be achieved that a certain range of RPM is not to be used for operation, but that the system, as soon as possible, has to go to an RPM that is higher or lower than a frequency where resonance occurs. In fact, in a vessel there can be several resonance frequencies where the main engine will start a type of resonance oscillations somewhere in the vessel. These critical RPMs where resonance occurs could be controlled by the system. Some RPMs could be avoided simply by programming the system, but the system can also communicate with accelerometers placed at different positions in the vessel and in this way automatically measure resonance when it occurs in the mechanical construction, and in this way automatically perform suppression of the resonance. The algorithms can perform control of the Main Engine(s) RPM, based on analysis of the actual behaviour of the vessel and the external factors listed above, and the actual pitch of the Main Propeller(s) and the pitch of the Thruster(s), adjust the RPM down or up or even disable itself, returning the Main Engine(s) to 100% rated speed, i.e. normal operation mode. The system can be fully or partly disabled by certain conditions in the system or in further systems connected to the system. The system can disable the regulation if certain situations occur, such as changing weather conditions or on-board emergencies.
The system can by either of the algorithms also adjust the RPM of the main engine if the pitch of the main propeller enters at least one range of pitch, in order to e.g. suppress resonances, optimize the propulsion power, having sufficient range of available pitch of the main propeller. In the case of resonance, cavitations, vibration or other related factors are detected, the Control System(s) algorithm can step to the next speed, up or down, in the Electronic Gearbox. Hereby it can be achieved that a relatively low RPM can be held constant for a longer period of time, because the pitch of two or more of the propellers can be adjusted up and down as long as there is sufficient room of operation. Hereby it can also be achieved that resonance frequencies can be avoided if resonance occurs, because of the rotation of the propellers in the water. Hereby is achieved that, in situations where external power demand requires a higher yield from the main engine and the axle shaft generators, the RPM can be adjusted by means of the system to a normal speed of operation so as to overcome the power demand.
The system can, based on the actual load of one or more shaft generators perform control of the RPM of the main engine, based on the working conditions of said shaft generator, change in power consumption, need of larger/lower range of power consumption or available power on a bus bar. Increasing power demand in the other parts of the vessel may automatically increase the RPMs of the at least one main engine, such as up to the normal level, e.g. based on request by the frequency converters. This may be necessary in some situations for example because the frequency converters are overloaded because of the low frequency. That is the essence of this invention: the ability and knowledge to control the power of the Main Engine(s), either up or down depending upon conditions, thus saving fuel without compromising performance of any auxiliary system(s) dependent upon said Main Engine(s).
The system can adjust the RPM of the main engine, based on the actual load of one or more frequency converters connected to the shaft generator, which frequency converter reaches an upper or lower limit for one or more parameters for the operation of the frequency converters, such as changes in power consumption, need of larger/lower dynamic range of power consumption, or available power on a bus bar.
The system can, based on communication with other computer systems on board the vessel, such as a Dynamic Position Control system, perform regulation of the RPM of the main engine. By letting the system communicate with other systems onboard the vessel, it is possible that information from the dynamic position control can be used to regulate the RPMs of the main engine, and if problems occur due to the vessel moving away from the correct position, then automatic adjustment of the RPM could be made.
The system can be fully or partly disabled by certain conditions in the system or in further systems connected to the system. The system can disable the regulation if certain situations occur, such as changing weather conditions.
This invention also concerns a method comprising at east the following sequence of steps:
a: Analyse the RPM and the pitch of the main propeller (8),
b: analyse the RPM and the pitch of at least one thrust propeller (12),
c: analyse if pitch of the at least one main propeller (8) and the at least one thruster, propeller (12) has room for increasing the pitch,
d: optimize the RPM of the main engine (6),
e: optimize the pitch of the at least one main propeller (8),
f: optimize the pitch of at least one thrust propeller (12),
g: receive and analyse input from external systems,
h: repeat the analysis from a.
By the method as disclosed, it is possible to reduce the RPM of a main engine of any vessel operating maybe at stationary position or low speed simply by adjusting the RPM of the main engine downwards, e.g. below the normal lower threshold, and instead adjusting the pitch of the main and/or thrust propellers so that the total propulsion will be sufficient to maintain operational parameters. Reducing this RPM can have other consequences, so these algorithms compensate automatically, even up to the point of turning themselves off, thus maintaining the overall system control with no compromise in performance. By the reduction of the RPM of the main engine, the fuel consumption of the engine will be reduced by up to 40 or 50 percent and hereby considerably reducing operating costs and emissions.
In operation the system 2 can perform measurement and analysis of RPM of the propellers and of the pitch of the propellers. In situations where the vessel has to operate at a constant speed, or just be kept at a specific position, the engines have to operate, because there will always be a drift on the vessel caused by the wind or the water current. Therefore, in many situations where weather conditions are good, it is possible to reduce the RPM of the main engine, and instead change the pitch of the propellers by which the same propulsion can be achieved. This has the effect that fuel consumption and thereby pollution is reduced.
Further
Further, a positioning system 36 is indicated. The positioning system 36 can communicate with an electronic gear box 38. The electronic gear box 38 can communicate with the thrusters and also with the pitch operation system of the main propeller 8. The electronic gear box 38 is able to adjust the RPM of the main shaft. In this way, the electronic gear box 38 can perform a very precise regulation of the main engine and in this way reduce the RPM and reduce the fuel consumption of the system.
The main engine 6A and 6B are normally operating at 785 RPMs corresponding to an output of the shaft generator of 60 hertz, 440 volts. To minimize the fuel consumption, the main idea is to reduce the speed of the main engine, e.g. to 500 RPMs which will reduce the output of the shaft generator to 38.2 hertz, 280 volts when feeding the thrusters. However, this will reduce the thruster power which has to be compensated for by more pitch.
When max. pitch is reached, the speed of the main engines must be increased to increase thruster power. One example of the electronic gear box 38 is an electronic gear box of fixed RPM such as 500, 550, 600, 650, 700, 750, 785 RPM which is used in the heart of the control algorithm. If the thruster power demand is increased to a higher value than what the actual main engine speed RPM can supply, the thruster power is increased by a calculated main engine RPM increased with a short delay of 1-5 seconds.
When the thruster power again decreases, the main engine RPM can be decreased. To obtain a hysteresis, the main engine RPM will be decreased after a delay of 30-60 seconds to a lower level, depending on the thruster maximum power during this period. The hysteresis avoids that the main engine RPM will keep going up and down, and the thruster power is mainly controlled by the thruster pitch. It is taken into consideration which of the bow thruster, stern thruster, or main propeller which has the highest power demand. The thruster having the maximum power demand will determine the minimum main engine speed in the electronic gear box.
In operation, the Control System(s) 101 can perform measurement and analysis of the RPM and pitch of all of the propellers used to control the ship. In situations where the ship has to operate at a constant speed, or be kept at a specific position, the engines have to operate, because there will always be a drift on the ship by caused by the wind or the water current. Therefore, in many situations where weather conditions are good, it is possible to reduce the RPM of the Main Engine(s) 103 below the normal lower threshold, and change the pitch of the Main Propeller(s) 106 in order to achieve the same propulsion. This has the desired effect to reduce fuel consumption and thereby reduce pollution.
Further,
Further a Dynamic Positioning System 113 is indicated at
In a test system, the Main Engine(s) 103 are normally operating at 785 RPMs corresponding to an output of the Shaft Generator(s) 109 of 60 hertz, 440 volts. To minimize the fuel consumption, the main idea is to reduce the speed of the Main Engine(s) 103 to, for example, 500 RPMs which will reduce the output of the Shaft Generator(s) 9 to 38.2 hertz, 280 volts when feeding the Thruster(s) 111. However, this reduced frequency will reduce the thrust produced by the Thruster(s) 111 which will be compensated for by adjusting the pitch of the thruster propeller(s).
When the pitch of any of the propellers reaches pre-programmed limits, the speed of the Main Engine(s) 103 must be regulated to maintain thrust. One example of the Electronic Gearbox 112 is a set of fixed, pre-programmed Main Engine(s) 103 RPMs such as 500, 550, 600, 650, 700, 750, 785 RPM which are used by the primary control algorithm. If the thrust demand is more than can be obtained by the pitch control at the exiting RPM, the Control System(s) 1 algorithms, after a short programmable delay of 1-5 seconds, increase the Main Engine(s) 103 RPMs to the next value in the Electronic Gearbox 112.
Conversely, when the thrust demand decreases, the Control System(s) 101 algorithms can reduce the Main Engine(s) 103 RPMs to the next lower value in the Electronic Gearbox 112 after a delay of 30-60 seconds to provide a hysteresis and prevent oscillations or hunting of the system.
Thrust demand is determined by the Control System(s) 101 by reading the pitch of all propellers, thruster and Main Propeller(s) 106. The Thruster(s) 111 or Main Propeller(s) 106 having the maximum thrust demand will determine the minimum Main Engine(s) 103 speed from the values stored in the Electronic Gearbox 112.
Any number of external factors could be included in the Main Engine(s) 103 RPM control algorithm including, but not limited to: manual operator intervention, a change in the ship's position away from the desired position, if resonance, cavitation, or excessive vibration are detected, if increased wind or water currents are detected, if there are increased demands for electrical power in the ship's other systems, if radar or other detection methods of proximity to other ships, land, obstructions, or weather patterns, fire suppression or other control demands, the Main Engine(s) 103 RPM will be adjusted in stages by the control algorithm until sufficient power is produced to meet the demand, including an adjustable reserve.
Because the whole system can operate in a common algorithm it is possible to let regulations he made in a very fast manner so regulation will be performed mostly as a dynamic process.
Number | Date | Country | Kind |
---|---|---|---|
PA 2012 70636 | Oct 2012 | DK | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/DK2013/050334 | 10/17/2013 | WO | 00 |