Embodiments relate generally to network system and apparatus for heat management of high volume network devices. More specifically, disclosed are system and apparatus that provide for improving heat dissipation of network devices through improved air circulation.
Network infrastructures, including servers, switches and routers, are growing more and more important as the backbones of modern information technology systems. Particularly, with the rise of cloud computation, demands for high-energy and high-throughput network devices continue to grow.
Space constraints for high-energy and high-throughput devices result in smaller devices and greater installation density. One consequence of small, dense, and high-power devices is increased heat production and retention. Hence, heat management of these devices becomes important.
For example, various types of pluggable modules (also called “transceivers”) are highly active and heat generating components in network devices. Pluggable modules connect printed circuit board (PCB), of a switch, router or similar device, to an external device (e.g. fiber optic cable). A connector cage mounting on a PCB is often used to connect a pluggable module to the PCB, both electrically and mechanically. Heat management for pluggable modules is important for the network operations because pluggable modules require a certain range of temperature to function normally. For example, when the core temperature of a pluggable module reaches a certain level, the module may lower or even lose function.
Furthermore, heat management is critical for optical pluggable modules because the laser component of the optical module requires low case temperature, e.g. under 70° C., to remain its normal functions. Examples of optical pluggable modules include QSFP, SFP+, SFF, XFP, CXP, CFP, CFP2 and CFP4, etc.
Present heat dissipation technologies have limited applications in the high-throughput network devices due to space constrain and manufacture costs. Examples of the present heat dissipation technologies include integrated or riding heat sinks, and baffles, etc.
Thus, there is a need to improve heat management of high volume network devices, particularly the pluggable modules, via a cost-effective, efficient and compact approach.
Various embodiments or examples (“examples”) of the technology are disclosed in the following detailed description and the accompanying drawings:
Various embodiments of the disclosure are discussed in detail below. While specific implementations are discussed, it should be understood that this is done for illustration purposes only. A person skilled in the relevant art will recognize that other components and configurations may be used without parting from the spirit and scope of the disclosure.
Overview
According to some embodiments, the present technology includes a customized PCB that is deliberately slotted in one or more selected locations to promote side-to-side air flows around one or more connector cages mounted on the PCB. In some embodiments, the slots are located between the one or more connector cages. In some embodiments, the slots are located at an edge of the PCB board. In some embodiments, the slots are placed within a certain distance from the one or more connector cages to enable air flows to efficiently dissipate heat generated by the pluggable modules (in the connector cages).
In addition, the functions of the PCB remain intact as the slots can be predetermined during the PCB design, or the slots can be placed within an area that does not interfere with the circuits embedded in the PCB, e.g. the slots are within the circuit-free edge of the PCB.
According to some embodiments, the present technology can enable a partial overhang sides of the connector cages mounted on the PCB. In some embodiments, at least one of the pins associated with the connector cage is not pressed into the PCB through press fit mates. The remaining pressed-in pins can provide sufficient force to couple the connector cage to the PCB.
According to some embodiments, the present technology can provide an efficient and cost-effective heat dissipation design for various types of pluggable modules, including various optical pluggable modules such as QSFP, SFP+, SFF, XFP, CXP, CFP, CFP2 and CFP4, etc. In addition, the pluggable module can be at least one of a fiber optic based module or a copper based module.
In addition, even though the present discussion uses QSFP as an example of the applicable pluggable modules, the present technology is conceptually applicable to any heat-generating components mounting on a substrate plate within a network device.
Additional features and advantages of the disclosure will be set forth in the description which follows, and in part will be obvious from the description, or can be learned by practice of the herein disclosed principles. The features and advantages of the disclosure can be realized and obtained by means of the instruments and combinations particularly pointed out in the appended claims. These and other features of the disclosure will become more fully apparent from the following description and appended claims, or can be learned by the practice of the principles set forth herein.
In a PCB-connector cage assembly, the compact arrangement of these highly active pluggable modules can cause heat dissipation issues in the network device. Particularly, the PCB often has a wall-to-wall design that blocks convective air circulation and limits heat dissipation of the pluggable modules. In addition, heat loss through the sides of connector cages is minimal due to parallel connector cages in close proximity. Furthermore, natural convection cooling on the outer portion of the pluggable module is also relatively small due to the low air speed and little volume of air movement.
The present technology discloses a customized PCB-connector cage assembly that promotes convective air cooling through one or more slots in the PCB, thus improves the thermal margin in the network device.
As illustrated in
According to some embodiments, the slots 108, 110 and 112 can be of any shape, including squares, ovals, circles, or polygons as long as they can create effective air ways in the network device. In some embodiments, slots 108, 110 and 112 can be U-shaped.
Locations and sizes of the slots can be decided on multiple factors including the proximity to the heat generating components, the circuit-free space available on the PCB, etc, via thermal calculations and/or experiments. For example, the slots can be located in an interior area of PCB 104 as long as they can provide effective air ways and do not interfere with the PCB functions. In some embodiments, locations and sizes of the slots can be decided during a PCB design. In some embodiments, the slots can be placed within a circuit-free edge area of the PCB, as shown in
According to some embodiments, instead of being pressed into PCB 104, pins 114 and 116 that are located at the bottom of connector cage 102 can overhang PCB 104. The remaining pressed-in pins can provide sufficient force to attach connector cage 102 to PCB 104 through press fit mates. In some embodiments, overhang pins 114 and 116 can limit the horizontal movement of PCB 104 through fixing a protruding portion of PCB 104, as shown in
In addition, LED indicator 122 can be located below connector cage 102. LED indicator 122 can indicate the working status of the corresponding pluggable module, e.g. green or red.
Still referring to
Furthermore, connector cage 102 can include one or more interface connectors (not shown) that are mechanically and electrically connected to PCB 104. Thus, when pluggable modules are plugged into connector cage (e.g. 102), pluggable modules can mate with the interface connectors and thus electrically connect to PCB 104.
As depicted in
In addition, network device 300 can include a handle 310 on faceplate 304 to facilitate easy installation and maintenance in a stacked network system.
Although the foregoing examples have been described in some detail for purposes of clarity of understanding, the above-described inventive techniques are not limited to the details provided. There are many alternative ways of implementing the above-described techniques. The disclosed examples are illustrative and not restrictive.
This application claims priority to U.S. provisional application 61/900,991, filed Nov. 6, 2013, and entitled “Method and apparatus for improving cooling across QSFP connector cage”, the disclosure of which is hereby incorporated herein by reference in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
5405267 | Koegel | Apr 1995 | A |
6752662 | Okamoto | Jun 2004 | B2 |
6866544 | Casey | Mar 2005 | B1 |
6879486 | Banton et al. | Apr 2005 | B1 |
7665998 | Kressner | Feb 2010 | B2 |
8449203 | Downs | May 2013 | B2 |
8534930 | Lima | Sep 2013 | B1 |
9099846 | McKay | Aug 2015 | B2 |
9246280 | Neer | Jan 2016 | B2 |
20050157987 | Dodds | Jul 2005 | A1 |
Entry |
---|
International Search Report and Written Opinion for PCT/US2014/062995 mailed Feb. 13, 2015. |
Number | Date | Country | |
---|---|---|---|
20150124404 A1 | May 2015 | US |
Number | Date | Country | |
---|---|---|---|
61900991 | Nov 2013 | US |