A time-varying electric field may be applied to a flame. The flame may respond by modifying its behavior, such as by increasing its rate of heat evolution.
According to an embodiment, a system may provide a plurality of electric field axes configured to pass near or through a flame.
According to an embodiment, a plurality greater than two electrodes may selectively produce a plurality greater than two electric field axes through or near a flame. According to an embodiment, at least one of the selectable electric field axes may be not parallel or antiparallel with at least one other of the selectable electric field axes.
According to an embodiment, a controller may sequentially select an electric field configuration in a combustion volume. A plurality greater than two electrode drivers may drive the sequential electric field configurations in the combustion volume. According to an embodiment, the controller may drive the sequential electric field configurations at a periodic rate.
According to an embodiment, a plurality of electric field modulation states may be produced sequentially at a periodic frequency equal to or greater than about 120 Hz. According to an embodiment, a plurality of electric field modulation states may be produced sequentially at a frequency of change equal to or greater than about 1 KHz.
According to an embodiment, a modulation frequency of electric field states in a combustion volume may be varied as a function of a fuel delivery rate, an airflow rate, a desired energy output rate, or other desired operational parameter.
According to an embodiment, an algorithm may be used to determine one or more characteristics of one or more sequences of electric field modulation states. The algorithm may be a function of input variables and/or detected variables. The input variables may include a fuel delivery rate, an airflow rate, a desired energy output rate, and/or another operational parameter.
According to an embodiment, an electric field controller may include a fuzzy logic circuit configured to determine a sequence of electric field modulation states in a combustion volume as a function of input variables and/or detected variables. The input variables may include a fuel delivery rate, an airflow rate, a desired energy output rate, and/or another operational parameter.
According to embodiments, related systems include but are not limited to circuitry and/or programming for providing method embodiments. Combinations of hardware, software, and/or firmware may be configured according to the preferences of the system designer.
In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. Other embodiments may be used and/or and other changes may be made without departing from the spirit or scope of the disclosure. In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented herein.
At least three electrodes 106, 108, and 110 are arranged near or in the combustion volume 103 such that application of a voltage signals to the electrodes may form an electric field across the combustion volume 103 in the vicinity of or through the flame 104 supported therein by the burner nozzle 102. The electrodes 106, 108, and 110 may be respectively energized by corresponding leads 112, 114, and 116, which may receive voltage signals from a controller and/or amplifier (not shown).
While the burner nozzle 102 is shown as a simplified hollow cylinder, several alternative embodiments may be contemplated. While the burner 102 and the electrodes 106, 108, and 110 are shown in respective forms and geometric relationships, other geometric relationships and forms may be contemplated. For example, the electrodes 106, 108, 110 may have shapes other than cylindrical. According to some embodiments, the burner nozzle 102 may be energized to form one of the electrodes. According to some embodiments, a plurality of nozzles may support a plurality of flames in the combustion volume 103.
According to an embodiment a first plurality of electrodes 106, 108, 110 may support a second plurality of electric field axes across the combustion volume 103 in the vicinity of or through at least one flame. According to the example 101, one electric field axis may be formed between electrodes 106 and 108. Another electric field axis may be formed between electrodes 108 and 110. Another electric field axis may be formed between electrodes 106 and 110.
The illustrative embodiment of
According to embodiments, an algorithm may provide a sequence of voltages to the electrodes 106, 108, 110. The algorithm may provide a substantially constant sequence of electric field states or may provide a variable sequence of electric field states, use a variable set of available electrodes, etc. While a range of algorithms are contemplated for providing a range of sequences of electric field states, a simple algorithm for the three illustrative electrodes 106, 108, 110 is shown in
A flame 104 in the combustion volume 103 may include a variety of charged and uncharged species. For example, charged species that may respond to an electric field may include electrons, protons, negatively charged ions, positively charged ions, negatively charged particulates, positively charged particulates, negatively charged fuel vapor, positively charged fuel vapor, negatively charged combustion products, and positively charged combustion products, etc. Such charged species may be present at various points and at various times in a combustion process. Additionally, a combustion volume 103 and/or flame may include uncharged combustion products, unburned fuel, and air. The charged species typically present in flames generally make flames highly conductive. Areas of the combustion volume 103 outside the flame 104 may be relatively non-conductive. Hence, in the presence of a flame 104, the nominal electric field 204 may be expressed as drawing negatively charged species within the flame 104 toward the volume of the flame proximate electrode 106, and as drawing positive species within the flame 104 toward the volume of the flame 104 proximate electrode 108.
Ignoring other effects, drawing positive species toward the portion of the flame 104 proximate electrode 108 may tend to increase the mass density of the flame 104 near electrode 108. It is also known that applying an electric field to a flame may increase the rate and completeness of combustion.
Similarly to the description of
If the electric field configuration 206 of
Similarly to the description of
According to an embodiment, for example when a field-reactive movement of species is dominated by positively charged species, a sequential, repeating application of nominal electric fields 204, 208, 212 may tend to accelerate the flame 104 to produce a clockwise swirl or vortex effect in the flame. Such a sequential electric field application may further tend to expose reactants to a streaming flow of complementary reactants and increase the probability of collisions between reactants to reduce diffusion-limitations to reaction kinetics. Decreased diffusion limitation may tend to increase the rate of reaction, further increasing exothermic output, thus further increasing the rate of reaction. The higher temperature and higher reaction rate may tend to drive the flame reaction farther to completion to increase the relative proportion of carbon dioxide (CO2) to other partial reaction products such as carbon monoxide (CO), unburned fuel, etc. exiting the combustion volume 103. The greater final extent of reaction may thus provide higher thermal output and/or reduce fuel consumption for a given thermal output.
According to another embodiment, the sequential repeating application of nominal electric fields 204, 208, 212 may tend to accelerate the flame 104 to produce a counter-clockwise swirl or vortex effect in the flame, for example when a field-reactive movement of species is dominated by negatively charged species.
While the electrode configuration and electric field sequence shown in FIGS. 1 and 2A-2C is shown as an embodiment using a relatively simple configuration of three electrodes and three field axes, other configurations may be preferable for some embodiments and some applications. For example an electric field may exist simultaneously between more than two electrodes. The number of electrodes may be increased significantly. The timing of electric field switching may be changed, may be made at a non-constant interval, may be made to variable potentials, may be informed by feedback control, etc. The electrode configuration may be altered significantly, such as by integration into the combustion chamber wall, placement behind the combustion chamber wall, etc. Furthermore, electrodes may be placed such that the electric field angle varies in more than one plane, such as by placing some electrodes proximal and other electrodes distal relative to the burner nozzle. In other embodiments, a given electrode may be limited to one state (such as either positive or negative) plus neutral. In other embodiments, all electrodes may be limited to one state (such as either positive or negative) plus neutral.
According to an embodiment, the waveforms may be produced by the controller 302 at a constant frequency. According to embodiments, the constant frequency may be fixed or selectable. According to another embodiment, the waveforms by be produced at a non-constant frequency. For example, a non-constant period or segment of a period may help to provide a spread-spectrum field sequence and may help to avoid resonance conditions or other interference problems.
According to an illustrative embodiment, electrode drive waveforms may be produced at about 1 KHz. According to another embodiment, electrode drive waveforms may be produced with a period corresponding to about 10 KHz. According to another embodiment, electrode drive waveforms may be produced at about 20 KHz. According to an illustrative embodiment, the amplifier 304 may drive the electrodes 106, 108, and 110 to about 900 volts. According to another embodiment, the amplifier 304 may drive the electrodes 106, 108, 110 to about +450 and −450 volts. As mentioned elsewhere, portions of a period may include opening a circuit to one or more electrodes to let its voltage “float”.
According to some embodiments, it may be desirable to set or vary the electric field frequency and/or the voltage of the electrodes, and/or to provide sense feedback such as a safety interlock or measurements of flame-related, electric field-related, or other parameters.
The controller 302 may be operatively coupled to one or more of a parameter communication module 402 and a sensor input module 404, such as via a data communication bus 406. The parameter communication module 402 may provide a facility to update software, firmware, etc used by the controller 302. Such updates may include look-up table and/or algorithm updates such as may be determined by modeling, learned via previous system measurements, etc. The parameter communication module 402 may further be used to communicate substantially real time operating parameters to the controller 302. The parameter communication module 402 may further be used to communicate operating status, fault conditions, firmware or software version, sensor values, etc. from the controller 302 to external systems (not shown).
A sensor input module 404 may provide sensed values to the controller 302 via the data communication bus 406. Sensed values received from the sensor input module 404 may include parameters not sensed by external systems and therefore unavailable via the parameter communication module 402. Alternatively, sensed values received from the sensor input module 404 may include parameters that are also reported from external systems via the parameter communication module 402.
Parameters such as a fuel flow rate, stack gas temperature, stack gas optical density, combustion volume temperature, combustion volume luminosity, combustion volume ionization, ionization near one or more electrodes, combustion volume open, combustion volume maintenance lockout, electrical fault, etc. may be communicated to the controller 302 from the parameter input module 402, sensor input module 404, and/or via feedback through the amplifier 304.
Voltage drive to the electrodes 106, 108, 110 may be shut off in the event of a safety condition state and/or a manual shut-down command received through the parameter input. Similarly, a fault state in the system 401 may be communicated to an external system to force a shutdown of fuel or otherwise enter a safe state.
The controller may determine waveforms for driving the electrodes 106, 108, 110 responsive to the received parameters, feedback, and sensed values (referred to collectively as “parameters”). For example the parameters may be optionally combined, compared, differentiated, integrated, etc. Parameters or combinations of parameters may be input to a control algorithm such as an algorithmic calculation, a table look-up, a proportional-integral-differential (PID) control algorithm, fuzzy logic, or other mechanism to determine waveform parameters. The determined waveform parameters may include, for example, selection of electrodes, sequencing of electrodes, waveform frequency or period, electrode voltage, etc.
The parameters may be determined, for example, according to optimization of a response variable such for maximizing thermal output from the combustion volume, maximizing an extent of reaction in the combustion volume, maximizing stack clarity from the combustion volume, minimizing pollutant output from the combustion volume, maximizing the temperature of the combustion volume, meeting a target temperature in the combustion volume, minimizing luminous output from a flame in the combustion volume, achieving a desired flicker in a flame in the combustion volume, maximizing luminous output from a flame in the combustion volume, maximizing fuel efficiency, maximizing power output, compensating for maintenance issues, maximizing system life, compensating for fuel variations, compensating for a fuel source, etc.
According to an embodiment, waveforms generated by the controller 302 may be transmitted to the amplifier 304 via one or more dedicated waveform transmission nodes 306. Alternatively, waveforms may be transmitted via the data bus 406. The amplifier 304 may provide status, synchronization, fault or other feedback via dedicated nodes 306 or may alternatively communicate status to the controller 302 and/or the parameter communication module 402 via the data bus 406.
While the controller 302 and amplifier 304 of
An illustrative set of waveforms is shown in
The voltages VH, 0, and VL may represent relatively low voltages delivered to the amplifier 304 from the controller 302 via the amplifier drive line(s) 306. Similarly, the voltages VH, 0, and VL may represent relatively large voltages delivered by the amplifier 304 to the respective electrodes 106, 108, 110 via the respective electrode drive lines 112, 114, 116. The waveforms 502, 504, 506 may be provided to repeat in a periodic pattern with a period P. During a first portion 508 of the period P, waveform 502 drives electrode 106 high while waveform 504 drives electrode 108 low, and waveform 506 drives electrode 110 to an intermediate voltage. Alternatively, portion 508 of waveform 506 (and corresponding intermediate states in the other waveforms 502, 504) may represent opening the electrode drive such that the electrode floats.
Waveform portion 508 corresponds to the electric field state 202 shown in
During a second portion 510 of the period P, waveform 502 indicates that electrode 106 is held open to “float” or alternatively is driven to an intermediate voltage, 0 while waveform 504 drives electrode 108 high to VH and waveform 506 drives electrode 110 to a low voltage VL. Waveform portion 510 corresponds to the electric field state 206 shown in
During a third portion 512 of the period P, waveform 504 indicates that electrode 108 is held open to “float” or alternatively is driven to an intermediate voltage, 0 while waveform 506 drives electrode 110 high to VH and waveform 502 drives electrode 106 to a low voltage VL. Waveform portion 512 corresponds to the electric field state 210 shown in
While the waveforms 502, 504, and 506 of timing diagram 501 indicates that each of the portions 508, 510, and 512 of the period P are substantially equal in duration, the periods may be varied somewhat or modulated such as to reduce resonance behavior, accommodate variations in combustion volume 103 geometry, etc. Additionally or alternatively, the periods P may be varied in duration. Similarly, while the voltage levels VH, 0, and VL are shown as substantially equal to one another, they may also be varied from electrode-to-electrode, from period portion to period portion, and/or from period-to-period.
Returning to the waveforms 501 of
While the waveforms 502, 504, and 506 are shown as idealizes square waves, their shape may be varied. For example, leading and trailing edges may exhibit voltage overshoot or undershoot; leading and trailing edges may be transitioned less abruptly, such as by applying a substantially constant dl/dt circuit, optionally with acceleration; or the waveforms may be modified in other ways, such as by applying sine functions, etc.
While the period portions 508, 510, and 512 may or may not correspond exactly to the corresponding portions of
As may be appreciated, when waveforms such as 602, 604, 606 drive corresponding electrodes 106, 108, 110; the idealized electric fields 204, 208, 212 of
Returning to the waveforms 601 of
During the first pulse period 708, the electric field configuration in a driven combustion volume 103 may correspond to configuration 202, shown in
After the first pulse period 708, waveforms 702 and 704 drive respective electrodes 106 and 108 open while waveform 706 maintains the open circuit condition at electrode 110. During a portion 710 of the period P, the electrodes 106, 108, and 110 are held open and thus substantially no electric field is applied to the flame or the combustion volume. However, inertia imparted onto charged species during the preceding first pulse period 708 may remain during the non-pulse period 710, and the charged species may thus remain in motion. Such motion may be nominally along trajectories present at the end of the first pulse period 708, as modified by subsequent collisions and interactions with other particles.
At the conclusion of the first non-pulse portion 710 of the period P, a second pulse period 712 begins. During the second pulse period 712, waveform 702 provides an open electrical condition at electrode 106 while waveform 704 goes to a relatively high voltage to drive electrode 108 to a corresponding relatively high voltage and waveform 706 goes to a relatively low voltage to drive electrode 110 to a corresponding relatively low voltage. Thus during the second pulse period 712, an electric field configuration 206 of
At the conclusion of the second non-pulse portion 710, a third pulse period 714 begins, which may for example create an electric field configuration similar to electric field configuration 210, shown in
According to one embodiment, the pulse periods and non-pulse portions may provide about a 25% duty cycle pulse train, as illustrated, wherein there is a field generated between two electrodes about 25% of the time and no applied electric fields the other 75% of the time. The duty cycle may be varied according to conditions within the combustion volume 103, such as may be determined by a feedback circuit and/or parameter input circuit as shown in
According to another embodiment, the pulse periods 708, 712, and 714 may each be about 10 microseconds duration and the period P may be about 1 KHz frequency, equivalent to 1 millisecond period. Thus, the non-pulse portions may each be about 323.333 microseconds.
The relative charge-to-mass ratio of a particular charged species may affect its response to the intermittent pulse periods 708, 712, 714 and intervening non-pulse portions 710. The duty cycle may be varied to achieve a desired movement of one or more charged species in the combustion volume 103. According to an embodiment, waveforms 702, 704, 706 optimized to transport a positively charged species clockwise may be superimposed over other waveforms 702′, 704′, 706′ optimized to transport another positively charged species or a negatively charged species clockwise or counterclockwise to produce a third set of waveforms 702″, 704″, 706″ that achieve transport of differing species in desired respective paths.
For example, a heavy, positive species may require a relatively high, 50% duty cycle with a relatively long period to move along a chosen path. A light, negative species may require a relatively low duty cycle with a relatively short period to move along a chosen path. The two waveforms may be superimposed to drive the positive and negative species in parallel (clockwise or counter-clockwise) or anti-parallel (clockwise and counter-clockwise) to each other.
While the electrodes 106, 108, 110 are shown arranged in figures above such that a straight line connecting any two electrodes passes through the volume of an intervening flame, other arrangements may be within the scope. While the number of electrodes 106, 108, 110 shown in the embodiments above is three, other numbers greater than three may similarly fall within the scope. While the electrodes 106, 108, 110 are indicated as cylindrical conductors arranged parallel to the major axis of the burner nozzle, other arrangements may fall within the scope.
For example, in another embodiment, a plurality of electrodes are arranged substantially at the corners of a cube, and include plates of finite size having normal axes that intersect at the center of the cube, which corresponds to the supported flame 104. In other embodiments (not shown) the electrodes may include surfaces or figurative points arranged at the centers of the faces of a cube, at the corners or at the centers of the faces of a geodesic sphere, etc.
Those skilled in the art will appreciate that the foregoing specific exemplary processes and/or devices and/or technologies are representative of more general processes and/or devices and/or technologies taught elsewhere herein, such as in the claims filed herewith and/or elsewhere in the present application.
While various aspects and embodiments have been disclosed herein, other aspects and embodiments are contemplated. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting, with the true scope and spirit being indicated by the following claims.
Number | Date | Country | |
---|---|---|---|
61166550 | Apr 2009 | US |