The present disclosure relates to door locking apparatus and more particularly pertains to a new system and apparatus for sensing and providing alerts for deadbolt lock status for providing a remote indication of the positional status of a deadbolt of a deadbolt lock.
In some aspects, the present disclosure relates to a deadbolt lock status sensing assembly for monitoring status of a deadbolt member of a deadbolt assembly on a door. The status sensing assembly may comprise a sensible element mountable on one of the door and the deadbolt assembly, and the sensible element may be magnetically active. The assembly may also include a sensing element mountable on one of the door and the deadbolt assembly. The sensible element and the sensing element may be configured to move with respect to each other when the deadbolt member of the deadbolt assembly moves between an extended condition and a retracted condition of the deadbolt.
There has thus been outlined, rather broadly, some of the more important elements of the disclosure in order that the detailed description thereof that follows may be better understood, and in order that the present contribution to the art may be better appreciated. There are additional elements of the disclosure that will be described hereinafter and which will form the subject matter of the claims appended hereto.
In this respect, before explaining at least one embodiment or implementation in greater detail, it is to be understood that the scope of the disclosure is not limited in its application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The disclosure is capable of other embodiments and implementations and is thus capable of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein are for the purpose of description and should not be regarded as limiting.
As such, those skilled in the art will appreciate that the conception, upon which this disclosure is based, may readily be utilized as a basis for the designing of other structures, methods and systems for carrying out the several purposes of the present disclosure. It is important, therefore, that the claims be regarded as including such equivalent constructions insofar as they do not depart from the spirit and scope of the present disclosure.
The advantages of the various embodiments of the present disclosure, along with the various features of novelty that characterize the disclosure, are disclosed in the following descriptive matter and accompanying drawings.
The disclosure will be better understood and when consideration is given to the drawings and the detailed description which follows. Such description makes reference to the annexed drawings wherein:
With reference now to the drawings, and in particular to
In some aspects, the disclosure relates to a door system 1 which may be employed in conjunction with an alarm system 2 and may broadly include a door 10, a door frame 20 of a building structure, a deadbolt assembly 30 mounted on the door for securing the door in the closed position with respect to the door frame, a deadbolt actuation mechanism 40 for operating the deadbolt assembly, and a deadbolt lock status sensing assembly 54 communicating a status of a deadbolt of the deadbolt assembly. In further aspects, the disclosure relates to the deadbolt lock status sensing assembly 50 separate of other elements of the system 1.
In greater detail regarding elements of the disclosure, the door 10 generally has opposite broad faces 12, 13 and at least one edge face 14 that extends between the broad faces. The door 10 may also have suitable structure for incorporating a deadbolt assembly, which may include a primary channel which extends through the door and between the broad faces 12, 13, as well as a secondary channel which extends from the edge face 14 to the primary channel.
Another element of the system 1, door frame 20, may define an opening 22 formed in a wall 24 of a building structure, and the door 10 is usually mounted on the door frame 20 in a manner that permits movement of the door with respect to the doorframe between an open condition, which may be characterized by the door being moved away from portions of the door frame to permit movement through the opening of the door frame, a closed condition, which may be characterized by the door obstructing movement through the door frame and the door frame 20 extending about the door when the door is in the closed condition. The doorframe 20 may include a latch portion 26 of the door frame which extends along at least the one edge face 14 of the door when the doors in the closed condition, and the latch portion may have a bolt cavity 28 formed therein.
The deadbolt assembly 30 is mounted on the door 10 for selectively securing the door in the door frame 20. The deadbolt assembly 30 may be at least partially positioned in the primary channel of the door, and may also be at least partially positioned in the secondary channel of the door. The deadbolt assembly 30 may include a deadbolt frame 32 mountable on the door, such as by at least part insertion of the frame into the secondary channel of the door and the frame 32 may also at least partially extend into the primary channel of the door.
The deadbolt assembly 30 may further include a deadbolt member 34 which is movably mounted on the door 10 such that the deadbolt member is movable along a portion of the deadbolt frame and a portion of the secondary channel. The deadbolt member 34 may be selectively extendable and retractable with respect to the door, such as from the edge face 14 of the door. The deadbolt member 34 may be movable between an extended condition and a retracted condition with respect to the door. Illustratively, the extended condition of the deadbolt member 34 may be characterized by a portion of the deadbolt member being extended from the door and extended into the bolt cavity 28 of the door frame. The retracted condition of the deadbolt member 34 may be characterized by the entirety, or substantially the entirety, of the member 34 being withdrawn into the door so as not to protrude from the door to any significant degree. The deadbolt member 34 may have an inboard end and an outboard end 38, with the inboard end being generally positioned in the secondary channel of the door and the outboard end being extended from the door when the deadbolt member is in the extended condition.
The deadbolt actuation mechanism 40 is configured to move the deadbolt member 34 between the extended and retracted condition, usually by physical operation or manipulation of elements of the mechanism by a user. The deadbolt actuation mechanism 40 may be mounted on the deadbolt frame 32 and engage the deadbolt member 34 to produce movement of the member 34. In greater detail, illustrative embodiments of the deadbolt actuation mechanism 40 may include a deadbolt thumbturn 42 which is configured to permit physical (e.g., finger) manipulation of the deadbolt actuation mechanism.
The deadbolt thumbturn 42 may be movable between a locking position and an unlocking position. The locking position of the thumbturn 42 may correspond to the extended condition of the deadbolt member 34 and the unlocking position may correspond to the retracted condition of the deadbolt member. The deadbolt thumbturn 42 is typically rotatable with respect to the deadbolt frame, and may rotate approximately 90 degrees from the locking position to the unlocking position. The deadbolt thumbturn 42 may include a knob which is elongated in shape, and may have a first end 44 which is movable between a first position, when the thumbturn is in the locking position, and a second position, when the thumbturn is in the unlocking position. It will be recognized that other types of elements may be utilized to permit finger manipulation of the deadbolt actuation mechanism, and may result in other types of movement of the element between locking and unlocking positions such as, for example, linear or translational movement between the locking and unlocking positions.
The deadbolt activation mechanism 40 may further include a deadbolt cam bar 46 which is rotatable with respect to the deadbolt frame 32 to move the deadbolt member between the extended and retracted conditions. The deadbolt thumbturn 42 may be mounted on the deadbolt cam bar 46 such that the thumbturn and the cam bar move as a unit. Further, a deadbolt cam 48 may be mounted on the cam bar 46 so that the cam rotates with the cam bar, and may have a camming surface. The deadbolt actuation mechanism 40 may also include a lock cylinder 49 which is actuated by a key and is typically located on the side of the door that is opposite of the side of the door on which the deadbolt thumbturn is located.
The deadbolt lock status sensing assembly 50 may be configured to monitor the status of the deadbolt of the deadbolt assembly, and may sense at least one position of the deadbolt thumbturn 42. In some implementations, the sensing assembly 50 may sense a change in the status of the deadbolt, such as a change in the position status of the deadbolt. Illustratively, the status sensing assembly 50 may be configured to sense the locking position of the deadbolt thumbturn.
The status sensing assembly 50 may comprise a sensible element 52 which is mountable on the door 10 and provides a sensible indicator for the position of the deadbolt member 30 by association with a component of the deadbolt actuation mechanism 40. The sensible element may be magnetically active, and may be at least partially formed from magnetically active material. Illustratively, the sensible element 52 may comprise a magnet 54 that generates a magnetic field proximate to the first end 44 of the deadbolt thumbturn.
In embodiments such those shown in
The status sensing assembly 50 may further comprise a sensing element 60 which is configured to sense the sensible element 52 when the deadbolt thumbturn is in at least one of the locking and unlocking positions, and may also provide an alert corresponding to the sensed position. The sensing element 60 may be mounted on the door 10 to move with the door between the conditions of the door.
In embodiments such as those shown in
The sensing element 60 may comprise a sensor 62 configured to sense at least one of the positions of the deadbolt. The sensor 62 may be configured to generate a status signal corresponding to one or more specific sensed positions of the thumbturn (e.g., via the position or location of the sensing element). Optionally, the sensor 62 may be configured to generate the status signal upon sensing a change of position of the thumbturn (e.g., via the position or location of the sensing element). The sensor 62 may be sensitive to the magnetic field of the sensible element 52, and produce the status signal based upon detecting the proximity or relative strength of the magnetic field of the sensible element. The sensing element 60 may further include a transmitter 64 configured to receive the status signal from the sensor, and wirelessly transmit the status signal to a receiver. A power source 66 of the sensing element 60 may provide power to elements of the element 60, such as the sensor 62 and the transmitter 64. In some embodiments, the sensing element 60 may include a case 70 which defines an interior and has an exterior surface 74. Elements of the sensing element 60, such as the sensor 62 and the transmitter 64, may be positioned in the interior of the case.
The sensing element 60 may also have an attachment structure 80 provided on the element 60, such as on the case 70, for mounting the sensing element on the door 10. In embodiments such as shown in
The deadbolt lock status sensing assembly 50 may be interfaced to a receiving assembly 90 configured to receive the status signal from the sensing element 60, and the receiving assembly may form a portion of an alarm system 2. The receiving assembly 90 may include a receiver 92 configured to wirelessly receive the status signal from the transmitter 64 of the sensing element. The receiving assembly 90 may also include an alerting element 94 in communication with the receiver 92 to receive the status signal from the receiver and produce a perceptible alert based upon receipt of the status signal.
In other implementations of the system, such as embodiment 100 illustratively shown in
In the illustrative embodiments, the active component 102 may be mounted on the deadbolt cam bar 46 of the deadbolt actuation mechanism such that the active component 102 is directly rotated with the cam bar 46 when the cam bar is rotated. Illustratively, the active component 102 may be embedded in the deadbolt cam bar 46 such that the active component is rotated between the locked location (e.g.,
In embodiments, the reactive component 104 may be mounted on the deadbolt frame 32 or other mounting point stationary with respect to the door 10. The reactive component 104 may be positioned in a chamber 106, and may be movable in the chamber between an uninfluenced position (e.g.,
In some illustrative implementations, the chamber 106 may be elongated in the direction of and along a movement axis 108 that radiates from the deadbolt cam bar 46. The reactive component on a four may be movable in the chamber 106 along the movement axis 108, such as in translational movement along the movement axis. The reactive component 104 may be biased to or toward the uninfluenced position by the influence of gravity, such as when the movement axis 108 is substantially vertically oriented with the influenced position being located generally above the uninfluenced position. The sensing element 60 may be configured to detect a change in the position of the reactive component 104 from the uninfluenced position to or toward the influenced position and/or from the influenced position to or toward the uninfluenced position.
In some further illustrative implementations, the reactive component, or in some implementations, the sensing element, may act as a magnetic field sensor that senses the presence of the magnetic field of the active component. The reactive component or sensing element may comprise a magnetic field sensor 110 which is configured to sense the field emanating from the active component 102. The magnetic field sensor 110 may have a first state and a second state. In some implementations, the first state may provide electrical continuity between a pair of electrical contacts 112, 114 and the second state may exhibit electrical discontinuity between the electrical contacts. The magnetic field sensor 110 may be biased toward one of the states, and illustratively the magnetic field sensor 110 may be biased toward the first state. Optionally, the sensor 110 may be biased toward the second state.
Significantly, the magnetic field sensor 110 may be changed from one of the states to the other one of the states by variations in the magnitude of the field strength of the magnetic field generated by the active component 102 caused by the relative proximity of the sensor 110 to the active component.
In greater detail, the magnetic field sensor 110 may comprise the pair of electrical contacts 112, 114, and a continuity creating structure 116 configured to create and remove electrical continuity between the electrical contacts. The continuity creating structure 116 may comprise a housing 118 which may define an interior chamber 120 and have an exterior 122. The pair of contacts 112, 114 may be mounted on the housing 118, and at least a portion of each of the electrical contacts may be exposed on the exterior 122 of the housing. In some embodiments, the housing 118 may be in electrical continuity with the first electrical contact 112 and the housing 118 may be electrically isolated from the second electrical contact 114.
The magnetic field sensor 110 may further include a continuity element 124 which may be configured to alternately provide and remove continuity between the first 112 and second 114 electrical contacts. The continuity element 124 may be positioned in the interior chamber 120 of the housing, and may be movable in the chamber between one or more continuity positions and one or more discontinuity positions. In the illustrative embodiments, the one or more continuity positions of the continuity element 124 may correspond to the first state of the magnetic field sensor 110, and the one or more discontinuity positions may correspond to the second state of the magnetic field sensor.
The continuity element 124 may be magnetically receptive such that the object is influenced by a magnetic field, and may be biased to move toward a source of a magnetic field. Illustratively, the continuity element 124 may be formed of a ferrous material. Thus, the continuity element 124 may be biased to move toward the magnetic field generating device. The continuity element 124 may be electrically conductive such that the element is able to conduct electricity, and an outer surface 126 of the continuity element may be electrically conductive and formed of an electrically conductive material. Illustratively, the outer surface 126 may have a spherical shape.
The magnetic field sensor 110 may also comprise a biasing element 128 for biasing the continuity element 124 toward the one or more positions that correspond to one of the states of the field sensor. The biasing element 128 may further bias the continuity element 124 away from the one or more positions corresponding to another one of the states of the magnetic field sensor. For example, in embodiments, the biasing element 128 is positioned on the housing 118 to urge the continuity element 116 toward the continuity positions. In such embodiments, the biasing element 128 may be positioned on the housing 118 to urge the continuity element away from the discontinuity positions. As a further example, in further embodiments, the biasing element 128 is positioned on the housing 118 to urge the continuity element 116 toward the discontinuity positions. In such embodiments, the biasing element 128 may be positioned on the housing 118 to urge the continuity element away from the continuity positions.
The biasing element 128 may be configured to produce a magnetic field to cause the biasing of the continuity element into one of the states, and may be formed of a magnetic material. Advantageously, the influence of the magnetic field of the active component may be able to overcome the influence of the magnetic field of the biasing element 128 on the continuity element 124, when the active component 102 is sufficiently proximate to the magnetic field sensor of reactive component 102 or the sensor element 60.
Some highly suitable devices for providing the functionality of the magnetic field sensor 110 is disclosed in, for example, U.S. Pat. No. 7,023,308 of Randall Woods, which is hereby incorporated by reference in its entirety. Suitable devices for performing the function of the magnetic field sensor may be commercially available from Magnasphere Corporation of Waukesha, WI.
It should be appreciated that in the foregoing description and appended claims, that the terms “substantially” and “approximately,” when used to modify another term, mean “for the most part” or “being largely but not wholly or completely that which is specified” by the modified term.
It should also be appreciated from the foregoing description that, except when mutually exclusive, the features of the various embodiments described herein may be combined with features of other embodiments as desired while remaining within the intended scope of the disclosure.
In this document, the terms “a” or “an” are used, as is common in patent documents, to include one or more than one, independent of any other instances or usages of “at least one” or “one or more.” In this document, the term “or” is used to refer to a nonexclusive or, such that “A or B” includes “A but not B,” “B but not A,” and “A and B,” unless otherwise indicated.
With respect to the above description then, it is to be realized that the optimum dimensional relationships for the parts of the disclosed embodiments and implementations, to include variations in size, materials, shape, form, function and manner of operation, assembly and use, are deemed readily apparent and obvious to one skilled in the art in light of the foregoing disclosure, and all equivalent relationships to those illustrated in the drawings and described in the specification are intended to be encompassed by the present disclosure.
Therefore, the foregoing is considered as illustrative only of the principles of the disclosure. Further, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the disclosed subject matter to the exact construction and operation shown and described, and accordingly, all suitable modifications and equivalents may be resorted to that fall within the scope of the claims.
This application is a continuation of U.S. Non-provisional patent application Ser. No. 18/162,203, filed Jan. 31, 2023, which is a continuation in part of U.S. Nonprovisional patent application Ser. No. 17/988,225, filed Nov. 16, 2022, which claimed the priority benefit of U.S. Provisional Patent Application No. 63/354,734, filed Jun. 23, 2022, both of which are hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
5933086 | Tischendorf | Aug 1999 | A |
6225903 | Soloway | May 2001 | B1 |
11162279 | Wernlund | Nov 2021 | B1 |
20150292245 | Miller | Oct 2015 | A1 |
20170234033 | Deboer | Aug 2017 | A1 |
20180340350 | Johnson | Nov 2018 | A1 |
20200011088 | Harris | Jan 2020 | A1 |
20210222458 | Jones | Jul 2021 | A1 |
20220081936 | Petty | Mar 2022 | A1 |
Number | Date | Country |
---|---|---|
2485163 | May 2006 | CA |
5985033 | Aug 2016 | JP |
2006085852 | Aug 2006 | WO |
2018055398 | Mar 2018 | WO |
Number | Date | Country | |
---|---|---|---|
63354734 | Jun 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 18162203 | Jan 2023 | US |
Child | 18238785 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17988225 | Nov 2022 | US |
Child | 18162203 | US |