The present invention relates generally to a magnetic resonance imaging (MRI) system and in particular to a system and apparatus for compensating for magnetic field distortion caused by mechanical vibrations in the MRI system.
Magnetic resonance imaging (MRI) is a medical imaging modality that can create pictures of the inside of a human body without using x-rays or other ionizing radiation. MRI uses a powerful magnet to create a strong, uniform, static magnetic field (i.e., the “main magnetic field”). When a human body, or part of a human body, is placed in the main magnetic field, the nuclear spins that are associated with the hydrogen nuclei in tissue water become polarized. This means that the magnetic moments that are associated with these spins become preferentially aligned along the direction of the main magnetic field, resulting in a small net tissue magnetization along that axis (the “z axis,” by convention). An MRI system also comprises components called gradient coils that produce smaller amplitude, spatially varying magnetic fields when a current is applied to them. Typically, gradient coils are designed to produce a magnetic field component that is aligned along the z axis, and that varies linearly in amplitude with position along one of the x, y or z axes. The effect of a gradient coil is to create a small ramp on the magnetic field strength, and concomitantly on the resonant frequency of the nuclear spins, along a single axis. Three gradient coils with orthogonal axes are used to “spatially encode” the MR signal by creating a signature resonance frequency at each location in the body. Radio frequency (RF) coils are used to create pulses of RF energy at or near the resonance frequency of the hydrogen nuclei. The RF coils are used to add energy to the nuclear spin system in a controlled fashion. As the nuclear spins then relax back to their rest energy state, they give up energy in the form of an RF signal. This signal is detected by the MRI system and is transformed into an image using a computer and known reconstruction algorithms.
During an MRI scan, various elements of the MRI system experience mechanical vibrations, such as the coldhead motor or gradient coil (e.g., as a result of pulsing of the gradient coil). Mechanical vibrations of the MRI system may also be caused by external sources such as floor vibrations caused by a nearby elevator or subway. The mechanical vibrations of such sources can cause the mechanical vibration of other elements inside the MRI system, such as a cryostat thermal shield, and induce eddy currents in electrically conductive material in the cryostat (e.g., the vacuum vessel, thermal shield, helium vessel). The induced eddy currents in, for example, the thermal shield, can result in magnetic field distortion, homogeneity degradation and reduce image quality. The higher the main magnetic field is, the higher the induced eddy current will be and hence the higher the magnetic field distortion.
It would be desirable to provide a system and apparatus to passively (e.g., automatically) cancel or reduce the magnetic field distortion caused by eddy currents induced by mechanical vibrations.
In accordance with an embodiment, a magnet apparatus for a magnetic resonance imaging system includes a cylindrical vacuum vessel; a closed loop cooling system disposed within the vacuum vessel; a cylindrical thermal shield disposed between the vacuum vessel and closed loop cooling system and a set of passive compensation coils disposed within the vacuum vessel.
In accordance with an embodiment, a magnet apparatus for a magnetic resonance imaging system includes a cylindrical vacuum vessel, at least one cylindrical coil former disposed within the vacuum vessel, the at least one coil former having at least one superconducting coil mounted thereon, a cylindrical thermal shield disposed between the vacuum vessel and the at least one coil former, and a set of passive compensation coils disposed within the vacuum vessel.
The invention will become more fully understood from the following detailed description, taken in conjunction with the accompanying drawings, wherein like reference numerals refer to like parts, in which:
The system control computer 32 includes a set of modules in communication with each other via electrical and/or data connections 32a. Data connections 32a may be direct wired links, or may be fiber optic connections or wireless communication links or the like. In alternative embodiments, the modules of computer system 20 and system control computer 32 may be implemented on the same computer system or a plurality of computer systems. The modules of system control computer 32 include a CPU module 36 and a pulse generator module 38 that connects to the operator console 12 through a communications link 40. The pulse generator module 38 may alternatively be integrated into the scanner equipment (e.g., resonance assembly 52). It is through link 40 that the system control computer 32 receives commands from the operator to indicate the scan sequence that is to be performed. The pulse generator module 38 operates the system components that play out (i.e., perform) the desired pulse sequence by sending instructions, commands and/or requests describing the timing, strength and shape of the RF pulses and pulse sequences to be produced and the timing and length of the data acquisition window. The pulse generator module 38 connects to a gradient amplifier system 42 and produces data called gradient waveforms that control the timing and shape of the gradient pulses that are to be used during the scan. The pulse generator module 38 may also receive patient data from a physiological acquisition controller 44 that receives signals from a number of different sensors connected to the patient, such as ECG signals from electrodes attached to the patient. The pulse generator module 38 connects to a scan room interface circuit 46 that receives signals from various sensors associated with the condition of the patient and the magnet system. It is also through the scan room interface circuit 46 that a patient positioning system 48 receives commands to move the patient table to the desired position for the scan.
The gradient waveforms produced by the pulse generator module 38 are applied to gradient amplifier system 42 which is comprised of Gx, Gy and Gz amplifiers. Each gradient amplifier excites a corresponding physical gradient coil in a gradient coil assembly generally designated 50 to produce the magnetic field gradient pulses used for spatially encoding acquired signals. The gradient coil assembly 50 forms part of a resonance assembly 52 that includes a polarizing superconducting magnet with superconducting main coils 54. Resonance assembly 52 may include a whole-body RF coil 56, surface or parallel imaging coils 76 or both. The coils 56, 76 of the RF coil assembly may be configured for both transmitting and receiving or for transmit-only or receive-only. A patient or imaging subject 70 may be positioned within a cylindrical patient imaging volume 72 of the resonance assembly 52. A transceiver module 58 in the system control computer 32 produces pulses that are amplified by an RF amplifier 60 and coupled to the RF coils 56, 76 by a transmit/receive switch 62. The resulting signals emitted by the excited nuclei in the patient may be sensed by the same RF coil 56 and coupled through the transmit/receive switch 62 to a preamplifier 64. Alternatively, the signals emitted by the excited nuclei may be sensed by separate receive coils such as parallel coils or surface coils 76. The amplified MR signals are demodulated, filtered and digitized in the receiver section of the transceiver 58. The transmit/receive switch 62 is controlled by a signal from the pulse generator module 38 to electrically connect the RF amplifier 60 to the RF coil 56 during the transmit mode and to connect the preamplifier 64 to the RF coil 56 during the receive mode. The transmit/receive switch 62 can also enable a separate RF coil (for example, a parallel or surface coil 76) to be used in either the transmit or receive mode.
The MR signals sensed by the RF coil 56 or parallel or surface coil 76 are digitized by the transceiver module 58 and transferred to a memory module 66 in the system control computer 32. Typically, frames of data corresponding to MR signals are stored temporarily in the memory module 66 until they are subsequently transformed to create images. An array processor 68 uses a known transformation method, most commonly a Fourier transform, to create images from the MR signals. These images are communicated through the link 34 to the computer system 20 where it is stored in memory. In response to commands received from the operator console 12, this image data may be archived in long-term storage or it may be further processed by the image processor 22 and conveyed to the operator console 12 and presented on display 16.
The main coils 202 and bucking coils 204 are enclosed in a cryostat to provide a cryogen environment designed to maintain the temperature of the superconducting coils below the appropriate critical temperature so that the superconducting coils are in a superconducting state with zero resistance. The cryostat includes a vacuum vessel 216 which is configured to maintain a vacuum environment and is used to control the thermal load. A thermal shield 214 is disposed within the vacuum vessel 216 and outside the main coils 202 and bucking coils 204. The thermal shield 214 is used to intercept radiation thermal load from room temperature to coldmass. A set of superconducting active shim coils and/or moving metal shield coils 242 may also be disposed within the magnet assembly 200 and are used to provide manufacturing tolerance compensation and external moving metal disturbance compensation. Magnet assembly 200 also includes a service box 238 receiving power leads 240 for powering coils 202, 204 as well as other components of the magnet assembly 200 as described herein. Various other elements such as covers, end caps, supports, brackets, etc. are omitted from
During operation liquid Helium (He) is used to cool the superconducting magnet coils 202, 204 by conduction cooling via cooling loops. The superconducting magnet coils 202, 204 may be cooled, for example, to a superconducting temperature such as 4.2 Kelvin (K).
The cooling tubes 206, which may be formed from any suitable metal (e.g., copper, stainless steel, aluminum, etc.), are in fluid communication with a liquid He storage system 210, which may be formed from a plurality of liquid He storage tanks. The liquid He storage system 210 contains the liquid He used in the closed loop cooling system to cool the magnet coils 202, 204 of the magnet assembly 200. The fluid communication between the cooling tubes 206 and the liquid He storage system 210 may be provided via one or more fluid passageways 232 (e.g., fluid tubes, conduits, etc.). Thus, the liquid He storage system 210 provides the liquid He that flows though the cooling tubes 206 to cool the magnet coils 202, 204.
The cooling tubes 206 are also in fluid communication with a vapor return manifold 234, which is in fluid communication with a He gas storage system 212 through a recondenser 226. The He gas storage system 212, which may be formed from one or more He gas storage tanks (e.g., two toroidal shaped tanks), contains He gas received as He vapor from the cooling tubes 206 that removes the heat from the magnet coils 202, 204 and forms part of the closed loop cooling system. The fluid communication between the recondenser 226 and the He gas storage system 212 may be provided via one or more passageways 230.
The He gas storage system 212 is in fluid communication with a cryocooler 218 that includes a recondenser 226, which fluid communication may be provided via one or more fluid passageways 230. In various embodiments, the recondenser 226 draws He gas from the He storage system 212 that operates to form a free convection circulation loop to cool the magnet coils 202, 204 and formers 203, 205 to a cryogenic temperature, as well as fills the liquid He storage system 210 with liquid He via one or more passageways 236. The liquid He in the liquid He storage system 210 may be used to provide cooling of the magnet coils 202, 204 during power interruptions or shut down of the cryocooler 218, such as for service (e.g., for 10-12 hours).
The cryocooler 218, which may be a coldhead or other suitable cryocooler, extends through a vacuum vessel 216, which contains therein the magnet assembly 200 and the cooling components of the various embodiments. The cryocooler 218 may extend within a sleeve or housing (not shown). Thus, the cold end of the cryocooler 218 may be positioned within the sleeve without affecting the vacuum within the vacuum vessel 216. The cryocooler 218 is inserted (or received) and secured within the sleeve using any suitable means, such as one or more flanges or bolts. Moreover, a motor 228 of the cryocooler 218 is provided outside the vacuum vessel 216. As illustrated in
The thermal shield 214 may be in thermal contact with the He gas storage system 212. In various embodiments, the thermal shield 214 is thermally coupled to a plurality of cooling tubes 208 (e.g., pre-cooling tubes), which in various embodiments are different than and not in fluid communication with the cooling tubes 206. For example, the cooling tubes 206 provide cooling using He and the cooling tubes 208 may provide cooling or pre-cooling, using liquid nitrogen (LN2). Thus, the thermal shield 214 with the cooling tubes 208 may operate as a thermally isolating radiation shield with convection cooling.
As mentioned, in various embodiments a multi-stage cooling arrangement is provided which is illustrated in
The manifold 234 receives vapor He (He gas) from the cooling tubes 206 and returns the He gas to the recondenser 226. In various embodiments, the He gas storage tanks 212 are charged initially with a predetermined amount of He gas at ambient temperature. In operation, when the cryocooler is turned on, the recondenser 226 draws He from the He gas storage tanks 212, and sets up a free convection circulation loop that cools down the coils 202, 204 and support mass (formers 203, 205) to a cryogenic temperature, as well as fills the liquid He storage tank 210 with liquid He. In operation, the liquid He in the liquid He storage tank 210 is used to provide cooling to the magnet, for example, during power interruptions, or shut down of the cryocooler 218, such as for service, up to 10-12 hours. In various embodiments, once the thermosiphon system is turned on, the system cools itself, thereby forming a free convection circulation system.
During operation of the magnet assembly 200, cryocooler or coldhead 218 generates mechanical vibrations (e.g., from a motor) that cause induced eddy currents in the thermal shield 214 as well as in other elements in the cryostat with electrically conductive material. In addition, the mechanical vibrations of the coldhead 218 may cause mechanical vibration of the thermal shield 214. For example, eddy currents may be induced when the thermal shield 214 is alternated (or vibrates) in a z-axis direction, an x-axis direction or a y-axis direction. The eddy currents induced by the mechanical vibrations will cause magnetic field distortion and homogeneity degradation of the main magnetic field, B0. The magnetic field distortion can cause image distortion and affect image quality. To reduce, cancel or compensate the magnetic field distortion, passive compensation coils are incorporated inside the magnet assembly 200. In a preferred embodiment, a set of passive compensation coils is provided for each orthogonal direction (X, Y, Z). In other embodiments, multiple sets of coils may be used for each orthogonal direction. As discussed further below, the passive compensation coils may be positioned at various radial cylindrical locations within the vacuum vessel 216 and at various locations along the cylindrical length of elements within the vacuum vessel 216.
The passive compensation coils may be constructed using known superconducting materials, for example, MbB2 wire, MgB2 tape, low or mid temperature superconductors such as NbTi—Cu wire, Nb3Sn—Cu wire, Nb3Sn—Cu tape or high temperature superconductors such as BSCCO-2212, BSCCO-2223 and YBCO. In a preferred embodiment, the passive compensation coils are designed to magnetically couple with the thermal shield 214 or the vacuum vessel 216 (shown in
As mentioned above, the passive compensation coils may be located at various radial locations within the cylindrical vacuum vessel 216 (shown in
In one embodiment, a low or mid temperature superconducting material is used to construct the passive compensation coils. Example radial locations for the passive compensation coils made of a low temperature superconducting material are an outer diameter surface 450 of the main coil former 403 or an outer diameter surface 452 of the bucking coil former 405.
In another embodiment, the superconducting material used to construct the passive compensation coils is MgB2. Example radial locations for the passive compensation coils made of MgB2 are an outer diameter surface 450 of the main coil former 403 or an outer diameter surface 452 of the bucking coil former 405, an inner surface 454 of the thermal shield inner cylinder 423, an inner surface 456 of the thermal shield outer cylinder 425, an outer surface 458 of the thermal shield inner cylinder 403, and an outer surface 460 of the thermal shield outer cylinder 425.
In yet another embodiment, a high temperature superconducting material is used to construct the passive compensation coils. Example radial locations for the passive compensation coils made of a high temperature superconducting material are an outer diameter surface 450 of the main coil former 403 or an outer diameter surface 452 of the bucking coil former 405, an inner surface 454 of the thermal shield inner cylinder 423, an inner surface 456 of the thermal shield outer cylinder 425, an outer surface 458 of the thermal shield inner cylinder 403, and an outer surface 460 of the thermal shield outer cylinder 425.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to make and use the invention. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims. The order and sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments.
Many other changes and modifications may be made to the present invention without departing from the spirit thereof. The scope of these and other changes will become apparent from the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3665351 | Donaldson et al. | May 1972 | A |
4585995 | Flugan | Apr 1986 | A |
4623844 | Macovski | Nov 1986 | A |
4684889 | Yamaguchi et al. | Aug 1987 | A |
4685468 | Macovski | Aug 1987 | A |
4698591 | Glover et al. | Oct 1987 | A |
4703275 | Holland | Oct 1987 | A |
4733189 | Punchard et al. | Mar 1988 | A |
4885542 | Yao et al. | Dec 1989 | A |
4970457 | Kaufman et al. | Nov 1990 | A |
5179338 | Laskaris et al. | Jan 1993 | A |
5291169 | Ige et al. | Mar 1994 | A |
5302899 | Schett et al. | Apr 1994 | A |
5317297 | Kaufman et al. | May 1994 | A |
5450010 | Van Der Meulen et al. | Sep 1995 | A |
5453010 | Klein | Sep 1995 | A |
5455512 | Groen et al. | Oct 1995 | A |
5548653 | Pla et al. | Aug 1996 | A |
5631616 | Ohta et al. | May 1997 | A |
5668516 | Xu et al. | Sep 1997 | A |
5706575 | Kaufman et al. | Jan 1998 | A |
5782095 | Chen | Jul 1998 | A |
6147494 | Ham | Nov 2000 | A |
6157276 | Hedeen et al. | Dec 2000 | A |
6246308 | Laskaris et al. | Jun 2001 | B1 |
6326788 | Mulder et al. | Dec 2001 | B1 |
6448773 | Zhang | Sep 2002 | B1 |
6783059 | Laskaris et al. | Aug 2004 | B2 |
6807812 | Lehmann et al. | Oct 2004 | B2 |
6822446 | Havens et al. | Nov 2004 | B2 |
6977571 | Hollis et al. | Dec 2005 | B1 |
7034537 | Tsuda et al. | Apr 2006 | B2 |
7112964 | Zhou et al. | Sep 2006 | B2 |
7141970 | Miyawaki et al. | Nov 2006 | B2 |
7208952 | Dietz | Apr 2007 | B2 |
7352184 | Komuro et al. | Apr 2008 | B2 |
7372265 | Ham et al. | May 2008 | B2 |
7372271 | Roozen et al. | May 2008 | B2 |
7432712 | Motoshiromizu et al. | Oct 2008 | B2 |
7733089 | Hobbs et al. | Jun 2010 | B2 |
7928820 | Chiba et al. | Apr 2011 | B2 |
20030179060 | Wang et al. | Sep 2003 | A1 |
20040113619 | Schuster et al. | Jun 2004 | A1 |
20040113620 | Tsuda et al. | Jun 2004 | A1 |
20040119472 | Laskaris et al. | Jun 2004 | A1 |
20050179435 | Coughlin | Aug 2005 | A1 |
20080168777 | Atkins et al. | Jul 2008 | A1 |
20110113620 | Sasaki et al. | May 2011 | A1 |
20120274323 | He | Nov 2012 | A1 |
20130154648 | Shen et al. | Jun 2013 | A1 |
20130157865 | Shen et al. | Jun 2013 | A1 |
20130229065 | Robertson et al. | Sep 2013 | A1 |
Number | Date | Country |
---|---|---|
1509684 | Jul 2004 | CN |
1542876 | Nov 2004 | CN |
1957844 | May 2007 | CN |
101025438 | Aug 2007 | CN |
101221000 | Jul 2008 | CN |
101493505 | Jul 2009 | CN |
Entry |
---|
Jiang, et al., Vibration Induced Eddy Current and Its Effect on Image Quality for MRI System, Proc. Intl. Soc. Mag. Reson. Med. 16, 2008. |
Jiang, et al., Environmental Vibration Induced Magnetic Field Disturbance in MRI Magnet, IEEE Transactions on Applied Superconductivity, vol. 22, No. 3, Jun. 2012, first published Nov. 22, 2011. |
PCT Search Report and Written Opinion issued in connection with corresponding PCT Application No. PCT/US2012/69713 on May 7, 2013. |
Unofficial English Translation of Chinese Office Action issued in connection with corresponding CN Application No. 201280063494.7 on Aug. 28, 2015. |
Number | Date | Country | |
---|---|---|---|
20140155268 A1 | Jun 2014 | US |