Traditional oral dosage drug formulations include both active pharmaceutical ingredients (API) and inactive ingredients. The inactive ingredients, also called excipients, are components of the final formulation of a drug that are not considered active pharmaceutical ingredients (API) in that they do not directly affect the consumer in the desired medicinal manner.
Traditional oral dosage forms have several inactive ingredients. Among the traditional inactive ingredients included in oral dosage forms are binders that hold the tablet together, coatings configured to mask an unpleasant taste, disintegrants configured to make the tablet break apart when consumed, enteric coatings, fillers that assure sufficient material is available to properly fill a dosage form, enhancers configured to increase stability of the active ingredients, preservatives aimed at preventing microbial growth, and the like.
Traditionally, the formation of an oral dose drug often included combining a desired pharmaceutical product with a number of the above-mentioned materials designed to control the release rate of the API when consumed. While the traditional method is effective for a number of soluble drugs, there are a number of highly water insoluble drugs that are not well suited to sustained or controlled delivery. The formulation of these highly water insoluble APIs into controlled or modified-release dosage forms using traditional formulation methods is both expensive and challenging due to the APIs insolubility and unknown stability.
Microemulsion formulations potentially offer a variety of desirable properties for pharmaceutical delivery, namely, high solubility, high absorption, and improved pharmacokinetics. However, precise dispensing and distribution of the microemulsions formed for pharmaceutical product delivery has proven to be somewhat problematic as noted in the following publications: Using microemulsions for drug delivery, Pharmaceutical Technology, 1987; Improved drug delivery using microemulsions: Rationale, recent progress, and new horizons, Critical Reviews in Therapeutic Drug Carrier Systems, 2001; and Microemulsions: an overview and pharmaceutical applications, Critical Reviews in Therapeutic Drug Carrier Systems, 1999.
A jettable solution includes a naturally occurring, edible, or removable oil, an edible surfactant, an edible aqueous solution, and a pharmaceutical solubilized into the naturally occurring oil, wherein the oil, the pharmaceutical, the surfactant, and the aqueous solution form a microemulsion.
The accompanying drawings illustrate various embodiments of the present system and method and are a part of the specification. The illustrated embodiments are merely examples of the present system and method and do not limit the scope thereof.
Throughout the drawings, identical reference numbers designate similar, but not necessarily identical, elements.
A number of exemplary systems and methods for producing an ink jettable pharmaceutical based microemulsion are disclosed herein. More specifically, a jettable pharmaceutical based microemulsion is disclosed that may contain a number of water-immiscible pharmaceuticals. Moreover, an exemplary method for forming and dispensing the ink jettable pharmaceutical based microemulsion to form an oral dosage form is disclosed herein.
As used in the present specification and the appended claim, the term “edible” is meant to be understood broadly as any composition that is suitable for human consumption and is non-toxic. Similarly, the phrase “suitable for human consumption” is meant to be understood as any substance that complies with applicable standards such as food, drug, and cosmetic (FD&C) regulations in the United States and/or Eurocontrol experimental centre (E.E.C.) standards in the European Union. Additionally, the term “ink” is meant to be understood broadly as meaning any jettable fluid configured to be selectively emitted from an inkjet dispenser, regardless of whether the jettable fluid contains a pharmaceutically active ingredient or an oil containing solubilized pharmaceutically active ingredient. The term “jettable” is meant to be understood both in the present specification and in the appended claims as any material that has properties sufficient to allow the material to be selectively deposited by any digitally addressable inkjet material dispenser.
Additionally, in the present specification and in the appended claims, the term “amphiphile” or “hydrotrope” is meant to be understood as relating to, or being a compound such as a surfactant that includes molecules having a polar “hydrophilic” group attached to a hydrophobic hydrocarbon chain or cluster. Consequently, an amphiphile may include any of many organic compounds such as a surfactant, a detergent, a bile salt, or a phospholipid that is composed of hydrophilic and hydrophobic portions. Moreover, the term “micelle” is meant to refer to any electrically charged particle built up from polymeric molecules or ions and oils that occurs in particular colloidal electrolytic solutions.
As used in the present specification, and the appended claims, the term “microemulsion” is meant to be understood as a thermodynamically equilibrium colloid system comprising two liquids. Typical microemulsion particle size is 5-150 nm. Microemulsions are normally transparent or slightly bluish because of the very small particle size.
In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present system and method for forming and controllably dispensing a jettable pharmaceutical based microemulsion. It will be apparent, however, to one skilled in the art, that the present method may be practiced without these specific details. Reference in the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. The appearance of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment.
Exemplary Structure
The computing device (110) that is controllably coupled to the servo mechanism (120), as shown in
The moveable carriage (140) of the present formulation system (100) illustrated in
As a desired quantity of the jettable pharmaceutical based microemulsion (160) is printed, the computing device (110) may controllably position the moveable carriage (140) and direct one or more of the inkjet dispensers (150) to selectively dispense the jettable pharmaceutical based microemulsion at predetermined locations as digitally addressed drops. The inkjet material dispensers (150) used by the present formulation system (100) may be any type of inkjet dispenser configured to perform the present method including, but in no way limited to, thermally actuated inkjet dispensers, mechanically actuated inkjet dispensers, electro-statically actuated inkjet dispensers, magnetically actuated dispensers, piezo-electrically actuated inkjet dispensers, continuous inkjet dispensers, etc.
The material reservoir (130) that is fluidly coupled to the inkjet material dispenser (150) houses the jettable pharmaceutical based microemulsion (160) prior to printing. The material reservoir (130) may be any sterilizable container configured to hermetically seal the jettable pharmaceutical based microemulsion (160) prior to printing and may be constructed of any number of materials including, but in no way limited to, metals, plastics, composites, ceramics, or appropriate combinations thereof.
According to one exemplary embodiment, the jettable pharmaceutical based microemulsion (160) is made possible by the inclusion of a number of surfactant “amphiphile” or “hydrotrope” molecules (200) similar to that illustrated in
In addition, as illustrated in
Exemplary Composition
According to one exemplary embodiment, the present jettable pharmaceutical based microemulsion (160;
As noted above, the present jettable pharmaceutical based microemulsion (160;
Additionally, the present system and method may be formed using a number of naturally occurring pharmaceutical solubilizing oils, edible silicone oils or removable oils. While there are several edible, environmentally benign, non toxic, non corrosive, biodegradable, and FDA approved oils available for pharmaceutical use, the incorporation of naturally occurring pharmaceutical solubilizing oils ensures that the resulting jettable pharmaceutical based microemulsion is edible and contains ingredients approved by the FDA. According to one exemplary embodiment, the present naturally occurring pharmaceutical solubilizing oils may include, but are in no way limited to, castor oil, oleic acid and oleyl alcohol, coconut oil, mineral oil, cottonseed oil, squalene, safflower oil, and fatty esters such as triolein (glyceryl trioleate) and ethyl oleate. According to another exemplary embodiment, the oils are removable oils that can be evaporated under the influence of heat or vacuum after the precision dosing process. Examples of such oils are aliphatic alcohols such as pentanol, butanol, and hexanol; cyclic alcohols such as cyclopentanol and 4-methyl cyclohexanol; terpenes such as hydroxycitronellal, alpha-terpeniol and eugenol; aromatic side chain alcohols such as cinnamoyl alcohol and benzyl alcohol; ketones such as cyclopentanone and cyclohexanone; and esters such as diethyl malonate.
The aqueous solution that forms the vehicle portion of the jettable pharmaceutical based microemulsion may include, but is in no way limited to, water and a solvent or amino acid. The aqueous vehicle component of the present system and method is included in the present jettable pharmaceutical based microemulsion (160;
The pharmaceutical payload component of the present jettable pharmaceutical based microemulsion (160;
In addition to the above-mentioned components of the present jettable pharmaceutical based microemulsion (160;
As noted previously, the present system and method may be used to vary the release rate of the desired pharmaceutical product. According to the present exemplary system and method, the release rate determining factor for the absorption of the desired pharmaceutical product in the pharmaceutical based microemulsion is not the enzymatic metabolism of triglycerides, rather the determining factor rests primarily in the breakdown of the naturally occurring oil globules into microparticles since the enzymes acting on the pharmaceutical based microemulsion act mainly at the surface of the oil globules. Consequently, the release rate of the pharmaceutical product may be selectively adjusted by varying the naturally occurring oil used.
According to one exemplary formulation, a pharmaceutical based microemulsion was formed by combining L-arginine (5%), stearic acid (6%), and soy bean oil (15%) in an aqueous solution. After formulation, an observation and subsequent testing was performed illustrating that the above-mentioned combination forms very stable microemulsions that manifest excellent ink-jet material dispenser jetting characteristics.
While a number of exemplary formulations and ingredients for the present jettable pharmaceutical based microemulsion are given above, they are in no way meant to limit the present system. Rather, they are presented for exemplary purposes only.
Exemplary Implementation and Operation
As shown in
Once the desired microemulsion is prepared, a desired pharmaceutical product may be solubilized into the microemulsion (step 510). Again, a mere combination of the microemulsion and the desired pharmaceutical product will self-associate into the desired micelles. According to this exemplary embodiment, due to the insolubility of the desired pharmaceutical in water, it will equilibrate over a period of time into the oil droplet (310;
Alternatively, the jettable pharmaceutical based microemulsion may be formed by first dissolving the desired pharmaceutical product into the naturally occurring-pharmaceutical solubilizing oil to form an oil-in-water microemulsion. According to this exemplary embodiment, the desired pharmaceutical product is dissolved in the naturally occurring pharmaceutical solubilizing oil until a transparent or semi-transparent liquid results. Dissolution of the desired pharmaceutical product may be facilitated by the use of slight agitation and/or thermal energy and rolling in a container over a roller mill to cause through mixing. Complete dissolution of the desired pharmaceutical product may then be confirmed by microscopy.
After the desired pharmaceutical product has been completely dissolved in the naturally occurring pharmaceutical solubilizing oil, the edible surfactant and the aqueous solution may be added with slight agitation to form the desired jettable pharmaceutical based microemulsion. According to this exemplary embodiment, the desired pharmaceutical product remains in solution in the naturally occurring pharmaceutical solubilizing oil during the production of the microemulsion. Consequently, the naturally occurring-pharmaceutical solubilizing oil and the dissolved pharmaceutical product are distributed throughout the aqueous phase of the microemulsion as very tiny particles that may then be readily taken up by the human body.
Once the jettable pharmaceutical based microemulsion has been satisfactorily formed, it will exhibit a number of desirable properties. According to one exemplary embodiment, the jettable pharmaceutical based microemulsion will be suitable for inkjet printing from an inkjet material dispenser (150;
Once the above-mentioned jettable pharmaceutical based microemulsion (160;
As shown in
After the formed jettable pharmaceutical based microemulsion is deposited into a material reservoir (step 600), an edible structure is positioned adjacent to the inkjet material dispenser (150;
Once the edible structure (170) is correctly positioned, the present formulation system (100) may be directed by the computing device (110) to selectively jet the jettable pharmaceutical based microemulsion (160) onto the edible structure (step 620;
The precise metering capability of the inkjet material dispenser (150) along with the ability to selectively emit the metered quantity of aqueous vesicle pharmaceutical (160) onto precise, digitally addressed locations makes the present system and method well suited for a number of pharmaceutical delivery applications. According to one exemplary embodiment, the precision and addressable dispensing provided by the present inkjet material dispenser (150) allows for one or more compositions to be dispensed on a single edible structure (170). According to this exemplary embodiment, a combination therapy may be produced in a customized dosage for a patient. Combination therapy is to be understood as any dosage including two or more pharmaceutical products combined to achieve desired results. According to another exemplary embodiment certain regions of the dosage may be printed with a gradient to allow for an initial high concentration “burst” and a low concentration slow release zone. This gradient deposition will vary both the concentration and temporal release rate of the dispensed pharmaceutical. Precision of the resulting oral drug deposition may be varied by adjusting a number of factors including, but in no way limited to, the type of inkjet material dispenser (150) used, the distance between the inkjet material dispenser (150) and the edible structure (170), and the dispensing rate. Once the jettable pharmaceutical based microemulsion (160) has been selectively deposited onto the edible structure (170), according to the desired dosage, the deposited jettable pharmaceutical based microemulsion may be absorbed by the edible structure or remain in a fixed state on top of the edible structure. Consequently, the jettable pharmaceutical based microemulsion is affixed to the edible structure until consumption initiates a selective release thereof.
Upon deposition of the aqueous vesicle pharmaceutical, it is determined whether or not the jettable pharmaceutical based microemulsion dispensing operation has been completed on the edible structure (step 630;
In order to check the printed media for defects (step 640;
According to one exemplary embodiment, if defects are discovered on the edible structure (YES, step 650;
In conclusion, the present system and method for producing and dispensing a jettable pharmaceutical based microemulsion allows for precision dispensing of insoluble or low-solubility pharmaceuticals. More specifically, the insoluble or low-solubility pharmaceuticals are solubilized into a jettable microemulsion based on naturally occurring oils such as soybean oil. The system consists of aqueous microemulsions, with or without a co-solvent and a “pay load” pharmaceutical agent. Moreover, the use of an inkjet material dispenser allows a high precision of dosage forms. In addition, the jettable pharmaceutical based microemulsions exhibit a number of desirable properties such as excellent jettability, stability, uniform drop formation, fine particle size, ability to form individual, gel-drops of nanometer size, and precise control over the dosage amount. Additionally, the systems and methods disclosed are cost effective when compared to traditional formulation methods while being able to precisely deliver and prepare custom dosages without special treatments, modifications, or use of special equipment.
The preceding description has been presented only to illustrate and describe exemplary embodiments of the present system and method. It is not intended to be exhaustive or to limit the system and method to any precise form disclosed. Many modifications and variations are possible in light of the above teaching. It is intended that the scope of the system and method be defined by the following claims.
The present application is a divisional application and claims the priority under 35 U.S.C. §120 of previous U.S. patent application Ser. No. 10/827,485 filed Apr. 19, 2004 now abandoned by Makarand Gore for “A System and a Method for Pharmaceutical Dosage Preparation Using Jettable Microemulsions.”
Number | Name | Date | Kind |
---|---|---|---|
6623765 | Dennis et al. | Sep 2003 | B1 |
7727576 | Figueroa et al. | Jun 2010 | B2 |
20020143072 | Aust | Oct 2002 | A1 |
Entry |
---|
Three Dimensional Printing, What is the 3DP Process?, Jun. 28, 2000. |
Bagwe et al. Improved Drug Delivery Using Microemulsions: Rationale, Recent Progress, and New Horizons, Critical Reviews in Therapeutic Drug Carrier Systems, 18(1):77-140 (2001). |
Three dimnesional Printing, What is the 3DP Process? Jun. 28, 2000. |
Three Dimensional Printing, Medical Applications: Drug Delivery Devices, Jun. 28, 2000. |
Bagwe et al. Improved Drug Delivery Using Microemulsions: Rationale, Recent Progress, and New Horizons, Critical Reviews in Therapeutic Drug Carrier Systems, 18(1 ):77-140 (2001). |
Woo, George, Formulation and Physicochemical Properties of macro- and micro emulsions prepared by interfacial ion-pair formation between, 1987. |
Number | Date | Country | |
---|---|---|---|
20110151103 A1 | Jun 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10827485 | Apr 2004 | US |
Child | 13037101 | US |