This invention relates to a system and apparatus for processing fluid reagents utilizing disposable fluid conduits. More particularly, this invention relates to such a system and apparatus which utilizes a reusable conduit support system and apparatus.
Prior to the present invention, fluid samples have been processed in systems including rigid flow paths such as those formed of stainless steel and working units such as pumps which are connected to zones where unit operations, such as fluid reactions between samples and reagents are effected. The piping design and lay-out of these systems ensures that the systems minimize hold-up and are easily drained and vented. These features allow the user to repeatedly manufacture product and regenerate the system to appropriate hygienic standards.
These systems are developed by laboratory testing wherein relatively low volume systems are employed. These low volumes systems then are scaled up to the relatively high volume commercial units. Oftentimes, the laboratory scale systems do not resemble the final commercial scale system. This can lead to errors in the commercial system based on data obtained from the laboratory scale system.
In order to provide greater flexibility in manufacturing and reduce the time needed to effect valid regeneration, manufacturers have begun to utilize disposable systems of disposable tubing and bags that are assembled and used with each product batch. However, due to the flexibility of the tubing and bags, system assembly can be time consuming and render product recovery difficult. Additionally, these flexible systems are being used at intermediate scales, such as from 10 to 1,000 liters with the goal of adapting the process to the scale of current stainless steel systems.
These systems are at times limited in pressure due to the strength of the tubing and lack a unified approach to integrating flow and distribution throughout a circuit.
U.S. Pat. No. 7,001,513 discloses a cassette enclosing a fluid conduit system secured to at least one fluid source and a waste container. The cassette contains a fluid conduit system. The cassette is a fixed apparatus and the fluid conduit system is disposable. The cassette would enable the fluid conduit system to have greater pressure capability and provide a unified/integral sequenced approach for fluid distribution. This approach would replace individual pumps and valves currently employed and consolidate them into the cassette.
Accordingly, it would be desirable to provide a laboratory system and apparatus for testing fluid reagent treatment processes that can be easily scaled up to a commercial system and apparatus. In addition, it would be desirable to provide such a system and apparatus wherein the laboratory scale mode and the commercial mode closely resemble each other. Such a system and apparatus would provide laboratory data which is closely applicable to the commercial system and apparatus.
The present invention provides a system and apparatus utilizing disposable fluid conduits and a reusable conduit support system and apparatus. The system and apparatus comprises one or a plurality of conduit support systems having the same fluid paths but at varying volumes. The conduit support system can be opened and closed to permit replacement of a prior used conduit system with a fresh conduit system. The fresh conduit system includes at least one inlet for a fluid and at least one outlet for a fluid as well as at least one unit operation where a fluid is processed such as filtration, chromatography, liquid-liquid extraction or the like. The system and apparatus also is provided with means for effecting fluid flow within the conduit system such as one or more pumps, e.g., peristaltic pumps. The unit operation(s) can be replaced with new unit operation(s) when the conduit system is replaced. A family of reusable conduit support systems (cassettes) and apparatus having essentially the same design but with varying size conduit paths to accommodate varying size conduits can be provided. Such a family of conduit support systems and apparatus permits accurate scale up from low volume laboratory system(s) to relatively large volume commercial system(s).
The present invention provides a reusable conduit support apparatus and system which supports a disposable flexible conduit system. Representative suitable flexible conduit materials include silicone, polyethylene, polypropylene, PTFE resin, C-Flex® resin or the like. The support apparatus and system includes fluid conduit paths having a diameter and shape to provide support for the conduit system during its use when the fluid therein is pressurized. Upon completion of a desired unit operation on a fluid, the conduit support apparatus is opened to expose the flexible conduit system and allow for its removal. The used flexible conduit system then is replaced with a new flexible conduit system which is connected to a reagent supply source, to a reagent recovery system and to at least one unit operation.
It is to be understood that the fluid pathways illustrated in the figures are exemplary only. Any fluid pathway can be utilized.
Referring to
The manifold system 10 comprises a manifold section 42 and having two half sections such as manifold sections 42a and 42b containing the flexible conduit system between them is shown. Optionally, additional sections may be used to subdivide the system as desired. Alternatively, a single section may be used with no second section to provide protection or pressure resistance if neither is necessary or desired. The flexible fluid conduits positioned within the manifold section 42b are shown in black in
Fluid passes from pump 60 and is directed through valve 61, through outlet 24 and into filtration unit 22. Filtration unit 22 can be connected to pressure transducers 64 and 66 in order to monitor pressure within filtration unit 22. Permeate from filtration unit 22 passes through conduit 68 and out through conduit 34 to recovery unit 32 when valve 70 is open and valve 72 is closed. While recovery unit 32 is shown as a vessel it may also be a plastic bag if desired.
When it is desired to bypass the filtration unit 22, valve 74 is opened and fluid passes through conduit 76, through recording instruments 78 and 80 which measure pH, conductivity, UV or optical density or the like. When valve 56 is open and valve 57 is open while valve 61 is closed and valve 82 is open, fluid can be directed through filter 26 to recovery unit 28. If desired, a sample can be collected in container 84 when valve 31 is open.
When it is desired to vent the fluid conduit system of gas, valve 86 is open, gas passes through filter 88 and out manifold section 42b. At the end of a treatment cycle, valve 59 is open to the atmosphere to let air into the manifold 42. When it is desired to remove waste from the manifold 42, valve 55 is open.
Referring to
Referring to
This application claims the benefit of priority of U.S. Provisional Patent Application No. 60/963,015, filed on Aug. 2, 2007, the entire contents of which are incorporated by reference herein.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US08/08838 | 7/18/2008 | WO | 00 | 5/28/2010 |
Number | Date | Country | |
---|---|---|---|
60963015 | Aug 2007 | US |