The present disclosure relates to fuel supply systems for internal combustion engines, and particularly to fuel supply modules. More particularly, the present disclosure relates to a fuel supply system that detects the presence and purges fuel vapor. It is necessary in combustion engines to ensure the proper supply of liquid fuel at all times. Vapors existing within the fuel supply system can result in delayed response to changes in pump pressure to the engines supply, as well as the feeding of vapors instead of fuel during engine activity, impacting performance and possibly resulting in damage.
According to the present disclosure, a method of detecting the presence or absence of vapor is provided within the fuel supply module of recreational vehicles and boats.
In illustrative embodiments, a pressure sensor is used to measure the pressure in a fuel supply module tank. The fuel supply module tank is an intermediate tank located between the main fuel tank or tanks and the engine fuel rail. While the fuel supply module tank is simultaneously filled with liquid gasoline, from the main fuel tank, and creating engine rail pressure (and venting off of vapors), the tank can be considered fully filled and venting process completed by a significant increase in measured pressure. In essence, once all compressible vapors have been removed from the system, tank pressure increases.
In illustrative embodiments, a system and method of detecting the presence of fuel vapor gases within a fuel supply module tank or holding tank is provided. The system includes a lift pump for filling the fuel supply module tank with liquid fuel from the main fuel tank. The fuel supply module tank may include a certain amount of fuel vapor and air, which is undesirable because it can cause drops in fuel rail pressure and engine issues. Unwanted fuel vapor could also be a fire hazard, creating a potentially unsafe condition. A rail pump is utilized for removing fuel from the fuel supply module tank and transferring the fuel to the engine fuel rail. The rail pump first draws any vapor from the fuel supply module tank which may exist at the top of the tank and then draws liquid fuel.
In illustrative embodiments, the system includes a pressure sensor positioned at the head of the fuel supply module tank. Pressure readings taken by the pressure sensor will remain at or below a resting pressure during the filling period as liquid is added to the fuel supply module tank by the lift pump and vapors are removed from the fuel supply module tank by the rail pump. The vapors are moved by the rail pump to the fuel rail, where it is purged from the injectors. When all vapors are removed from the fuel supply module tank, and liquid has completely filled the fuel supply module tank, a large spike in pressure detected by the pressure sensor will occur. The large spike in pressure signals to a control module that completion of filling the fuel supply module tank with fuel and bleeding off any vapor within the fuel supply module tank has been completed.
Additional features of the present disclosure will become apparent to those skilled in the art upon consideration of illustrative embodiments exemplifying the best mode of carrying out the disclosure as presently perceived.
The detailed description particularly refers to the accompanying figures in which:
A system 10 and apparatus for vapor detection within a fuel supply module tank 16 in accordance with the present disclosure is shown in
In illustrative embodiments, a rail pump 24 is utilized for removing vapor 12 and liquid fuel 14 from the fuel supply module reservoir, as shown in
The system 10 includes a pressure sensor 26 positioned at the head 28 of the fuel supply module reservoir 16, as shown in
When the vapor 12 has been completely removed from the fuel supply module reservoir 16, and liquid fuel 14 has taken its place, a large spike in pressure will occur in the fuel supply module reservoir 16. The pressure sensor 26 detects the large spike in pressure and signals to a control module 30 that completion removal of any vapor 12 within the fuel supply module tank 16 has been completed. Pressure sensor 26 sends a signal to the control module 30 when the pressure spike in the fuel supply module tank 16 has occurred.
The control module 30 receives input signals from the pressure sensor 26. If vapor is present in the fuel supply module tank 16 and the pressure is below the threshold pressure, the control module 30 will energize the lift pump 18. As part of the start-up procedure, control module 30 may run both the lift pump 18 and rail pump 24 simultaneously in order to fill the fuel supply module tank 16 and to pressurize the fuel rail 32. The control module 30 may also run one of the pumps at a faster rate than the other depending upon whether vapor needs to be purged from the fuel supply module tank 16 or the pressure in the fuel rail 32 needs to be increased. The fuel rail 32 supplies pressure to the fuel injectors so that atomized fuel is available for the combustion process.
The rail pump 24 preferably maintains the fuel line and fuel rail 32 at about 50 psi, for example. The fuel pressure in the fuel rail 32 can be set higher or lower depending upon the application. A second pressure gauge 34 in the fuel line is positioned between the rail pump 24 and the fuel rail 32 and is used to monitor the line pressure. The second pressure gauge 34 provides an output signal to the control module 30. When the fuel rail 32 reaches 50 psi, the control module 30 turns off the rail pump 24 until the pressure in the fuel rail 32 drops below a predetermined level. The lift pump 18 can be run independently of the rail pump 24 as needed to maintain the level of fuel in the fuel supply module tank 16 or to purge vapor 12 or both.
At startup, if the control module 30 uses the pressure sensor 26 in the fuel supply module reservoir 16 to determine whether the fuel supply module reservoir 16 is at resting pressure. If it is at resting pressure, the control module 30 energizes the lift pump 18 to pump liquid fuel 14 from the main fuel tank 20 into the fuel supply module reservoir 16 to purge all vapor 12 from the fuel supply module tank 16, as shown in
Once the fuel supply module tank 16 is completely purged of vapor 12, the pressure sensor 26 senses a spike in pressure and transmits a signal to the control module 30 which, in turn, cuts or reduces power to the lift pump 18. The rail pump 24 may or may not be running while the lift pump 18 is running to eliminate air and vapor 12 from the fuel supply module tank 16. The control module 30 runs the rail pump 24 when needed to ensure the fuel rail 32 is at the desired pressure. In some situations, the lift pump 18 and the rail pump 24 may be running at the same speeds so that fuel delivery to the fuel injectors is constant and at the correct pressure.
Reservoir upper housing 112 of fuel supply module 100 is secured to reservoir bottom housing 102 with fasteners. Upper housing 112 is sealed to bottom housing 102 with a gasket 114 to prevent the leakage of fuel and form the reservoir. Lift pump 106 includes a gasket 116 that seals the lower end of the lift pump 106 to the bottom housing 102. Fuel rail pump 108 includes a gasket 118 that seals the fuel rail pump 108 to the upper housing 112.
Reservoir upper housing 112 of fuel supply module 100 includes a bottom side 120 and an upper side 122. Bottom side 120 of upper housing 112, as shown in
Fuel supply module 100 also includes a draw tube 134 that allows for fuel to be drawn from the reservoir by the fuel rail pump 108. Fuel supply module 100 also includes a plumbing tube 136 which allows the fuel rail pump 108 to pump fuel out outlet port 110.
In use, the lift pump 106 draws fuel up from the fuel tank of the vehicle through the inlet port and dumps the fuel into the reservoir 103 or holding tank, filling the reservoir, as shown in
Next, the fuel rail pump 108 of the fuel supply module 100 uses draw tube 134 to draw fuel from the bottom of the reservoir 103 and ultimately to the fuel rail of a vehicle. The fuel is pressurized by the fuel rail pump 108 and up the plumbing tube 136 and out of outlet 110 to the fuel rail of the vehicle. The fuel rail pump 108 first draws any vapor from the reservoir 103 which may exist at the top of reservoir 103 and then draws fuel, when all vapor has been purged. The fuel rail pump 108 pressurizes the fuel to about 50 psi. The fuel is pumped over and up into the plumbing tube 136 where it intersects with the fuel rail manifold 138, as shown in
There also is a canister pressure port 140 that allows the pressure sensor 124 to determine the pressure within the reservoir 103. Pressure sensor 124 provides pressure readings to the controller 30 so that controller can either energize the lift pump 106 or the fuel rail pump 108 or both pumps to increase the pressure in the fuel rail or in the reservoir to ensure that proper pressure is maintained. Both pumps 106 and 108 are variable speed dc pumps that can be increased or decreased incrementally depending upon flow and pressure needs in the fuel rail and the reservoir 103.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.
The present invention claims priority to U.S. Provisional Application No. 62/414,429, filed Oct. 28, 2016, the entirety of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
6390871 | Wickman | May 2002 | B1 |
6527603 | Wickman | Mar 2003 | B1 |
6899580 | Kollmann | May 2005 | B1 |
7178512 | Merten | Feb 2007 | B1 |
7832380 | Abou Zeid | Nov 2010 | B1 |
9482175 | Torgerud | Nov 2016 | B1 |
20050000495 | Hamada | Jan 2005 | A1 |
20110231082 | Saruwatari | Sep 2011 | A1 |
20130104851 | Falkowski | May 2013 | A1 |
20140127066 | Weckerly | May 2014 | A1 |
20150345456 | Drabek | Dec 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20180195474 A1 | Jul 2018 | US |
Number | Date | Country | |
---|---|---|---|
62414429 | Oct 2016 | US |