The present disclosure pertains to combustion devices, for example, burners. Particularly, the disclosure pertains to controlling combustion in the devices.
The disclosure reveals a system and approach for controlling activity in a combustion chamber, such as a burner. The system does not necessarily need to be mechanically adjusted and yet may provide precise control of a fuel air mixture ratio. A sensing module of the system may have a mass flow sensor that relates to air flow and another sensor that relates to fuel flow. Neither sensor may need contact with fuel. Fuel to the system may be controlled, for example, by a mass flow restriction valve. Pressure of the fuel and air may be a regulated parameter. Air to the system may be controlled as a reference. The sensors may provide signals to a processor to indicate a state of the fuel and air in the system. The processor, with reliance on a programmed curve, table or the like, often based on data, in a storage memory, may regulate the flow or pressure of the fuel and air in a parallel fashion to provide an appropriate fuel-air mixture to the combustion chamber in various situations relative to burner capacity, setpoints, commissioning, purge, and so on.
The present system and approach may incorporate one or more processors, computers, controllers, user interfaces, wireless and/or wire connections, and/or the like, in an implementation described and/or shown herein.
This description may provide one or more illustrative and specific examples or ways of implementing the present system and approach. There may be numerous other examples or ways of implementing the system and approach.
The present approach and system may feature a pneumatic connection between a reference air pressure, a reference combustion chamber pressure and a regulated fuel pressure. The pneumatic connection may contain flow channels, flow resistances and sensing elements. The system may provide feedback signals that can be used to regulate fuel pressure accurately, resulting in a precisely controlled air-fuel mixing ratio. The terms “resistance” and “restriction” may be used herein interchangeably. The terms “inlet” and “outlet” may pertain to fluid devices. The term “port” may refer an inlet or an outlet. The terms “input” and “output” may pertain to electrical or fluid devices.
The present system does not necessarily need mechanical adjustment downstream of the pressure regulator. The system does not necessarily need an adjustable throttle, an adjustable orifice, or an adjustment for the mechanical or pneumatic pressure amplifier.
Still the present system may control an air-fuel mixing ratio for a wide range of applications, such as premix, air fuel proportional power jet, parallel positioning power jet, and the like.
The system may enable ways for air fuel mixing accuracy, fuel adaptability, air fuel proportional mixing, non-linear mixing curve, automatic commissioning, diagnostics, modulation range, fuel metering, fuel pressure surveillance, air pressure surveillance, revision control of settings, authorization control, safety and protection, and fail safe operation.
Precise control of the fuel-air ratio may be one of the most important aspects of improving overall burner performance and efficiency of a combustion chamber, such as a burner.
The description may show how a regulation approach measures a servo air mass flow, with a first mass flow sensor, that relates to a main air mass flow and how the regulation approach measures a servo air flow, with a second mass flow sensor, which relates to a main fuel flow.
The description may further show how the system is made fail safe by a first embedded approach to detect that mixture could go to an unsafe ratio due to sensor drift by detection and measuring the amount of sensor readings drift, and to correct for the measured amount of sensor drift in the first place or to shut off the application when the measured amount of drift passes a predefined threshold. Correction may be applied for changes in filter or orifice restriction.
The description may also show how the system is made fail safe by a second embedded approach that would detect that the mixing ratio could go to an unsafe situation due to increased restriction of the fuel side filter and which will shut off the application when a certain predefined threshold is crossed.
The description may yet show how an installer can program virtually any curve that best fits the application, for mixing ratio of air mass flow and fuel mass flow as a function of burner capacity, and how the system can regulate the mixing ratio of air mass flow and fuel mass flow based on the commissioned and approved set points.
One item may be the related art regulation devices may have issues embedded which may be resolved. The issues may include difficult to access the adjustment devices, poor signal feedback to the installer, no possibility to fixate, lock or secure the tested and approved setting, needs manual adjustment, no automatic commissioning, no diagnostics, limited programmed mixing ratio possibility for different heat capacities, reliant at skills and patience of installer for safety and combustion quality, only valid for zero governor systems, a different solution is required for non-zero governor systems, and no or crude detection that settings have drifted off from the commissioned values.
The valve may be installed in all kinds of situations, which means that reading the markings of the adjustment screw and adjusting the adjustment screw can be difficult in many cases. In a typical gas burner, it may be difficult to access, or to adjust. Thus, visual feedback of the adjustment device may be poor at a location of the burner.
Fixating or securing the adjustment device in a favored setting without disturbing the achieved setup may be very difficult or impossible, and time consuming.
Placing a cover to withdraw the adjustment screw from sight does not necessarily fixate the settings. It may be easy to touch the adjustment screw, and accidentally de-adjust the setting, while mounting the cover. Any cap or cover should be removable for the installer and can, unnoticed, be removed by some individual to change the setting of the boiler.
The related art systems may need manual adjustments. During commissioning, the installer may attach a temporary combustion sensor to read combustion quality. Based on the measured result, the installer may need to turn screws according a defined procedure until combustion quality is good and acceptable. After each adjustment step, the combustion process and the burner may need to stabilize over time. The procedure may require patience, tools, time, and skills by the installer. For air-gas proportional regulation systems, there may be two settings that can be adjusted by the adjustment screws.
Principally, a stepper motor may be applied to turn the adjustment devices for the installer. As soon as the power is off however, the stepper may lose its position and need a reset of steps. An independent position feedback may need to validate that the adjustment devices are at a correct position. Thus, one or two actuators and one or two feedback systems may be needed just to maintain a static setting over time. These items may make it financially difficult to apply automatic commissioning.
During an operation of a system, a number of things may happen for which one may need sensing and diagnostics. For example, the building regulator may break resulting in high gas supply pressure; something may damage or block a gas supply line leading to an insufficient gas supply, and block an air supply leading to insufficient supply of air. Something may happen to a power supply leading to higher or lower fan speed than expected. Something may go wrong with air restriction valve. Something may block the chimney leading to changing air flow and causing higher combustion chamber pressure. A filter in a servo flow channel may get plugged by pollution. A sensor may drift from its setting. Chemical gas content may change over time. One of the orifices in one of the servo channels may get blocked. Someone may make a mistake during commissioning. Gas metering may go wrong. Different switches and/or sensors may be needed to detect an event about to happen. Zero governor systems or differential pressure sensors may have just limited use for applying diagnostics.
A programmed mixing ratio may be desired. Mixing a ratio of air and gas resulting from any zero governor system (where a flow sensor that regulates around zero flow is basically a zero governor as well) may be described as a first order function, such as y=ax+b, where y stands for fuel mass flow, x stands for air mass flow, a defines steepness of mixing ratio, defined by throttle screw, adjustable orifice, and b defines offset, defined by offset screw or flow through sensor.
A gas mass flow reading may be desired. Gas suppliers may change chemical content of gas over the year to improve demand for the winter and summer seasons, as many systems rely on pressure regulators. The gas content may be changed such that a Wobbe index (specific heat/density) remains constant, meaning that typical applications will not necessarily suffer from mis-adjustment because of changed content. A major drawback of flow sensors, even when the sensor is approved for use in natural gas, may be that the sensor measures flow by heat transfer, meaning that the reading relies on all kinds of specific gas parameters like density, viscosity, specific heat, and a specific heat conduction coefficient. When the chemical content of the gas used changes over time, a reading error may occur in the mass flow sensor. For this reason, a flow sensor cannot necessarily be applied to accurately measure gaseous flows with changing chemical content over time.
Drift detection may be desired. In some systems, pressure switches may be used to shut the application off when a certain pressure target is not met. When the application runs at a relative low power level, it may be difficult to distinguish between acceptable and non-acceptable drift.
A redundancy configuration may be desired for air and fuel flow paths. A burner system (e.g., pre-mix burner applications, forced draft burner applications, and/or other burner applications) or other system may produce a differential pressure signal that relates to a main air flow path and a differential pressure signal that relates to a main fuel flow path. A pressure downstream of a mixing point in the system may be considered a downstream (sink) reference pressure for both differential pressures. A pressure upstream of the mixing point in the air channel may be taken as a (source) reference pressure for differential air pressure. A pressure upstream of the mixing point in the fuel channel may be taken as a (source) reference pressure for differential pressure.
The redundancy configuration may include a first flow path (e.g., a main air flow path), a second flow path (e.g., a main fuel flow path), a third flow path (e.g., a redundancy flow path), and/or one or more other flow paths. The first flow path may be connected to an air source (e.g., an air source pressure, P1) and the pressure downstream of the mixing point (e.g., the sink pressure, Po). The first flow path may be equipped with a first sensor (e.g., a mass flow sensor, a differential pressure sensor, and/or other sensor) that may produce a reading that is related to fluid flow through the first flow path. The second flow path may be connected to the air source, a fuel source (e.g., a fuel source pressure, P2), and to the sink pressure, Po. The second flow path may be equipped with a second sensor (e.g., a mass flow sensor, a differential pressure sensor, and/or other sensor) that may produce a reading that is related to fluid flow through the second flow path in respect to the first flow path.
The third flow path may be connected in a first arrangement to the air source and the sink pressure, Po, or in a second arrangement the air source, the fuel source, and the sink pressure, Po. The third flow path may be equipped with an open/close valve and depending on the state of the open/close valve, the third flow path may be in the first arrangement or the second arrangement. Further, the third flow path may be equipped with a third sensor (e.g., a mass flow sensor, a differential pressure, or other sensor) that may return a reading related to fluid flow through the first flow path and that is redundant with the first sensor when the third flow path is in the first arrangement and may return a reading related to fluid flow through the second flow path in respect to the first flow path and that is redundant with the second sensor when the third flow path is in the second arrangement.
In some cases, readings (e.g., measurements or measurement values) from the third sensor may be compared to readings from one or more of the first sensor and the second sensor to identify a malfunction in the burner system. When a malfunction is identified, an alert or alarm may be triggered. A malfunction may include one or more of a blocked or partially blocked flow path, a sensor not operating correctly, and/or one or more other issues with the operation of the burner system or a component thereof.
The present system may involve (1) a regulation system, (2) a regulation approach, and (3) a regulation product that solves known issues and offers a solution for gas burner application systems (e.g., air-gas proportional premix, air-gas proportional forced draft, and/or parallel positioning forced draft).
The present control system may eliminate weaknesses regarding mechanical adjustment devices and flow measuring with a flow sensor of gaseous fluids. The control system may exclude mechanical adjustment needs. Also, the system may combine the measurement of fuel and air in such a way that a second flow sensor can be used to measure both fluids with respect to each other while just air flows through the first and second sensors.
The system 15 may include one outlet 18 which is connected to a reference point downstream of the inlet points in the boiler where air and gas has been mixed together, for instance, at a combustion chamber or downstream of a mixing device. The system may also include three or so filters 19, 20, 30 to filter particles out of the incoming air, out of incoming gas and outgoing air-gas that might flow back due to a pressure surge during ignition. The system may include four or so flow resistances 21, 22, 23, 24, typically orifices. The flow resistances may be different from each other in size and resistance level. The system may incorporate two mass flow sensors 25, 26, of which produce flow dependent (electrical) signals.
Pressure in a fuel channel is not necessarily measured. Mass flow through the sensors may be measured; or in case that a sensor is calibrated for differential pressure, a pressure drop over the sensor may be measured. From there, an indication for pressure in the fuel channel may be calculated. The calculated pressure is not necessarily an exact value.
Although the system is described above and depicted in
The system may incorporate a first servo flow channel 141 from positive air reference pressure (A) 27 to a lower pressure (C) 28 combustion chamber. The first servo channel may incorporate an inlet filter (E) 20, a mass flow sensor (H) 25, a mass flow resistance (I) 23 and a back-flow outlet filter (G) 30. The mass flow sensor (H) 25 may produce a first electrical signal (#1) 31 which reflects the servo mass flow of air through the first mass flow channel. The system may incorporate a second servo flow channel 142 from positive air reference (A) pressure to an intermediate pressure connection point (D). The second servo channel may incorporate the inlet filter (E) 20, a mass flow sensor (J) 26 and a mass flow resistance (K) 24. The mass flow sensor 26 may produce a second electrical signal (#2) 32 which reflects the servo mass flow of air through the second mass flow channel.
The system may incorporate a third servo flow channel 143 from positive regulated gas pressure (B) 34 to an intermediate pressure connection point (D) 33. The third servo channel may incorporate an inlet filter (F) 19, a check valve (L) 35 and one or more mass flow resistances in parallel (M) 21. The check valve 35 may be open to allow gas to flow from the inlet 16 of regulated gas (B) 34 pick-up to the intermediate pressure point (D) 33, or from the intermediate pressure point (D) 33 to the regulated gas pressure (B) 34 pick-up point. The check valve (L) 35 may be closed (shut of) to prevent gas to flow from or to the intermediate pressure point (D) 33 to the regulated gas pressure pick up point (as flow is still allowed to flow from intermediate pressure point to combustion chamber when the valve is closed).
The system may incorporate a fourth servo flow channel 144 from the intermediate connection point (D) 33 to the lower pressure combustion chamber (C) 28. The fourth servo channel may incorporate a flow resistance (N) 22 and an air filter (G) 30. The filters for multiple channels may be combined into one combination filter.
A fuel supply 45 may be connected to a variable mass flow restriction 155. A downstream end of restriction 155 may be connected to a second inlet 16 of system 151. An output of processor 152 may provide a signal to adjust or vary restriction 155.
Inlet 16 may be connected to mixing point 33. Mixing point 33 may be connected downstream to a second outlet 156 of system 151. Outlet 156 may be connected to a third mixing point 157.
Air supply 37 may be connected to a static air flow restriction 158. Restriction 158 may be connected downstream to first mixing point 154. Mixing point 154 may be connected downstream to a variable air flow restriction 159 which in turn can be connected to third mixing point 157. Mixing point 157 may be connected downstream to a combustion chamber 162. A data storage memory 163 may be connected to processor 152.
A fuel supply 45 may be connected to a variable mass flow restriction 155. A downstream end of restriction 155 may be connected to a second inlet 16 of system 161. An output of processor 152 may be provided to variable mass flow restriction 155.
Inlet 16 may be connected downstream to a mass flow restriction 21. Restriction 21 may be connected downstream to mixing point 33. One or more additional restrictions may be connected in parallel with restriction 21. For example, a restriction 165 may have an inlet connected to a valve 166 that is connected to inlet 16. An outlet end of restriction 165 may be connected to mixing point 33. If needed or desired, another restriction 167 may have an inlet connected to a valve 168 that is connected to inlet 16. An outlet of restriction 167 may be connected to mixing point 33. Values 166 and 168 may open or close to switch in or out, respectively, restrictions 165 and 167.
Upstream of a combustion chamber (C) 28, a burner head may be positioned to represent a flow restriction (AC) 39. Burner head flow restriction (AC) 39 may be an important feature for the regulation as it can produce a pressure difference between reference point (A) 27 and reference point (C) 28 as a function of the main air flow through the burner head restriction 39 that is used to feed the sensing module 15. Instead of burner head resistance also a dedicated static flow resistance may be used to generate a reference pressure difference. This dedicated resistance may be applied in case that the burner head may be varied for some reason like variation over time or variation over flow capacity.
Downstream of gas pick-up point (B) 34 and upstream of combustion chamber pressure (C) 28 or mixing device pressure (C″) 42 (
It may be desirable to regulate gas mass flow in relation to an air reference mass flow such that gas and air are mixed together, in the combustion chamber or in the mixing device chamber or likewise, according a pre-defined ratio. The predefined mixing ratio may relate to the production of combustion emission gases like CO2, CO, and NOx. The optimal mixing ratio may differ slightly from application to application. Also, the optimal mixing ratio may differ slightly over the heat capacity band of a given application, meaning that a burner might need a different mixing ratio at low capacity conditions than at medium capacity conditions or than at maximum capacity conditions. Additionally, it may be that a startup condition needs a different mixing ratio than a burning operation condition. In all, the mixing ratio may need to be flexible to cover different conditions and be repeatable in its setting to obtain a comparable combustion result, time and time again.
Setup and commissioning may be noted. In order to set up, use and check the system for proper combustion, a number of different operating conditions may be considered for the regulation system.
S′1[1, 2, . . . , n] and S′2[1, 2, . . . , n].
Corresponding to the readings at storage 54 may be a discrete amount of events S4[1, 2, . . . , n] at symbol 101 with a connection between a controlled air supply 102 and an air valve 38 which may be controlled. During setup the installer is somehow able to control the air supply, by air supply or air valve, but under an operation mode the air flow may be controlled by an external device and not be accessible for our regulation system. Still the relation is there, but one does not necessarily control the source.
The two parallel channels may be fed by the same source and the mass flows may be released to the same sink. Also, the mass flows may pass the same inlet filter, but the gas inlet filter in this case may function as a second exit filter and the flow resistances as well as the mass flow sensors may all be static non-variable components meaning that the ratio of sensor (#2) 26 reading 32 and sensor (#1) 25 reading 31 should be consistent and repeatable (the servo air flow crosses also the burner orifice resistance, this burner orifice is ignored for this operation condition, as the cross sectional area of the orifice is dimensioned for the main gas flow and in fact can be regarded infinitely large for the servo air flow which is much smaller than the main flow). The sensor readings for sensor (#1) 25 and sensor (#2) 26 may be stored as reference values at storage 54, indicated as
S-1[1, 2, . . . , n] and S-2[1, 2, . . . , n] (or any other indication).
Corresponding to the readings at storage 54 may be a discrete amount of events S4[1, 2, . . . , n] at symbol 101 with a connection between a controlled air supply 102 and an air valve 38 which may be controlled.
In the third operating condition for a regulation system, where the check valve 35 in the sensing module 15 is opened, all safety shut off valves 47 and 48 may be opened. Sensor (#1) 25 may measure air mass flow parallel to the main air flow and the measured flow may have a direct relation to the main air mass flow. Sensor (#2) 26 may measure air mass flow between the air reference point 27 and the intermediate pressure point 33 between channels three and four. As a result of gas mass flow, a pressure difference over the burner orifice 51 may result which forms a second pressure difference over the sensing module 15. As a result of the direction of the main gas flow and the matching pressure difference over the burner orifice 51, the gas inlet pressure 34 over the sensing module 15 at the entrance of servo channel three may be higher than the exit pressure downstream of channel four and channel one. The flow resistances in servo channel three and servo channel four may be chosen such that the intermediate pressure is somewhere between the gas inlet pressure 34 and the mixture outlet pressure 28, and lower than the corresponding reference air inlet pressure 27.
For each discrete number of combinations of air mass flow and gas mass flow, a unique and discrete number of matching combinations of sensor (#1) 25 reading 31 and sensor (#2) 26 reading 32 may be captured. Sensor readings 31 and 32 for sensor (#1) 25 and sensor (#2) 26 may be stored as reference values to a commissioned number of valid and approved settings for the application at storage 54, indicated as
S1[1, 2, . . . , n] and S2[1, 2, . . . , n];
where the gas mass flow for each discrete air mass flow is regulated, by adjusting a gas mass flow restriction valve 49, to a level that gives acceptable readings of the combustion sensor 56 which is temporarily installed and processed.
Corresponding to the readings at storage 54 may be a discrete amount of events S4[1, 2, . . . , n] at symbol 101 with a connection between a controlled air supply 102 and an air valve 38 which may be controlled, and S3[1, 2, . . . , n] at 103 with a connection between mixing ratio of a controlled air supply and a controlled gas supply. Continuous event (@4(X) 113 may be connected via S4 to air supply range (P,T) 102 and air valve 38 (
Transfer functions may be noted. The transfer functions may be generated out of a discrete number of stored sensor readings for sensor (#1) 25 and sensor (#2) 26, for the above mentioned operating conditions, which should cover a continuous range between the minimal values and the maximal values.
A first transfer function S′2=F1(S′1) may describe a curve that represents sensor readings for the situation in which the check valve 35 is closed, and where it makes no difference if the safety valves 47 and 48 are opened or closed.
A second transfer function S-2-S′2=F2(S-1,s′1) may describe a curve that shows the difference between the check valve 35 closed and check valve 35 opened during a pre-purge situation. Pre-purge may mean that a rather large air flow is blown through the boiler application, while the safety shut off valves 47 and 48 are closed, to clean the application from any unburned gaseous content. The function may describe a reference situation for a clean filter and an open orifice in servo channel three (gas servo channel).
A third transfer function S2=F3(S1) may describe a curve that shows a sensor reading that reflects a curve through commissioned and approved mixing ratio of gas mass flow and air mass flow between the minimum capacity and maximum capacity for which appropriate combustion results have been validated and approved during the commissioning process.
A run mode (run mode=a sixth operation condition) may be noted. After the above mentioned sensor readings 31 and 32 have been measured and stored, and the transfer functions have been established in the software, the application may be ready to run unattended without an installer or combustion result sensor 56 (
During a run mode, the air mass flow may result from a fan/blower speed and or a position of the air valve 38 which fed by some continuous, for the present regulation system, signal. Also, the air supply pressure and the gas supply temperature, as well as the air supply moisture content, might not be the same as the reference values during the commissioning but instead they might be any value within a certain range.
During run mode a combustion sensor (mixing ratio) 56 may provide a measured combustion result at symbol 103. A target combustion result may be provided at symbol 104. The difference between the measured and target combustion results may be determined as an error at symbol 105. Transfer function F3 may be corrected based on the established error between measured combustion results and target values in order to adapt for changed chemical gas content or the like to reduce or eliminate the error or difference between the measured and target combustion results in a continuous and automatic way.
A reading of sensor (#1) 25 may be multiplied with the first transfer function that was derived from the first operating condition to calculate a target reading for sensor (#2) 26, and a target relationship between sensor (#2) 26 reading 32 and sensor (#1) 25 reading 31 may be established. An actual reading 32 of sensor (#2) 26 might be different than the established target reading and also the measured relationship between sensor (#2) 26 and sensor (#1) 25 might be different than the target relationship.
Sensor 25 may be connected via S″1 31 to Stored function 107. Sensor 26 may be connected via S″2 32 to Measured 110. Stored function 107 may be connected to Target 108, which in turn may be connected to Target 109 and Measured 110. Measured 111 may be connected to Target 109 and Reading error 112.
Two different servo channels with virtually all static components that are fed by the same upstream pressure and which release to the same downstream pressure should maintain the same relationship between the servo mass flows. A measured difference between the measured relationship and the target relationship may indicate that the sensor readings have shifted. The shift may have occurred due to different reasons like different temperature, different moisture content, different pressure level, aging and so on.
The amount of error between the target relationship and the measured relationship may be used to determine a correction factor for sensor reading drift. For example, one may assume that the sensor (#1) 25 reading 31 is 1.20 mg air/sec. and the stored transfer function S′2=F1(S′1). The transfer function F1 may be a curve, but for a simplified example the transfer function may also be regarded as a constant=>S′2=0.75*S′1. A target reading 32 for sensor (#2) 26 may be calculated as 1.20*0.75=0.90 mg/sec.
One may assume that the measured reading 32 of sensor (#2) 26 would be 0.93 mg/sec for some reason. It may be noted that the sensor relationship has drifted from 100% to 0.93/0.90*100%=103.3% of the original relationship. A first correction factor for the drifted relationship may be an inverse of the established drift, 100/103.3=96.8%. A first threshold may be defined as a decision parameter if the correction is acceptable or that the installation needs to be re-commissioned.
A new transfer function may be calculated out of the transfer function for the first and the second operating conditions, which calculates the target difference in sensor (#2) 26 reading 32 for the two operating conditions as a function of sensor (#1) reading 25. A sensor (#2) 26 reading 32 for the fifth operating condition may be measured. A sensor (#2) 26 reading 32 for the fourth operating condition may be measured just before and stored for comparison (or vice versa). A difference of the measured sensor (#2) 26 readings 32 for both operations may be calculated and compared with the target difference.
If the measured difference is smaller than the target difference, then the inlet gas filter 19 or the orifice in the servo gas channel may suffer pollution. As the difference of readings for two situations are compared, the absolute error of the sensors do not necessarily affect the accuracy of the measurement, even a small difference counts many sensor (resolution) steps and change will be detected.
As an example, sensor (#1) 25 reading may be assumed to be 1.20 mg air/sec. The first stored transfer function may be assumed as S′2=0.75*S′1. The second stored transfer function may be assumed as S-2=0.80*S-1. A target difference for the readings of sensor #S may be calculated as 1.20*(0.80−0.75)=0.06 mg/sec.
A measured reading of sensor (#2) 26 with closed check valve 35 may be assumed as 0.93 mg/sec and it may be known that a first correction factor of 96.8% should be applied, to correct the reading to 0.90 mg/sec.
A measured reading of sensor (#2) 26 with an opened check valve 35 may be assumed as 0.97 mg/sec and a first correction factor of 96.8% should be applied to correct the reading to 0.938 mg/sec. A measured difference, which may be corrected for a drift, of the readings of sensor #S may be calculated as 0.938−0.90=0.038 mg/sec.
In the example, the measured difference of 0.038 mg/sec may only be 63% of the target value which indicates that the difference between check valve 35 open and check valve 35 closed has decreased and that the filter 19 or the orifice may suffer from serious pollution. A second threshold may be defined as a decision parameter if the situation is still acceptable or not.
It may be possible to apply a correction for a plugged filter or orifice.
A measured difference from a symbol 116 may be compared with a target difference at a symbol 117 and be difference of the measured and target differences. A threshold minimum difference from symbol 122 may be compared with the difference at symbol 117. If the threshold difference is not exceeded or is exceeded, then a conclusion may be that filter 19 is ok or not ok, respectively, as indicated at symbol 123.
Sensor 25 may be connected via S#1 31 to Stored function 118. Sensor 26 may be connected via S#2 32 to Measured 114. Stored function 118 may be connected to stored function 119, which in turn may be connected to stored function 120. Stored function 120 may be connected to target 121, which in turn is connected to measured 116. Measured 114 may be connected to measured 116. Measured 115 may be connected to measured 116. Measured 116 may be connected to difference measured-target 117. A threshold minimum difference 122 may be connected to difference measured-target 117. Difference measured-target 117 may be connected to conclusion filter ok/not ok 123.
During the sixth operating condition, check valve open, all safety shut off valves open, a gas restriction valve 49 may be at a certain position which is defined by a regulation algorithm, such that the gas mass flow that results out of that setting relative to a given air mass flow results in a reading relationship of sensor (#1) 25 and sensor (#2) 26 that repeats a combustion result in terms of emissions which has been approved during commissioning process. During commissioning one may have set and approved a discrete number of emissions. Then, one may have created a transfer function that connects the discrete number of sensor readings that correspond with the air mass flow and emission reading into a target curve (third transfer function). With a regulation algorithm, gas flow may be regulated such that measured relationship between sensor #125 and sensor #226 approaches the target relationship.
Sensor (#1) 25 may measure servo air mass flow parallel to the main air flow channel due to a differential pressure over the burner head restriction 39 and the measured flow may have a direct relation to the main air mass flow. Sensor (#2) 26 may measure air mass flow between the air reference point and the intermediate pressure point between channels three and four. As result of gas mass flow, a pressure difference over the burner orifice 51 may occur and form a second pressure difference over the sensing module 15. As a result of the direction of the main gas flow and the matching pressure difference over the burner orifice 51, the gas inlet pressure over the sensing module 15 at the entrance of servo channel three may be higher than the exit pressure downstream of channel four and channel one. The flow resistances in servo channel three and servo channel four may be chosen such that the intermediate pressure is somewhere between the gas inlet 34 pressure and the mixture outlet 28 pressure and lower than the corresponding reference air inlet 27 pressure.
Out of the reading of sensor (#1) 25 and the transfer function, which was derived from the third operating condition, a target reading for sensor (#2) 26 may be calculated. Thus, a target relationship between sensor (#2) 26 reading 32 and sensor (#1) 25 reading 31 may be established.
Both sensor (#1) 25 and sensor (#2) 26 may drift a little bit due to temperature variations, moisture content variations, air pressure variations, aging and so on. The drift may be measured at a defined time interval and/or after each considerable change in burning capacity by closing the check valve 35 according operating condition four. Then a fourth transfer function may be calculated out of the third transfer function and the first correction factor, accordingly to calculate a new, for drift corrected, target reading for sensor (#2) 26.
Relative drift of sensors compared to each other may be determined. Both sensors may drift in a same ratio in the same direction; however, this will likely not be noticed, and it does not necessarily matter for regulation of an air gas mixing ratio.
The reading 32 of sensor (#2) 26 may be compared to the target reading of sensor (#2) 26. The reading 32 of sensor (#2) 26 may be different than the established target reading, thus indicating that the regulated gas mass flow should be adjusted. In case that the reading 32 of sensor (#2) 26 is less than the target of sensor (#2) 26, the gas mass flow is regulated as too large and the stepper motor of the adjustable gas restriction valve 49 may be given the command to close the gas restriction valve 49 with one or more steps.
In case that the reading 32 of sensor (#2) 26 is larger than the target of sensor (#2) 26, then the gas mass flow may be regulated as too low and the stepper motor of the adjustable gas restriction valve 49 may be given the command to open the gas restriction valve 49 with one or more steps.
Pressure regulation versus mixing ratio regulation may be noted. The present control may also be applied regulate gas pressure in a fixed relation with a reference air pressure. Also, combustion chamber pressure may be used as a reference for controlling. Gas pressure might be regulated with final objective to precisely control gas and air mixing ratio.
Main air flow may pass only one flow resistance (indicated as baffle plate resistance or burner head 51 resistance) while it may flow from reference air pressure to combustion pressure.
Symbol 125 indicates a stored function F(S2/S1). One may use transfer function S2=F(S1) relation virtually everywhere from readings 31 and 32. A measurement of S-2 from reading 32 may be indicated by symbol 126. A correction for drift of the stored function indicated by symbol 125 may be noted by symbol 127 and result in a target S-2 at symbol 128. A difference of measured S-2 from symbol 126 and target S-2 from symbol 128 may be noted as an error at symbol 129. To correct for the error, an adjusting of a mass flow restriction valve 49 may be effected as indicated in symbol 130.
A pressure control system may be used to generate a mechanically independent feedback signal in case of a parallel positioning system. For each combination of butterfly valve positions, a unique combination of sensor readings may exist. The present system may utilize a pressure difference over the burner orifice 65 (gas side) and a pressure difference over the burner head 67 (air side), just like virtually all other systems, that provide input for regulation or guarding the system.
For a parallel position system, there may be no need for a stepper motor 63 driven pressure regulator. The pressure regulator may receive its commands from a different system. There might be no need for an embedded pressure regulator at all as the sensors at pick-up points 66, 71 and 72, may provide signals to the restriction valves 81 and 82 to correct for small errors that typically occur due to building pressure regulator characteristics.
On the other hand, as the present system may provide flow related feedback, in contradiction to valve position related feedback from other systems known from the related art, a stepper driven embedded pressure regulator that receives its feedback from a pressure sensor may be applied in combination with the present burner control system. An advantage of this combination may be that a system with extremely high turn-down (ratio between maximal flow and minimal flow in the range of 100:1 or higher) can be achieved while some typical drift or tolerance may be allowed for the pressure sensor.
In the example system 251 of
The system 251 may include one or more outlets including outlet 218 which may be connected to a reference point downstream of the inlet points where air and fuel has been mixed together, for instance, at a combustion chamber of a boiler or downstream of a mixing device. The system 251 may also include one or more filters (e.g., filters 220a, 220b, 220c, 220d, and/or one or more other filters) to filter particles out of the incoming air (e.g., filters 220a, 220b), out of incoming gas (e.g., filter 220c), and/or outgoing air-gas that might flow back due to a pressure surge during ignition (e.g., filter 220d). Further, the system 251 may include of one or more flow resistances (e.g., flow resistances 222a, 222b, 222c, 222d, 222e, 222f, 222g), which may typically be orifices or other resistances. The flow resistances may be the same, similar, and/or different from each other in size and resistance level.
In at least one example of the system 251, the system 251 may incorporate a first flow path or channel 241 from an air supply 237 having positive air reference pressure (P1) to a lower pressure (PO) at the outlet 218. The first flow path or channel 241 may incorporate the inlet filter 220b, the first sensor 225, one or more flow resistances (e.g., the flow resistance 222a or other flow resistances), and/or one or more other features. The first sensor 225 may produce a first electrical output signal 231 which may reflect a measure related to a flow of air through the first flow path or channel 241.
The system 251 may incorporate a second flow path or channel 242 from the air supply 237 having positive air reference pressure (P1) and from a fuel supply 245 having a positive fuel reference pressure (P2) to the lower pressure (PO) at the outlet 218. The second flow path or channel 242 may incorporate an inlet filter 220a, the second sensor 226, one or more flow resistances (e.g., the flow resistances 222c, 222f, 222g or other flow resistances), and/or one or more other features. The second sensor 226 may produce a second electrical signal 232 which reflects a measure related to a flow of fuel through the second flow path or channel 242. Further, in some cases, air may flow through the second flow path or channel 242 in a direction opposite of the arrow of the second flow path or channel 242 and toward a variable restriction valve 235 (e.g., a first variable restriction valve similar to or different than the check valve 35) that is depicted in
In some cases the variable restriction valve 235 may open and close to supply fuel to the second flow path or channel 242. The variable restriction valve 235, in one example, may have a first port connected to or for connection to the fuel supply 245, via filter 220c and item 216, a second port connected to or for connection to the second port of the first coupling point and a third port. In addition to or as an alternative, the second port of the variable restriction valve 235 may be connected to or may be for connection to the second port of the first coupling point and the second port of the second coupling point.
The system 251 may incorporate a third flow path or channel 243. The third flow path or channel 243 may have a first configuration (e.g., the solid line associated with 243 identifies the first configuration) and a second configuration (e.g., the dotted line and solid line associated with 243 identifies the second configuration). In some cases, a variable restriction valve 236 (e.g., a second variable restriction valve similar to or different than the check valve 35) may be configured to open and close to adjust the third flow path or channel 243 between the first configuration and the second configuration. The third flow path or channel 243 may incorporate the inlet filters 220a, 220c (selectively), the third sensor 227, one or more flow resistances (e.g., the flow resistances 222b, 222d, 222e or other flow resistances), and/or one or more other features.
The third sensor 227 may produce a third electrical signal 233 which may reflect a measure related to a flow through the third flow path or channel 243. When the third flow path or channel 243 is in the first configuration, the third sensor 227 may produce a reading that reflects a measure related to a flow of air through the third flow path or channel 243. The reading from the third sensor 227 when the third flow path or channel 243 is in the first configuration may be intended to be redundant with or indicative of a reading from the first sensor 225. When the third flow path or channel is in the second configuration, the third sensor 227 may produce a reading that reflects a measure related to a flow of fuel through the second flow path or channel 242. The reading from the third sensor 227 when the third flow path or channel 243 is in the second configuration may be intended to be redundant with or indicative of a reading from the second sensor. Further, in some cases, air may flow through the third flow path or channel 243 in a direction opposite of the arrow of the third flow path or channel 243 and toward the variable restriction valve 236 that is depicted in
The system 251 may include a processor 252. The processor 252 may be configured to receive signals 231, 232, 233 from the sensors 225,226,227 and/or send signals to the sensors 225, 226, 227. In some cases, the processor 252 may have a first terminal connected to a signal terminal of the first sensor 225, a second terminal connected to a signal terminal of the second sensor 226, and a third terminal connected to a signal terminal of the third sensor 227 to facilitate transmission of the signals 231, 232, 233 between the sensors 225, 226, 227 and the processor 252. The terminals of the processor and the signal terminals of the sensors 225, 226, 227 may be connected in a wired and/or wireless manner.
Further, the processor 252 may be configured to send signals 260, 262 (e.g., control signals) to the variable restriction valves 235, 236 and/or receive signals from the variable restriction valves 235, 236. In some cases, the processor 252 may be configured to regulate an air to fuel ratio based, at least in part, on readings from the first sensor 225 and/or the second sensor 226. In one example of regulating an air to fuel ratio, the processor 252 may receive signals from the first sensor 225 and the second sensor 226 and then based, at least in part, on the signals (e.g., including readings) from the first sensor 225 and the second sensor 226, the processor 252 may send the signal 260 to an actuator (e.g., where the actuator has a control terminal connected to a terminal of the processor 252) of the first variable restriction valve 235 and set the variable restriction device 235 at a desired position between a fully closed position and a fully opened position to vary a restriction of the first variable restriction device 235 to a flow of fuel therethrough, to adjust or set an amount of fuel entering into the system 251, and/or to maintain or achieve a desired fuel to air ration.
In some cases, the processor 252 may be configured to adjust a configuration of the third flow path or channel 243 between the first configuration and the second configuration. In one example, the processor 252 may send the signal 262 to an actuator (e.g., where the actuator has a control terminal connected to a terminal of the processor 252) of the second variable restriction valve 236 to cause the actuator to open or close the second variable restriction valve and vary a restriction of the second variable restriction device 236 to adjust a flow of fuel therethrough.
In some cases, the processor 252 may be configured to test one or both of the first sensor 225 and the second sensor 226, along with the associated flow path or channel 241, 242. To perform a test on the first sensor 225 and the first flow path or channel 241, the processor 252 may compare one or more readings from the first sensor 225 for a particular time period to one or more readings from the third sensor 227 during the particular time period and when the third flow path or channel 243 is in the first configuration. If the readings from the third sensor 227 differ from the readings of the first sensor 225 by more than a threshold value, the first sensor 225 and/or the first flow path or channel 241 may be considered to have failed the test and further investigation into the cause of the failure may be performed. Similarly, to perform a test on the second sensor 226 and the second flow path or channel 242, the processor 252 may compare one or more readings from the second sensor 226 for a particular time period to one or more readings from the third sensor 227 during the particular time period and when the third flow path or channel 243 is in the second configuration. If the readings from the third sensor 227 differ from the readings of the second sensor 226 by more than a threshold value, the second sensor 226 and/or the first flow path or channel 242 may be considered to have failed the test and further investigation into the cause of the failure may be performed. Example causes of failure may include, but are not limited to, a clogged flow path, sensor drift, etc. Further, if the processor 252 determines a test has been failed, an alert or an alarm may be initiated by the processor 252.
An approach may be to record flow sensor 25, 26,225,226,227 readings 31, 32,231, 232, 233, respectively, and/or other flow sensor readings for different pressure levels during commissioning and store those combinations for later use. Depending on heat demand, the pressure may be regulated at some level and the present control system may read air flow and regulate matching a gas flow precisely. One may note that flow resistances in the main flows, for example as shown in
One may note that only plain air flows through both sensors 25, 26, 225, 226, and 227. Variation in chemical content of the applied gaseous fluid will not necessarily affect pressure regulation based on sensor readings.
Accessibility, signal feedback and adjustability may be considered. Virtually all required input and output signals may be lead via a controller to an embedded or external display/processor that can display results and that can receive commands from the installer. The display/processor may be a laptop, smart-phone, burner controller or dedicated handhold tool. There is necessarily no need to access screws, or read signals close to the valve inside the burner cover. A connection cable may be mounted at an easy to reach position, but input, output signals may also be transferred via a wireless device during commissioning.
One may want to lock, secure and fixate settings. Virtually all input and output commands may be monitored. An ability to adjust settings may be password protected. Passwords may be coupled to installer accounts. Revision control may be applied for settings. A list may be made that shows who did what change at what time together with recorded combustion results. For non-authorized persons, the readings may be visible but any adjustment possibility can be blocked.
Manual adjustment may be avoided. Virtually all mechanical adjustment devices may be excluded from the present system. There is necessarily no throttle that needs adjustment, no mechanical amplifier that needs adjustment, and no pneumatic amplifier that needs adjustment (adjustable throttle).
The upstream pressure regulator, such as one in a gas channel, which receives its commands from a controller, may be stepper motor driven, like items 63 and 64 in
However, some manual adjustment may be possible. The installer may enter or change a desired CO2 result, or an O2 or other emission combustion result as function of burner capacity. The installer may enter a desired start up setting. The CO2 curve or O2 curve may be non-linear if desired.
There may be semi-automatic commissioning. A commissioning procedure may be captured in software and need only some guarding from the installer while it is applied automatically. The procedure may incorporate steps: 1) Read the wished combustion result as a function of burner capacity; 2) Establish initial setting at low flow; 3) Read combustion result from temporary attached combustion sensor as CO2 meter or O2 meter; 4) Determine direction to adjust gas flow and pressure to get to the required combustion result; 5) Store readings of flow sensors for optimal setting; 6) Store reading of flow sensors for limit settings; 7) Repeat for higher burner capacities until a maximum burner capacity is reached; 8) Validate settings; 9) Detach temporary combustion sensor; and 10) Repeat combustion after commissioning according stored data.
Tolerances, rate of curvature of combustion result, outer limits, and so on, may be captured in software. Required actions, based on emission readings, may be captured in software. No special skills or patience are necessarily demanded from the installer.
There may be full automatic commissioning as noted herein. A commissioning procedure may be captured in software and need only some guarding from the combustion sensor which may be connected downstream of the combustion chamber measuring flue gases. Measured combustion emissions may be compared with target combustion emissions. The measured emission reading may differ from the target emission readings and an error may be established hence a second correction factor may be established. A fifth transfer function may be calculated out of the third transfer function, the first correction factor and the second correction factor to calculate a target reading for sensor (#2) as a function of sensor (#1) reading.
There is no necessary need for special orifices with tight tolerances, regardless of any tolerance the system is commissioned at and relation between sensor readings is captured. One significant thing for the system to perform well may be repeatability and resolution. Repeatability may be checked during a pre-purge system check and resolution may be chosen as appropriate.
Diagnostics may be considered. High gas pressure may be detected while the stepper motor driven pressure regulator has received the command to fully close while still a sensor reading being measured indicates that a gas pressure level is too high. Low gas pressure may be detected while the stepper motor driven pressure regulator has received a command to fully open while still a sensor reading being measured that indicates a gas pressure level is too low. Low air pressure does not necessarily have to be detected as the mixing ratio may be air-gas proportional. Air flow may be measured and regardless of the level of that flow, the appropriate amount of gas flow may be regulated. However, it may be possible to store the fan speed and or the air restriction valve position together with sensor readings and detect any mismatch as soon as it occurs. The same may account for any other mismatch in air flow due to voltage fluctuations, changing fan or air restriction valve characteristics, chimney characteristics, and so on. Any change due to blocked filters, blocked orifices, sensor drift may be detected during pre-purge check. Plugged air filters 20 and 30 may be detected by noting that sensor readings for sensor (#1) and sensor (#2) gradually reduce over time during pre-purge check. Change of chemical content of gaseous fluid does not necessarily affect a mixing ratio more than (related art) comparable systems in the field. Typically, the gas suppliers may keep a Wobbe index, meaning that specific heat capacity over density remains about the same. Mixing ratios may remain between certain limits, which can be tested and approved with so-called limit gases.
Air flow may be measured and with the sensor readings 31, 32, 231, 232, 233, and with help of feedback from CO2 levels or CO levels, the gas flow may be calculated accurately and monitored over time.
Validation measurements may be helpful. Measurements may be performed on a tube model with orifices inside and differential pressure sensors connected. Gas sided pressure may be treated as leading where gas pressure is manually adjusted, to achieve a predefined amplification ratio, respectively 2:1, 1:1, 5:1 and 10:1. The tube model may bleed flow to the environment, which can mean an absence of increased combustion chamber pressure. Calibration characteristics may be measured by disconnecting gas pressure channel upstream from the orifices and bleeding a flow to environment.
Settings may be chosen for validation measurements. Test setup orifices may be normal stamped production orifices for gas side upstream at 0.28 mm, gas side downstream at 0.66 mm, air side upstream at 0.28 mm, and air side downstream, in series with a sensor 1, at 0.66 mm. Sensor 1 may be at a channel to combustion chamber at a 500 Pa range, Sensirion™ SDP 620. Sensor 2 may be at a channel between air and gas at a 500 Pa range, Sensirion SDP 620. No orifice should be between the gas and air tubes.
For a given fan speed (and corresponding air pressure), an initial gas pressure setting may be regulated at a sensor reading 1, and a sensor reading 2 may equal 0.6 of sensor reading 1. After an initial start-up, the setting may be fine-tuned with feedback from a temporarily attached combustion result meter.
In conclusion, salient features of the present system and approach may be reviewed. The present system may measure air flow with a first servo mass flow sensor 25 or differential pressure sensor as a reference for the heat capacity to the burner chamber being accurate over the whole envisioned flow capacity range. The present control system may measure the ratio of the gas and air manifold pressures with a second flow sensor 26 or differential pressure sensor such that only an air flow passes the sensor and such that the system is capable to regulate gas pressure in the range from about 0.4 times the air pressure until about 9 times air pressure.
Just plain air should flow through the sensors, and any embedded fail safe protocol of the sensor may remain valid. Any significant error or drift in the sensor may be detected, measured and corrected for. Pollution or plugging of the gas filters may be detected, measured and compared to a defined threshold. During commissioning, the sensor readings may be stored in the system and secured for diagnostics later on. Transfer functions may be derived from the stored values to generate target values for regulation, correction, and safety decisions. Optionally, a combustion sensor may be applied to measure content of flue gases. The reading of the combustion sensor may be applied to fine-tune or to update specific transfer functions for regulation. During pre-purge and during run time operation, the readings of the sensors may be checked and compared to each other in relation to a stored value to detect any shift or mismatch. During pre-purge, virtually any pollution of the gas side filter or gas side orifice may be checked and measured by comparing two situations to a known situation. Also, since the sensors are coupled directly to the air and fuel, the system is no longer necessarily sensitive to certain failure modes (i.e., regulator drift or obstructed air supply). The system may also have desired flexibility. Virtually any fuel air curve may be programmed and stored in the controller, no matter how non-linear.
In a standard burner configuration where a fan is used to inject air into the burner under pressure, there may be a manifold for gas and a manifold for air coming into the burner. A first bypass channel may be connected to the air supply downstream of the air control valve or fan, but upstream of the burner baffle plate and then to the combustion chamber. In the bypass channel, there may be a first flow sensor and optionally one orifice. This may be referred to as a first measurement channel. A second bypass channel may be connected to the air supply downstream of the air control valve or fan, but upstream of the burner baffle plate and then to the combustion chamber. In the bypass channel, there may be two orifices. The two orifices in series may form a pneumatic circuit commonly referred to as an air pressure divider. A purpose may be to reduce air pressure to a lower level which is needed for the system to reach minimum amplification factor (gas pressure minus combustion chamber pressure over air pressure minus combustion chamber pressure, (Pgas−Pcc)/(Pair−Pcc)=minimal). First and second bypass channels may also be combined to one air bypass channel with two orifices and one sensor.
A third bypass channel may be connected to the gas supply downstream of the control valve, but upstream of the burner orifice and then to the combustion chamber. In the bypass channel there may be two orifices. The two orifices in series may form a pneumatic circuit commonly referred to as a gas pressure divider. The purpose of this circuit may be to reduce the gas pressure in the bypass channel from the manifold pressure to some pressure that is suitable for the whole required pressure amplification range and between minimal and maximal flow capacity lower than reduced air pressure. Between the two orifices of the air pressure divider circuit and the two orifices of the gas pressure divider circuit there may be a connection. The connection may be referred to as the second measurement channel. In the measurement channel, there may be a mass flow or differential pressure sensor and optionally an orifice. This sensor may measure a magnitude of the flow through the measurement channel or the differential pressure, and provide feedback to the systems controller. The readings of the two sensors may be stored, during commissioning of the application, in a table for the required flow capacity range and for the required amplification range, which can be used by the microprocessor to give an accurate steering signal to the actuator that drives the pressure regulation valve to restore the actual reading at any later time to those readings that are initially stored in the table.
The readings of the two sensors during pre-purge, where the gas valve is closed, may be stored in a table. The stored readings and the ratio between the actual readings at any later time may be used as a reference to detect sensor drift over time.
Also, a sensor embedded safety protocol may be utilized as only plain air flow passes the sensor during operation. The system constituting the sensor, measurement channel, bypass channel, pressure divider, fuel control valve, and controller may be located in a single body, may be all individual items, or may make up any combination. Optionally, a combustion sensor may be added to the control system for increased ease of system setup and for improved control accuracy during operation. This sensor may have to be placed in the flue of the combustion chamber or other appropriate location to observe the byproducts of combustion. Another optional feature may be a temperature addition of temperature sensor(s) to measure the air and gas temperature. If this information is available to the system controller, then the temperature (density) effects on the system mass flows may be compensated out. The temperature compensation may or may not involve separate temperature sensors as many readily available pressure and flow sensors have built-in temperature compensation.
To set up the present system in the field, the burner may be adjusted between minimum and maximum fire and the combustion byproducts can be observed (either manually or by the control itself if it has its own combustion sensor). The excess air may be adjusted to the desired amount at each point on the fuel/air curve between min and max fire, and the output of the sensors in the measurement channels may be recorded and stored by the controller.
This process may be repeated until the entire fuel/air curve has been profiled and stored. Once the controller has this curve, it may position the air damper and the pressure regulation valve precisely based on the desired firing rate of the system and the feedback from the sensors in the measurement channels.
Further, in some cases precise control of the fuel/air ratio may be one of the most important aspects of improving overall burner performance and efficiency. Related art control systems appear to lack the accuracy, flexibility, and function/feature sets to take full advantage of modern day burner performance or to advance burner designs to the next level. Two of the most common control systems for controlling burners in the related art may be the parallel positioning system and the pneumatic gas-air system. Both have drawbacks.
The parallel positioning system may rely on precisely positioning two actuators (one on a fuel control valve, one on an air damper) along a known, predefined curve. A drawback to this system may be that the actual flow of gas and air is not necessarily being measured directly and that certain shifts (i.e., temperature change, upstream pressure regulator drift, obstructed air supply, and so forth) might go undetected and uncompensated. An advantage of the parallel positioning system appears to be that it is flexible. This system may be used to control any fuel/air ratio profile (e.g., non-linear) and do it precisely.
The pneumatic gas-air system may utilize pneumatic feedback signals from gas, air, and optionally from the combustion chamber to control the amount of fuel. Since this system may rely on the fluid parameters of the gas and air directly, it is not necessarily sensitive to certain components' shifting (e.g., upstream pressure regulator drift or obstructed air supply). A disadvantage may be that only two points of the system might be calibrated and the fuel/air (F/A) curve would be a linear approximation to what the burner really needs between the two points. Additionally, this type of system may be sensitive to, for example, pressure surges due to ignition and pressure instabilities around the pressure pick-up detection points for Pgas (gas pressure), Pair (air pressure), and Pee (combustion chamber pressure).
A present system may combine the strengths of the related-art systems and eliminate virtually all of their weaknesses. A control system may measure the ratio of the gas and air manifold parameters. The system may combine the measurement of gas and air in such a way that a single sensor can be used to measure both fluids. Optionally, a second sensor may be added for safety through redundancy or to expand the measurement range of the system. The sensor feedback signal may replace, or be used in conjunction with, the position feedback of a parallel positioning system. Since the sensor may be coupled directly to the air and fuel supply, the system is no longer necessarily sensitive to certain failure modes (e.g., regulator drift or obstructed air supply). The system may also have the desired flexibility. Any fuel air curve may be programmed and stored in the controller, despite non-linearity. In essence, this system may have virtually all of the flexibility of a parallel positioning system, and virtually all of the inherent safety of a pneumatic gas air system.
The present burner control arrangement may be a component of a heating system or a component of a heating, ventilation and air conditioning (HVAC) system.
Additional features may be added to the baseline system to make it even more useful to the end user. The gas and air flow may be trimmed by the controller to account for variability in the air and gas temperatures (i.e., densities). This may be achieved by measuring/estimating the temperature of the fluids and adjusting the flow restrictions of air and/or gas, accordingly. For example, by keeping the air flow constant and only changing the gas flow, the burner load may be kept constant. The system may be further trimmed based on the chemical composition of the flue gas. This may be achieved by measuring the byproducts (i.e., NOx, CO, HC, O2, and so forth) of combustion and adjusting the flow restrictions of air and/or gas accordingly. These two measures may be combined to eliminate nearly all of the tolerances from burner performance design, and should enable the end user of the system to run at optimum combustion across a turn-down ratio of the appliance.
In a standard burner configuration where a fan may be used to inject air into the burner under pressure, there may be a manifold for gas and a manifold for air coming into the burner. A bypass channel may be connected to the gas supply downstream of the control valve, but upstream of the burner orifice and then to the combustion chamber. In this bypass channel, there may be two orifices (at least one should be adjustable, but both can be adjustable for added flexibility of the system). These two orifices in series may form a pneumatic circuit commonly referred to as a pressure divider. The purpose of this circuit may be to reduce the gas pressure in the bypass channel from the manifold pressure to some pressure closer in value to the air pressure. Between the two orifices of the pressure divider circuit there may be a coupling between the gas bypass channel and the air supply channel. This may be referred to as a measurement channel. In the measurement channel, there may be mass flow, differential pressure or gauge pressure sensors. The sensors may measure the direction and magnitude of the flow through the measurement channel or of the differential pressure or gauge pressure, and provide feedback to the system's controller. The system constituting the sensor, measurement channel, bypass channel, pressure divider, fuel control valve, and controller may all be located in a single body, or may all be individual items, or may be made up of any combination. Optionally, a combustion sensor may be added to the control system for increased ease of system setup and for improved control accuracy during operation. A sensor may be placed in the flue of the combustion chamber or other appropriate location to observe byproducts of combustion.
Another feature may be an addition of temperature sensing to measure the air and gas temperatures. If this information is available to the system controller, then the temperature (density) affecting the system mass flow may be compensated out. The temperature compensation may or may not involve separate temperature sensors since many readily available pressure and flow sensors can have built-in temperature measurement used for compensating temperature drifts of the sensor and/or compensation of the system to account for temperature related changes in the working fluids.
To set up the present system in the field, the burner may be adjusted between minimum and maximum fire and the combustion byproducts may be observed (either manually or by the controller itself if it has its own combustion sensor). The air flow and gas flow may be adjusted to a desired amount at each point on the fuel/air curve between minimum and maximum fire, and the output of the sensor in the measurement channel may be recorded and stored by the controller. This process may be repeated until the entire fuel/air curve has been profiled and stored. Once the controller has this curve, it may adjust the air damper, fan or the fuel valve precisely based on a desired firing rate of the system and feedback from the sensor in the measurement channel.
One way that the system could work may be as follows: 1) A combustion sensor senses a byproduct concentration and sends a signal to the controller; 2) the controller recalculates the “predetermined magnitude of the parameter” based on the present and the desired byproduct concentrations; and the controller sends a signal to a control mechanism or mechanisms, adjusting fuel and/or air such that the parameter is driven to the new predetermined magnitude.
A system, where the temperature of both air and fuel is monitored, may work as follows: 1) A controller determines a difference between air and fuel temperatures; 2) The controller recalculates the “predetermined magnitude of the parameter” based on the temperature difference; and 3) The controller sends a signal to control mechanism(s), adjusting fuel and/or air such that the parameter is driven to the new predetermined magnitude.
Chamber 313 may be a volume where the one or more bypass channels terminate. Basically, the bypass channel or channels should terminate at a volume that has the same pressure as the termination points of the gas and air channels. Combustion chamber may be regarded herein as an illustrative example of chamber 313. A fuel channel 314 may be connected to a valve 315 at one end and connected at another end to an orifice 316. A measurement channel 319 may connect one end of a sensor 322 to air channel 311. A bypass channel 318 may have one end connected to fuel channel 314 and another end connected to combustion chamber 313. A measurement channel 321 may connect another end of sensor 322 to bypass channel 318. A resistive orifice 323 may be situated in bypass channel 318 between fuel channel 314 and measurement channel 321. Another resistive orifice 324 may be situated in bypass channel 318 between measurement channel 321 and combustion chamber 313. Orifices 323 and 324 may constitute a pressure divider circuit. Orifice 323 may be varied when tuning burner system 310. Orifice 324 may be fixed but could also or instead be variable. An orifice may be variable, for example, in size, shape and/or other property.
Sensor 322 may be one or more flow sensors, one or more pressure sensors, one or more differential pressure sensors, and/or a manifold of similar or different sensors. The present examples in
When tuning the burner system 310 for operation with nominal settings of air flow in channel 311 and fuel 348 in channel 314, orifice 323, may be adjusted in size to, for example, equalize the pressures or adjust them to predefined magnitudes in measurement channels 319 and 321, which may be designated as pressures 325 and 326, respectively. As a result, for equalization between ports 319 and 321 as a matter of course, there should be no flow through a flow sensor 322 or there should be a zero pressure difference indicated by a differential pressure sensor 322. The differential pressure, flow rate, gauge pressures, or other parameter value does not necessarily need to be zero or reflect similar magnitudes of parameters relating to the air and fuel channels. There may be a deviation or offset from zero as a setpoint referred to for control of the air pressure, gas pressure, flow, or other parameter. A sensor or sensors indicating a parameter comparison relative to the air and fuel channels may allow for a lambda adjustment as a function of the burner load and/or air flow. In lieu of zero, there may be a predefined differential pressure, gauge pressures, flow, or other parameter relative to the burner load, fuel consumption, air usage, fuel air mixture, and/or the like.
After burner system 310 is in place after being tuned and operating, for instance, pressures 325 and 326 may become different resulting in an indication by sensor 322 that the pressures are different either by a flow or differential pressure indication. A signal 332 of the indication of pressures 325 and 326 or other parameters may go to a controller 331. In response to the difference in pressures 325 and 326, controller 331 may send a signal 333 to valve 315. Valve 315 may be motorized in that it may open or close incrementally according to signal 333. For example, if pressure 325 is greater than pressure 326, then via signals 332 and 333 to and from controller 331, respectively, valve 315 may open to increase the fuel pressure in channels 314 and 318, and thus pressure 326 until it is about equal to pressure 325 if that is the goal, or some predefined differential pressure. If pressure 325 is less than pressure 326, then via signals 332 and 333 to and from controller 331, respectively, valve 315 may close to decrease the fuel pressure in channels 314 and 318, and thus, for example, pressure 326 until it is about equal to pressure 325 if that is the goal, or some predefined differential pressure.
Controller 331 may be connected to fan 312 which may be varied in speed according to a signal 334 from controller 331 and thus vary flow of air 347 through channel 311. Changing speed of fan 312 may increase or decrease pressure 325 to make it equal to pressure 326, or result in a predetermined differential pressure between pressures 325 and 326, or some other parameter such as a flow rate, indicated by sensor 322 via signals 332 and 334 to and from controller 331, respectively.
Controller 331 may be connected to a motorized damper/louver 336 which may vary closure or opening of channel 311 to affect an amount of air flow through channel 311 according to a signal 335 from controller and thus vary the flow of air 347 through channel 311. Opening or closing damper/louver 336 may increase or decrease pressure 325 to make it equal to pressure 326, or to result in a predetermined differential pressure between pressures 325 and 326, as indicated by sensor 322 via signals 332 and 335 to and from controller 331, respectively.
Pressures 325 and 326 may also be equalized or differentiated to a predetermined value, with a combination of two or more kinds of control which incorporate control of valve 315, control of fan 312 and/or control of damper 336, via signals 333, 334 and 335, respectively, from controller 331 according to signal 332 from sensor 322. In a basic form, the present system pressures 325 and 326, or a flow rate between channels 319 and 321, may be adjusted to some value through control over the fuel 348, such as, for instance, gas.
Air temperature may be detected by a sensor 327 in air channel 311 and provided as a signal to controller 331 of systems 310,320 and 330 of
A demand signal 329 may also go to controller 331 in systems 310, 320 and 330. Signal 329 may be regarded as a load control signal. A predefined pressure drop or offset, or flow rate across sensor 322 may be nearly instantaneously set by controller 331 through adjusting fuel valve 315 via line 333 and/or manipulating the air supply with a mechanism such as, for example, fan 312 or damper/louver 336 via lines 334 and 335, respectively, from controller 331. The pressure offset or flow across sensor 322 may be induced as a function of a demand signal 329. Demand signal 329 may effectively tell system 310, 320 or 330, what a firing rate should be, taking into account that a desired fuel air ratio may be different at different firing rates.
Any of systems 310, 320 and 330, may be used with virtually any control scheme such as controlling fuel 348 or air 347 only, controlling both fuel 348 and air 347, controlling both fuel and air with a combustion byproduct sensor to offset the system, controlling both the fuel and air with the combustion byproduct sensor 337, and so on. A combustion sensor 337 may be mounted at an exhaust port 338 of combustion chamber 313 to provide a signal 339, indicating information about byproducts in exhaust gases 346 emanating from a flame 345 at orifice 316 in combustion chamber 313 for systems 310, 320 and 330. Byproducts of combustion in the burner exhaust, temperatures of the gas and air, and/or flame quality may be monitored and adjusted with control of the fuel and air ratio for optimum combustion in the burner. A quality of flame 345 may be inferred from information about byproducts and/or other information such as parameters relative to pressure, temperature, flow and so forth. A specific flame quality sensor (not shown) may be incorporated. Signal 339 may go to controller 331, which can adjust pressures 325 and/or 326 or flow rate to change an amount of certain byproducts in exhaust gases 346. Sensor 337 may also or instead be a temperature sensor of exhaust gases 346. There may also be a sensor 344 situated in chamber 313 and connected to controller 331. Sensor 344 may be a pressure sensor, or a temperature sensor, or both a pressure and temperature sensor. A basic form of the system may incorporate a pressure divider on the fuel (restrictors 323 and 324) or air side (restrictors 342 and 343), sensor 322, valve 315 and controller 331 that takes signal 332 from sensor 322 and drives valve 315 with signal 333. The system does not necessarily control air 347 but rather the system may simply follow an air signal that the system is given. A flame sensor monitor may be added to the present system. The sensor may be a flame rod, optical sensor, and so on, that can monitor the combustion process and be used to offset the fuel air ratio.
In operation further on in time, pressures 325 and 326 may be equalized or made to meet a desired differential pressure by control of air flow in channel 311 by control of fan or air mover 312 with a signal 334 from controller 331 as guided by signal 332 indicating the differential pressure of pressures 325 and 326 across sensor 322. Instead of the differential value of pressures 325 and 326, another parameter such as flow rate, may be measured across sensor 322. Air flow in channel 311 may also be affected by damper or louver 336 with a signal 335 from controller 331 as guided by signal 332 from sensor 322. The differential of pressures 325 and 326 or flow rate as indicated by sensor 322 may also be affected by fuel flow in channel 314 as controlled by valve 315 with a signal 333 from controller 331 as guided by signal 332 from sensor 322. Control of the differential pressure or flow rate may be effected by valve 315 control, air mover 312 control or damper/louver 336 control, or any combination of these controls. A measurement of gauge pressures at both ends of or across sensor 322, or flow rate may be measured through sensor 322 that is to provide a signal 332 to controller 331 and in turn the controller to provide the respective control signals for regulating air and fuel flow through the respective channels 311 and 314.
To recap, A burner control system may incorporate a first sensor having a first port connectable to an air supply, a second port, and a signal terminal; a second sensor having a first port connectable to the air supply, a second port, and a signal terminal; a third sensor having a first port connectable to the air supply, a second port, and a signal terminal; a first coupling point having a first port connected to the second port of the third sensor, a second port connectable to a fuel source, and a third port; a second coupling point having a first port connected to the second port of the second sensor, a second port connectable to a fuel source, and a third port; a third coupling point having a first port connected to the second port of the first sensor, a second port connected to the third port of the second coupling point, and a third port; a fourth coupling point having a first port connected to the third port of the third coupling point, a second port connected to the third port of the first coupling point, and a third port connectable to a combustion chamber.
The burner control system may further incorporate a processor having a first terminal connected to the signal terminal of the first sensor, a second terminal connected to the signal terminal of the second sensor, a third terminal connected to the signal terminal of the third sensor, and having a fourth terminal connectable to a control terminal for the fuel source.
In some cases, the fuel source of the burner control system may incorporate a first variable restriction device having a first port for connection to a fuel supply, a second port for connection to the second port of the first coupling point, and a third port.
The burner control system may further incorporate an actuator connected to the first variable restriction device, and having the control terminal connected to the third terminal of the processor. In some cases, a signal to the control terminal of the actuator can vary a restriction of the first variable restriction device to a flow of fuel through the first variable restriction device.
The burner control system may further incorporate a second variable restriction device having a first port for connection to the third port of the first variable restriction device and a second port for connection to the second port of the second coupling point. In some cases, adjustment of the second variable restriction device between an opened position and a closed position, may adjust an outputted reading of the second sensor.
In some cases, the second sensor may outputs a reading that is intended to be redundant with readings from the first sensor when the second variable restriction device is closed and the second sensor outputs a reading that is intended to be redundant with readings from the third sensor when the second variable restriction device is opened.
The burner control system may further incorporate an actuator connected to the second variable restriction device, and having the control terminal connected to the third terminal of the processor. In some cases, a signal to the control terminal of the actuator can vary a restriction of the second variable restriction device to a flow of fuel through the second variable restriction device.
In some cases, the processor may be configured to regulate an air to fuel ratio based on readings from the first sensor and the third sensor.
Further, in some cases, the processor may be configured to test one of the first sensor and the third sensor based on comparing readings from the second sensor to readings from the one of the first sensor and the second sensor.
In another example, a burner control system may incorporate a first flow path having an input from an air supply; a second flow path having an input from the air supply and a fuel supply; a third flow path having a first arrangement with an input only from the air supply and a second arrangement with an input from the air supply and the fuel supply; a sensor in communication with the third flow path; and a processor in communication with the sensor. The processor may be configured to selectively configure the third flow path in the first arrangement such that the sensor senses a measure indicative of a measure in the first flow path and selectively configure the third flow path in the second arrangement such that the sensor senses a measure indicative of a measure in the second flow path.
The burner control system may further incorporate a sensor in communication with the first flow path; and a sensor in communication with the second flow path.
In some cases, the processor may be configured to receive a measure sensed by the sensor in communication with the first flow path; receive a measure sensed by the sensor in communication with the third flow path when the third flow path is in the first arrangement; and compare the measure sensed by the sensor in communication with the first flow path to the measure sensed by the sensor in communication with the third flow path; provide an alert if the measure sensed by the sensor in communication with the first flow path differs from the measure sensed by the sensor in communication with the third flow path by an amount greater than a threshold amount.
In some cases, the processor may be configured to receive a measure sensed by the sensor in communication with the second flow path; receive a measure sensed by the sensor in communication with the third flow path when the third flow path is in the second arrangement; compare the measure sensed by the sensor in communication with the second flow path to the measure sensed by the sensor in communication with the third flow path; and provide an alert if the measure sensed by the sensor in communication with the second flow path differs from the measure sensed by the sensor in communication with the third flow path by an amount greater than a threshold amount.
The burner control system may further incorporate a first variable restriction device in communication with the third flow path and the processor. The processor of the burner control system may be configured to send a signal to the first variable restriction device to selectively configure the third flow path in one of the first arrangement and the second arrangement.
The burner control system may further incorporate a second variable restriction device in communication with the fuel supply and the processor. The processor of the burner control system may be configured to send a signal to the second variable restriction device to selectively provide a fuel flow input to the second flow path and the third flow path.
In one approach, a burner control system may be tested. The approach may incorporate receiving a measure sensed by a first sensor in communication with a first flow path having an air supply input; receiving a measure sensed by a second sensor in communication with a second flow path having an air supply and a fuel supply; adjusting a third flow path to one of a first configuration in which the third flow path has an input from only the air supply and a second configuration in which the third flow path has an input from the air supply and the fuel supply; receiving a measure sensed by a third sensor in communication with the third flow path; and comparing the measure sensed the third sensor to one or both of the measure sensed by the first sensor and the measure sensed by the second sensor.
In some cases, the approach may incorporate that if the third flow path is in the first configuration, the comparing step includes comparing the measure sensed by the third sensor to the measure sensed by the first sensor; and if the third flow path is in the second configuration, the comparing step includes comparing the measure sensed by the third sensor to the measure sensed by the second sensor.
Further, the approach may incorporate triggering an alert if the measure sensed by the third sensor differs by more than a threshold amount from one or more of the measure sensed by the first sensor and the measure sensed by the second sensor.
In some cases, the approach may incorporate adjusting the third flow path to one of the first configuration and the second configuration includes sending a signal from a processor to a variable restriction device in communication with the third flow path.
Further, a burner control system for heating, ventilating and air conditioning (HVAC) may incorporate an air channel having an output coupled to a chamber, a fuel channel having an output coupled to the chamber, an air mover coupled to the air channel, a fuel valve coupled to an input of the fuel channel, a first bypass channel having a first end coupled to the air channel and having a second end coupled to the chamber, a second bypass channel having a first end coupled to the fuel channel and a second end coupled to the first bypass channel or the chamber, a sensor having a first port connected to the first bypass channel and having a second port connected to the second bypass channel, and a controller connected to the sensor. The sensor may detect a parameter between the first port of the sensor and the second port of the sensor. The sensor may provide a signal, indicating a magnitude of the parameter, to the controller. The controller may send a signal to a control mechanism to adjust an amount of fuel to the fuel channel and/or to adjust a quantity of air to the air channel, so as to cause the parameter to approach a predetermined magnitude for achieving a certain fuel air ratio of a fuel air mixture to the chamber. The parameter may be selected from a group consisting of a flow rate, differential pressure and gauge pressures.
There may also be a sensor, situated in the chamber and connected to the controller, for detecting a quality of a flame resulting from the fuel air mixture in the chamber. The quality of the flame may be used to achieve or adjust a ratio of the fuel air mixture.
The system may further incorporate a first restrictor orifice situated in the second bypass channel between the first end of the second bypass channel and the second port of the sensor, and a second restrictor orifice situated in the second bypass channel between the second port of the sensor and the second end of the second bypass channel.
The system may also further incorporate a third restrictor orifice situated in the first bypass channel between the first end of the first bypass channel and the first port of the sensor, and a fourth restrictor orifice situated in the first bypass channel between the first port of the sensor and second end of the second bypass channel coupled to the first bypass channel or the chamber.
One or more restrictor orifices may have a variable orifice size. The variable orifice size may be varied to make the parameter approach the predetermined magnitude.
The control mechanism may be the fuel valve that adjusts the amount of fuel to the fuel channel so as to cause the parameter to approach the predetermined magnitude. The control mechanism may be an air mover that adjusts the quantity of air to the air channel so as to cause the parameter to approach the predetermined magnitude.
The system may further incorporate a variable damper/louver situated in the air channel. The control mechanism may be the variable damper/louver that adjusts the quantity of air to the air channel so as to cause the parameter to approach the predetermined magnitude.
The sensor may be an item consisting of one or more sensors and is selected from a group consisting of one or more pressure sensors, differential pressure sensors, and flow sensors.
The system may further incorporate a combustion sensor situated at an exhaust port of the chamber. The combustion sensor may provide a signal, indicative of a concentration of one or more combustion byproducts, to the controller. The controller may calculate a predetermined magnitude of the parameter based on the concentration and desired concentration of the one or more combustion byproducts. The controller may send a signal to the control mechanism to adjust the amount of fuel to the fuel channel and/or to adjust the quantity of air to the air channel so as to drive the parameter to a new predetermined magnitude.
The system may further incorporate a temperature sensor situated in a fuel channel and/or air channel. The temperature sensor may provide a signal, indicative of a temperature of fuel and/or air, to the controller. The controller may calculate a predetermined magnitude of the parameter based on the temperature of the fuel and/or air. The controller may send a signal to the control mechanism to adjust the amount of fuel to the fuel channel and/or to adjust the quantity of air to the air channel so as to drive the parameter to a new predetermined magnitude.
Another burner control system may incorporate a chamber, an air channel having an output coupled to the chamber, a fuel channel having an output coupled to the chamber, an air mover coupled to the air channel, a fuel valve coupled to an input of the fuel channel, a bypass channel having a first end coupled to the fuel channel and having a second end coupled to the chamber, a sensor having a first port coupled to the air channel and having a second port coupled to the bypass channel, and a controller connected to the sensor and to the valve or the air mover.
A difference between a first parameter at the first port of the sensor and a second parameter at the second port of the sensor may be detected by the sensor.
The system may further incorporate one or more restrictors situated in the bypass channel. At least one restrictor of the one or more restrictors may have a variable flow restriction. A variable passage may incorporate a bypass channel and one or more restrictions. The variable passage may be tuned so that a difference of magnitudes of the first parameter and the second parameter approaches a magnitude to obtain a predetermined fuel air mixture during operation of the burner system.
If the difference of magnitudes of the first and second parameters is greater or less than a predetermined magnitude by a given delta of magnitude, a signal from the sensor to the controller may indicate the difference of the first and second parameters, and the controller may provide a signal to the valve to close or open the valve to decrease or increase fuel flow in the fuel channel or to the air mover to decrease or increase air flow and change the difference between the first and second parameters to approach the predetermined magnitude.
A predetermined magnitude of the difference between the first and second parameters may be needed to obtain a correct fuel air mixture. if the first parameter needs to be greater than the second parameter to approach the predetermined magnitude of the difference between the first and second parameters, then the controller may provide a signal to adjust the valve to change an amount of fuel entering the fuel channel or to adjust the air mover to change an amount of air entering the air channel which decreases the second parameter or increases the first parameter. If the second parameter needs to be greater than the first parameter to approach the predetermined magnitude of the difference between the first and second parameters, then the controller may provide a signal to the valve to change an amount of fuel entering the fuel channel or to adjust the air mover to change an amount of air entering the air channel which increases the second parameter or decreases the first parameter.
The following may be stated as an alternative to the previous paragraph. If the difference between the first and the second parameter needs to be increased to approach the predetermined magnitude of the difference between the first and second parameters, then the controller may provide a signal to adjust the valve to decrease an amount of fuel entering the fuel channel and/or to adjust the air mover to increase an amount of air entering the air channel which decreases the second parameter and/or increases the first parameter, respectively. If the difference between the first and the second parameter needs to be decreased to approach the predetermined magnitude of the difference between the first and second parameters, then the controller may provide a signal to adjust the valve to increase an amount of fuel entering the fuel channel and/or to adjust the air mover to decrease an amount of air entering the air channel which increases the second parameter and/or decreases the first parameter, respectively.
Still another burner system may incorporate an air channel having an output coupled to a combustion chamber, a fuel channel having an output coupled to the chamber, an air flow control mechanism coupled to the air channel, a fuel valve coupled to an input of the fuel channel, a bypass channel having a first end coupled to the air channel and having a second end coupled to the chamber, and a sensor having a first port coupled to the bypass channel and a second port coupled to the fuel channel.
The system may further incorporate a controller having an input connected to an output of the sensor. A difference between a first parameter at the first port of the sensor and a second parameter at the second port of the sensor may be detected by the sensor and indicated by the sensor on a signal to the controller. The system may still further incorporate one or more restrictors situated in the bypass channel. At least one restrictor of the one or more restrictors may have a variable flow restriction.
A predetermined magnitude of the difference between the first and second parameters may be needed to obtain a correct fuel air mixture. If the second parameter needs to be more than the first parameter to approach the predetermined magnitude of the difference between the first and second parameters, then the controller may provide a signal to the air flow control mechanism to adjust an amount of air going through the air channel or to the valve to adjust an amount of fuel going through the fuel channel which decreases the first parameter or increases the second parameter. If the first parameter needs to be greater than the second parameter to approach the predetermined magnitude of the difference between the first and second parameters, then the controller may provide a signal to the air flow control mechanism to adjust the amount of air going through the air channel or to the valve to adjust the amount of fuel going through the fuel channel which increases the first parameter or decreases the second parameter.
The system may further incorporate a second sensor connected to the controller and situated in the chamber. The second sensor may detect a quality of a flame in the chamber. The quality of the flame may be conveyed via a signal to the controller for calculating a fuel air mixture for optimizing the quality of the flame in the chamber. The fuel air mixture may be attained by signals from the controller to the air flow control mechanism and/or to the fuel valve. Optimizing the quality of the flame may incorporate reducing or increasing the byproducts in an exhaust of the chamber, increasing or decreasing an amount of heat per unit of fuel used, and/or achieving other beneficial results relative to energy, environment, efficiency, and/or the like.
In the present specification, some of the matter may be of a hypothetical or prophetic nature although stated in another manner or tense.
Although the present system and/or approach has been described with respect to at least one illustrative example, many variations and modifications will become apparent to those skilled in the art upon reading the specification. It is therefore the intention that the appended claims be interpreted as broadly as possible in view of the related art to include all such variations and modifications.
This application is a continuation-in-part of U.S. patent application Ser. No. 14/992,826, filed on Jan. 11, 2016, which is a continuation of U.S. patent application Ser. No. 13/621,175, filed on Sep. 15, 2012, now U.S. Pat. No. 9,234,661. U.S. patent application Ser. No. 14/992,826, filed on Jan. 11, 2016, is hereby incorporated by reference. U.S. patent application Ser. No. 13/621,175, filed on Sep. 15, 2012, is hereby incorporated by reference. This application is a continuation-in-part of U.S. patent application Ser. No. 14/485,519, filed on Sep. 12, 2014. U.S. patent application Ser. No. 14/485,519, filed on Sep. 12, 2014, is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
156769 | Cameron | Nov 1874 | A |
424581 | Sickels | Jan 1890 | A |
1033204 | Skinner | Jul 1912 | A |
1147840 | Bowser | Jul 1915 | A |
1156977 | Cloos | Oct 1915 | A |
1165315 | Cameron | Dec 1915 | A |
1206532 | Gray | Nov 1916 | A |
1847385 | Dengler | Mar 1932 | A |
2093122 | Andrews | Sep 1937 | A |
2196798 | Horstmann | Apr 1940 | A |
2403692 | Tibbetts | Jul 1946 | A |
2400329 | Doble | Apr 1948 | A |
2497549 | Heller | Feb 1950 | A |
2561793 | Furczyk | Jul 1951 | A |
2791238 | Bryant | May 1957 | A |
2975307 | Schroeder et al. | Mar 1961 | A |
3164364 | McColl | Jan 1965 | A |
3202170 | Holbrook | Aug 1965 | A |
3304406 | King | Feb 1967 | A |
3346008 | Scaramucci | Oct 1967 | A |
3381623 | Elliott | May 1968 | A |
3393965 | Vaughan | Jul 1968 | A |
3414010 | Sparrow | Dec 1968 | A |
3493005 | Kakegawa | Feb 1970 | A |
3641373 | Elkuch | Feb 1972 | A |
3646969 | Stampfli | Mar 1972 | A |
3744754 | Demi | Jul 1973 | A |
3768955 | McLaughlin | Oct 1973 | A |
3769531 | Elkuch | Oct 1973 | A |
3803424 | Smiley et al. | Apr 1974 | A |
3884266 | Kondo | May 1975 | A |
3993939 | Slavin et al. | Jan 1976 | A |
3947644 | Uchikawa | Mar 1976 | A |
3960364 | Hargrave | Jun 1976 | A |
3973576 | Dietiker | Aug 1976 | A |
3973976 | Boyd | Aug 1976 | A |
4114652 | Oberle | Sep 1978 | A |
4115036 | Paterson | Sep 1978 | A |
4140936 | Bullock | Feb 1979 | A |
4188013 | Battersby et al. | Feb 1980 | A |
4188972 | Van Der Zee | Feb 1980 | A |
4197737 | Pittman | Apr 1980 | A |
4242080 | Tabei | Dec 1980 | A |
4277832 | Wong | Jul 1981 | A |
4360955 | Block | Nov 1982 | A |
4402340 | Lockwood, Jr. | Sep 1983 | A |
4406131 | Weasel, Jr. | Sep 1983 | A |
4418886 | Holzer | Dec 1983 | A |
4442853 | Gort | Apr 1984 | A |
4450868 | Duval et al. | May 1984 | A |
4453169 | Martner | Jun 1984 | A |
4478076 | Bohrer | Oct 1984 | A |
4478077 | Bohrer et al. | Oct 1984 | A |
4481776 | Araki et al. | Nov 1984 | A |
4493303 | Thompson et al. | Jan 1985 | A |
4498850 | Perlov et al. | Feb 1985 | A |
4501144 | Higashi et al. | Feb 1985 | A |
4539575 | Nilsson | Sep 1985 | A |
4543974 | Dietiker et al. | Oct 1985 | A |
4576050 | Lambert | Mar 1986 | A |
4581624 | O'Connor | Apr 1986 | A |
4581707 | Millar | Apr 1986 | A |
4585209 | Aine et al. | Apr 1986 | A |
4613072 | Kikuchi et al. | Sep 1986 | A |
4619438 | Coffee | Oct 1986 | A |
4622699 | Spriggs | Nov 1986 | A |
4622999 | Ray | Nov 1986 | A |
4628499 | Hammett | Dec 1986 | A |
4645450 | West | Feb 1987 | A |
4651564 | Johnson et al. | Mar 1987 | A |
4654546 | Kirjavainen | Mar 1987 | A |
4698015 | Brunel | Oct 1987 | A |
4722360 | Odajima et al. | Feb 1988 | A |
4756508 | Giachino et al. | Jul 1988 | A |
4815699 | Mueller | Mar 1989 | A |
4821999 | Ohtaka | Apr 1989 | A |
4829826 | Valentin et al. | May 1989 | A |
4835717 | Michel et al. | May 1989 | A |
4836247 | Chuang | Jun 1989 | A |
4898200 | Odajima et al. | Feb 1990 | A |
4911616 | Laumann, Jr. | Mar 1990 | A |
4915613 | Landis | Apr 1990 | A |
4938742 | Smits | Jul 1990 | A |
4939405 | Okuyama et al. | Jul 1990 | A |
5022435 | Jaw-Shiunn | Jun 1991 | A |
5057822 | Hoffman | Oct 1991 | A |
5065978 | Albarda et al. | Nov 1991 | A |
5069419 | Jerman | Dec 1991 | A |
5070252 | Castenschiold et al. | Dec 1991 | A |
5078581 | Blum et al. | Jan 1992 | A |
5082242 | Bonne et al. | Jan 1992 | A |
5082246 | Stanley et al. | Jan 1992 | A |
5085562 | Van Lintel | Feb 1992 | A |
5096388 | Weinberg | Mar 1992 | A |
5129794 | Beatty | Jul 1992 | A |
5146941 | Statler | Sep 1992 | A |
5148074 | Fujita et al. | Sep 1992 | A |
5171132 | Miyazaki et al. | Dec 1992 | A |
5176358 | Bonne et al. | Jan 1993 | A |
5180288 | Richter et al. | Jan 1993 | A |
5180623 | Ohnstein | Jan 1993 | A |
5186054 | Sekimura | Feb 1993 | A |
5190068 | Philbin | Mar 1993 | A |
5192197 | Culp | Mar 1993 | A |
5193993 | Dietiker | Mar 1993 | A |
5199456 | Love et al. | Apr 1993 | A |
5199462 | Baker | Apr 1993 | A |
5203688 | Dietiker | Apr 1993 | A |
5205323 | Baker | Apr 1993 | A |
5206557 | Bobbio | Apr 1993 | A |
5215112 | Davison | Jun 1993 | A |
5215115 | Dietiker | Jun 1993 | A |
5219278 | Van Lintel | Jun 1993 | A |
5224843 | Van Lintel | Jul 1993 | A |
5244527 | Aoyagi | Sep 1993 | A |
5244537 | Ohnstein | Sep 1993 | A |
5263514 | Reeves | Nov 1993 | A |
5294089 | LaMarca | Mar 1994 | A |
5322258 | Bosch et al. | Jun 1994 | A |
5323999 | Bonne | Jun 1994 | A |
5325880 | Johnson et al. | Jul 1994 | A |
5336062 | Richter | Aug 1994 | A |
5368571 | Hones, Jr. | Nov 1994 | A |
5388607 | Ramaker et al. | Feb 1995 | A |
5441597 | Bonne et al. | Aug 1995 | A |
5449142 | Banick | Sep 1995 | A |
5452878 | Gravesen et al. | Sep 1995 | A |
5460196 | Yonnet | Oct 1995 | A |
5477877 | Schulze et al. | Dec 1995 | A |
5499909 | Yamada et al. | Mar 1996 | A |
5513611 | Ricouard et al. | May 1996 | A |
5520533 | Vrolijk | May 1996 | A |
5526172 | Kanack | Jun 1996 | A |
5529465 | Zengerle et al. | Jun 1996 | A |
5536963 | Polla | Jul 1996 | A |
5538220 | LaMarca | Jul 1996 | A |
5541465 | Higuchi et al. | Jul 1996 | A |
5552654 | Konno et al. | Sep 1996 | A |
5565832 | Haller et al. | Oct 1996 | A |
5571401 | Lewis et al. | Nov 1996 | A |
5580444 | Burrows | Dec 1996 | A |
5590235 | Rappenecker et al. | Dec 1996 | A |
5621164 | Woodbury et al. | Apr 1997 | A |
5642015 | Whitehead et al. | Jun 1997 | A |
5676342 | Otto et al. | Oct 1997 | A |
5683159 | Johnson | Nov 1997 | A |
5685707 | Ramsdell et al. | Nov 1997 | A |
5696662 | Bauhahn | Dec 1997 | A |
5725363 | Bustgens et al. | Mar 1998 | A |
5735503 | Hietkamp | Apr 1998 | A |
5741978 | Gudmundsson | Apr 1998 | A |
5748432 | Przywozny et al. | May 1998 | A |
5755259 | Schulze et al. | May 1998 | A |
5759014 | Van Lintel | Jun 1998 | A |
5759015 | Van Lintel et al. | Jun 1998 | A |
5769043 | Nitkiewicz | Jun 1998 | A |
5774372 | Berwanger | Jun 1998 | A |
5790420 | Lang | Aug 1998 | A |
5792957 | Luder et al. | Aug 1998 | A |
5797358 | Brandt et al. | Aug 1998 | A |
5808205 | Romo | Sep 1998 | A |
5822170 | Cabuz et al. | Oct 1998 | A |
5827950 | Woodbury et al. | Oct 1998 | A |
5836750 | Cabuz | Nov 1998 | A |
5839467 | Saaski et al. | Nov 1998 | A |
5847523 | Rappenecker et al. | Dec 1998 | A |
5863708 | Zanzucchi et al. | Jan 1999 | A |
5887847 | Holborow | Mar 1999 | A |
5893389 | Cunningham | Apr 1999 | A |
5901939 | Cabuz et al. | May 1999 | A |
5911872 | Lewis et al. | Jun 1999 | A |
5918852 | Otto | Jul 1999 | A |
5933573 | Lukenich et al. | Aug 1999 | A |
5944257 | Dietiker et al. | Aug 1999 | A |
5954079 | Barth et al. | Sep 1999 | A |
5954089 | Seymour | Sep 1999 | A |
5957158 | Volz et al. | Sep 1999 | A |
5959448 | Baranski et al. | Sep 1999 | A |
5967124 | Cook et al. | Oct 1999 | A |
5971355 | Biegelsen et al. | Oct 1999 | A |
5982274 | Stetler et al. | Nov 1999 | A |
5986573 | Franklin et al. | Nov 1999 | A |
6003552 | Shank et al. | Dec 1999 | A |
6021652 | Walker | Feb 2000 | A |
6050281 | Adams et al. | Apr 2000 | A |
6057771 | Lakra | May 2000 | A |
6077068 | Okumura | Jun 2000 | A |
6106245 | Cabuz | Aug 2000 | A |
6109889 | Zengerle et al. | Aug 2000 | A |
6116863 | Ahn et al. | Sep 2000 | A |
6122973 | Nomura et al. | Sep 2000 | A |
6151967 | McIntosh et al. | Nov 2000 | A |
6152168 | Ohmi et al. | Nov 2000 | A |
6155531 | Holborow et al. | Dec 2000 | A |
6167761 | Hanzawa et al. | Jan 2001 | B1 |
6176247 | Winchcomb et al. | Jan 2001 | B1 |
6179000 | Zdobinski et al. | Jan 2001 | B1 |
6179586 | Herb et al. | Jan 2001 | B1 |
6182941 | Scheurenbrand et al. | Feb 2001 | B1 |
6184607 | Cabuz et al. | Feb 2001 | B1 |
6189568 | Bergum et al. | Feb 2001 | B1 |
6213758 | Tesar et al. | Apr 2001 | B1 |
6215221 | Cabuz et al. | Apr 2001 | B1 |
6240944 | Ohnstein et al. | Jun 2001 | B1 |
6242909 | Dorsey et al. | Jun 2001 | B1 |
6247919 | Welz, Jr. et al. | Jun 2001 | B1 |
6255609 | Samuelson et al. | Jul 2001 | B1 |
6263908 | Love et al. | Jul 2001 | B1 |
6288472 | Cabuz et al. | Sep 2001 | B1 |
6297640 | Hayes | Oct 2001 | B1 |
6321781 | Kurth | Nov 2001 | B1 |
6360773 | Rhodes | Mar 2002 | B1 |
6373682 | Goodwin-Johansson | Apr 2002 | B1 |
6386234 | Sontag | May 2002 | B2 |
6390027 | Lyons et al. | May 2002 | B1 |
6397798 | Fiaccabrino | Jun 2002 | B1 |
6401753 | Neu | Jun 2002 | B2 |
6418793 | Pechoux et al. | Jul 2002 | B1 |
6445053 | Cho | Sep 2002 | B1 |
6450200 | Ollivier | Sep 2002 | B1 |
6460567 | Hansen, III et al. | Oct 2002 | B1 |
6463546 | Jeske et al. | Oct 2002 | B1 |
6496348 | McIntosh | Dec 2002 | B2 |
6496786 | Dieterle et al. | Dec 2002 | B1 |
6505838 | Cavaliere | Jan 2003 | B1 |
6508528 | Fujii et al. | Jan 2003 | B2 |
6520753 | Grosjean et al. | Feb 2003 | B1 |
6533574 | Pechoux | Mar 2003 | B1 |
6536287 | Beekhuizen et al. | Mar 2003 | B2 |
6537060 | Vegter | Mar 2003 | B2 |
6547554 | Koegl et al. | Apr 2003 | B2 |
6550495 | Schulze | Apr 2003 | B1 |
6553979 | Albright | Apr 2003 | B2 |
6561791 | Vrolijk et al. | May 2003 | B1 |
6563233 | Hinks | May 2003 | B1 |
6564824 | Lowery et al. | May 2003 | B2 |
6571817 | Bohan, Jr. | Jun 2003 | B1 |
6572077 | Worner | Jun 2003 | B1 |
6579087 | Vrolijk | Jun 2003 | B1 |
6584852 | Suzuki et al. | Jul 2003 | B2 |
6590267 | Goodwin-Johansson et al. | Jul 2003 | B1 |
6606911 | Akiyama et al. | Aug 2003 | B2 |
6619388 | Dietz et al. | Sep 2003 | B2 |
6619612 | Freisinger et al. | Sep 2003 | B2 |
6623012 | Perry et al. | Sep 2003 | B1 |
6640642 | Onose et al. | Nov 2003 | B1 |
6644351 | LaMarca et al. | Nov 2003 | B2 |
6650211 | Pimouguet | Nov 2003 | B2 |
6651506 | Lee et al. | Nov 2003 | B2 |
6651636 | Albright | Nov 2003 | B1 |
6651954 | Porcher et al. | Nov 2003 | B1 |
6655409 | Steenburgh et al. | Dec 2003 | B1 |
6655652 | Meinhof | Dec 2003 | B2 |
6658928 | Pollack et al. | Dec 2003 | B1 |
6676580 | Tsai et al. | Jan 2004 | B2 |
6704186 | Ishikura | Mar 2004 | B2 |
6725167 | Grumstrup et al. | Apr 2004 | B2 |
6728600 | Contaldo et al. | Apr 2004 | B1 |
6729601 | Freisinger et al. | May 2004 | B2 |
6742541 | Pimouguet | Jun 2004 | B2 |
6768406 | Fiaccabrino | Jul 2004 | B1 |
6796326 | Bayer | Sep 2004 | B2 |
6813954 | Gokhfeld | Nov 2004 | B2 |
6814102 | Hess et al. | Nov 2004 | B2 |
6814339 | Berger et al. | Nov 2004 | B2 |
6819208 | Peghaire et al. | Nov 2004 | B1 |
6820650 | Solet et al. | Nov 2004 | B2 |
6825632 | Hahn et al. | Nov 2004 | B2 |
6826947 | Solet et al. | Dec 2004 | B2 |
6851298 | Miura et al. | Feb 2005 | B2 |
6874367 | Jakobsen | Apr 2005 | B2 |
6877380 | Lewis | Apr 2005 | B2 |
6877383 | Horie et al. | Apr 2005 | B2 |
6880548 | Schultz et al. | Apr 2005 | B2 |
6880567 | Klaver et al. | Apr 2005 | B2 |
6885184 | Gofman | Apr 2005 | B1 |
6888354 | Gofman | May 2005 | B1 |
6889705 | Newman et al. | May 2005 | B2 |
6892756 | Schulze | May 2005 | B2 |
6906484 | Berroth et al. | Jun 2005 | B1 |
6923069 | Stewart | Aug 2005 | B1 |
6956340 | Schondelmaier et al. | Oct 2005 | B2 |
6956343 | Berroth et al. | Oct 2005 | B2 |
6968851 | Ramirez et al. | Nov 2005 | B2 |
6981426 | Wang et al. | Jan 2006 | B2 |
6983759 | Maichel et al. | Jan 2006 | B2 |
6984122 | Sullivan et al. | Jan 2006 | B2 |
6994308 | Wang et al. | Feb 2006 | B1 |
6997684 | Hahn et al. | Feb 2006 | B2 |
7000635 | Erbe et al. | Feb 2006 | B2 |
7004034 | Chen | Feb 2006 | B2 |
7039502 | Berwanger et al. | May 2006 | B2 |
7066203 | Baarda | Jun 2006 | B2 |
7082835 | Cook et al. | Aug 2006 | B2 |
7089086 | Schoonover | Aug 2006 | B2 |
7089959 | Cai | Aug 2006 | B2 |
7093611 | Murray et al. | Aug 2006 | B2 |
7101172 | Jaesschke | Sep 2006 | B2 |
7107820 | Nunnally et al. | Sep 2006 | B2 |
7119504 | Dornhof | Oct 2006 | B2 |
7121525 | Gelez | Oct 2006 | B2 |
7174771 | Cooper | Feb 2007 | B2 |
7216547 | Stewart et al. | May 2007 | B1 |
7223094 | Goebel | May 2007 | B2 |
7225056 | Bolduan et al. | May 2007 | B2 |
7249610 | Moses | Jul 2007 | B2 |
7290502 | Kidd et al. | Nov 2007 | B2 |
7297640 | Xie et al. | Nov 2007 | B2 |
7302863 | Kielb et al. | Dec 2007 | B2 |
7319300 | Hahn | Jan 2008 | B2 |
7328719 | Madden | Feb 2008 | B2 |
7347221 | Berger et al. | Mar 2008 | B2 |
7360751 | Herrfurth | Apr 2008 | B2 |
7390172 | Winkler | Jun 2008 | B2 |
7402925 | Best et al. | Jul 2008 | B2 |
7405609 | Krotsch | Jul 2008 | B2 |
7422028 | Nugent et al. | Sep 2008 | B2 |
7451600 | Patel et al. | Nov 2008 | B2 |
7451644 | Karte | Nov 2008 | B2 |
7453696 | Tungl et al. | Nov 2008 | B2 |
7461828 | Kidprasert | Dec 2008 | B2 |
7493822 | Stewart et al. | Feb 2009 | B2 |
7503221 | Wade | Mar 2009 | B2 |
7504961 | Flanders | Mar 2009 | B2 |
7520487 | Mattes | Apr 2009 | B2 |
7537019 | Ting et al. | May 2009 | B2 |
7543604 | Benda | Jun 2009 | B2 |
7553151 | O'Mara et al. | Jun 2009 | B2 |
7556238 | Seberger | Jul 2009 | B2 |
7574896 | Cooper | Aug 2009 | B1 |
7586228 | Best | Sep 2009 | B2 |
7586276 | Dornhoff | Sep 2009 | B2 |
7624755 | Benda et al. | Dec 2009 | B2 |
7627455 | Lenz et al. | Dec 2009 | B2 |
7644731 | Benda et al. | Jan 2010 | B2 |
7647940 | Minervini et al. | Jan 2010 | B2 |
7669461 | Kates | Mar 2010 | B2 |
7688011 | Berroth et al. | Mar 2010 | B2 |
7715168 | Gofman et al. | May 2010 | B2 |
7735509 | Galloway et al. | Jun 2010 | B2 |
7740024 | Brodeur et al. | Jun 2010 | B2 |
7759884 | Dufner et al. | Jul 2010 | B2 |
7811069 | Fleig | Oct 2010 | B2 |
7812488 | Cosco et al. | Oct 2010 | B2 |
7816813 | Yagudayev et al. | Oct 2010 | B2 |
7841541 | Ardelt et al. | Nov 2010 | B2 |
7869971 | Varga | Jan 2011 | B2 |
7880421 | Karwath | Feb 2011 | B2 |
7880427 | Foll et al. | Feb 2011 | B2 |
7890216 | Boger et al. | Feb 2011 | B2 |
7890276 | Killion et al. | Feb 2011 | B2 |
7891972 | Blank et al. | Feb 2011 | B2 |
7898372 | Melchionne, Jr. | Mar 2011 | B2 |
7902776 | Karwath | Mar 2011 | B2 |
7905251 | Flanders | Mar 2011 | B2 |
7922481 | Geiger et al. | Apr 2011 | B2 |
7940189 | Brown | May 2011 | B2 |
8020585 | Shock et al. | Sep 2011 | B2 |
8036837 | Wilke | Oct 2011 | B2 |
8066255 | Wang | Nov 2011 | B2 |
8109289 | Trnka et al. | Feb 2012 | B2 |
8126631 | Scalia, Jr. | Feb 2012 | B2 |
8201572 | Segal | Jun 2012 | B2 |
8205484 | Sasaki | Jun 2012 | B2 |
8225814 | Igarashi | Jul 2012 | B2 |
8240636 | Smith | Aug 2012 | B2 |
8265794 | Minervini et al. | Sep 2012 | B2 |
8271141 | Cummings et al. | Sep 2012 | B2 |
8303297 | Tompkins et al. | Nov 2012 | B2 |
8307845 | Kouchi et al. | Nov 2012 | B2 |
8381760 | Santinanavat et al. | Feb 2013 | B2 |
8387441 | Falta et al. | Mar 2013 | B2 |
8424563 | Haller et al. | Apr 2013 | B2 |
8601957 | Conrads et al. | Dec 2013 | B2 |
8639464 | Artiuch et al. | Jan 2014 | B2 |
8677913 | Kastingschafer et al. | Mar 2014 | B2 |
8706381 | Donar et al. | Apr 2014 | B2 |
9234661 | Young et al. | Jan 2016 | B2 |
9657946 | Young et al. | May 2017 | B2 |
20020029808 | Friend et al. | Mar 2002 | A1 |
20020157713 | Pimouguet | Oct 2002 | A1 |
20020175791 | LaMarca et al. | Nov 2002 | A1 |
20030011136 | Ramirez et al. | Jan 2003 | A1 |
20030013054 | Fredricks et al. | Jan 2003 | A1 |
20030117098 | Berroth et al. | Jun 2003 | A1 |
20030150499 | Solet et al. | Aug 2003 | A1 |
20030167851 | Parker | Sep 2003 | A1 |
20030201414 | Freisinger et al. | Oct 2003 | A1 |
20040035211 | Pinto et al. | Feb 2004 | A1 |
20040129909 | Wiese | Jul 2004 | A1 |
20040214118 | Sullivan et al. | Oct 2004 | A1 |
20040263103 | Weisser et al. | Dec 2004 | A1 |
20050058961 | Moses | Mar 2005 | A1 |
20050166979 | Berger et al. | Aug 2005 | A1 |
20050199286 | Appleford et al. | Sep 2005 | A1 |
20050255418 | Goebel | Nov 2005 | A1 |
20050279956 | Berger et al. | Dec 2005 | A1 |
20060202572 | Tungl et al. | Sep 2006 | A1 |
20060226299 | Tungl et al. | Oct 2006 | A1 |
20060228237 | Winkler | Oct 2006 | A1 |
20060240370 | Neville et al. | Oct 2006 | A1 |
20060243334 | Brochhaus et al. | Nov 2006 | A1 |
20060260701 | Mattes | Nov 2006 | A1 |
20060272712 | Sontag | Dec 2006 | A1 |
20060278281 | Gynz-Rekowski et al. | Dec 2006 | A1 |
20070024225 | Hahn et al. | Feb 2007 | A1 |
20070068511 | Bachinsky et al. | Mar 2007 | A1 |
20070089789 | Mudd et al. | Apr 2007 | A1 |
20070095144 | Oboodi et al. | May 2007 | A1 |
20070164243 | Volz | Jul 2007 | A1 |
20070189739 | Dufner et al. | Aug 2007 | A1 |
20070241705 | Karwath | Oct 2007 | A1 |
20070256478 | Guadagnoia et al. | Nov 2007 | A1 |
20070257628 | Gofman et al. | Nov 2007 | A1 |
20070261618 | Kastingschafer et al. | Nov 2007 | A1 |
20080035456 | Melchionn, Jr. | Feb 2008 | A1 |
20080099082 | Moenkhaus | May 2008 | A1 |
20080156077 | Flanders et al. | Jul 2008 | A1 |
20080157707 | Jeske et al. | Jul 2008 | A1 |
20080297084 | Berroth et al. | Dec 2008 | A1 |
20080315807 | Loffler et al. | Dec 2008 | A1 |
20080318098 | Matsunaga | Dec 2008 | A1 |
20080318172 | Geiger et al. | Dec 2008 | A1 |
20090068503 | Yamazaki et al. | Mar 2009 | A1 |
20090111065 | Tompkins et al. | Apr 2009 | A1 |
20090120338 | Adendorff et al. | May 2009 | A1 |
20090126798 | Mather | May 2009 | A1 |
20090142717 | Lavelle | Jun 2009 | A1 |
20090146091 | Ams et al. | Jun 2009 | A1 |
20090148798 | Geiger et al. | Jun 2009 | A1 |
20090197212 | Masen | Aug 2009 | A1 |
20090240445 | Umekage et al. | Sep 2009 | A1 |
20090280989 | Astra et al. | Nov 2009 | A1 |
20090288399 | Fayard | Nov 2009 | A1 |
20090303076 | Setiadi et al. | Dec 2009 | A1 |
20100018324 | Killian et al. | Jan 2010 | A1 |
20100043896 | Shock et al. | Feb 2010 | A1 |
20100064818 | Shubert | Mar 2010 | A1 |
20100074777 | Laufer et al. | Mar 2010 | A1 |
20100102259 | Forster | Apr 2010 | A1 |
20100112500 | Maiello et al. | May 2010 | A1 |
20100146939 | Sim | Jun 2010 | A1 |
20100180688 | Khemet et al. | Jul 2010 | A1 |
20100180882 | Oberhomburg et al. | Jul 2010 | A1 |
20100193045 | Xu | Aug 2010 | A1 |
20100254826 | Streng et al. | Oct 2010 | A1 |
20100269931 | Seebauer | Oct 2010 | A1 |
20100282988 | Kasprzyk et al. | Nov 2010 | A1 |
20100315027 | Wystup et al. | Dec 2010 | A1 |
20110025237 | Wystup et al. | Feb 2011 | A1 |
20110033808 | Geiger et al. | Feb 2011 | A1 |
20110039217 | Happe | Feb 2011 | A1 |
20110041483 | Kapparos | Feb 2011 | A1 |
20110046903 | Franklin | Feb 2011 | A1 |
20110080072 | Strobel et al. | Apr 2011 | A1 |
20110107826 | Wallis | May 2011 | A1 |
20110137579 | Seebauer | Jun 2011 | A1 |
20110212404 | Fan et al. | Sep 2011 | A1 |
20110240157 | Jones et al. | Oct 2011 | A1 |
20110266473 | Santinanavat et al. | Nov 2011 | A1 |
20110270544 | Kucera et al. | Nov 2011 | A1 |
20110284777 | Pitchford et al. | Nov 2011 | A1 |
20120107753 | Kemp | May 2012 | A1 |
20120148962 | Bernero et al. | Jun 2012 | A1 |
20120251960 | Newby et al. | Oct 2012 | A1 |
20130152673 | Young et al. | Jun 2013 | A1 |
20130153036 | Young et al. | Jun 2013 | A1 |
20130153041 | Kucera | Jun 2013 | A1 |
20130153042 | Young et al. | Jun 2013 | A1 |
20130153062 | Young et al. | Jun 2013 | A1 |
20130153798 | Kucera et al. | Jun 2013 | A1 |
20130154841 | Kucera et al. | Jun 2013 | A1 |
20130302738 | Rennie et al. | Nov 2013 | A1 |
20140080075 | Young et al. | Mar 2014 | A1 |
20140096850 | Filkovski et al. | Apr 2014 | A1 |
20150045971 | Endel et al. | Feb 2015 | A1 |
20150079526 | Lou et al. | Mar 2015 | A1 |
20150107675 | Kucera | Apr 2015 | A1 |
20160076767 | Super et al. | Mar 2016 | A1 |
20160123584 | Young et al. | May 2016 | A1 |
20170016752 | Speldrich et al. | Jan 2017 | A1 |
Number | Date | Country |
---|---|---|
3638604 | May 1988 | DE |
3818363 | Apr 1989 | DE |
3818363 | Apr 1989 | DE |
19617852 | Oct 1997 | DE |
19824521 | Dec 1999 | DE |
102005033611 | Oct 2006 | DE |
102005033611 | Oct 2006 | DE |
1571906 | Jul 1980 | EP |
0062854 | Oct 1982 | EP |
0062854 | Oct 1982 | EP |
0068517 | Jan 1986 | EP |
0275439 | Jul 1988 | EP |
0282758 | Sep 1988 | EP |
0356690 | May 1993 | EP |
0563787 | Oct 1993 | EP |
0617234 | Sep 1994 | EP |
0522479 | May 1996 | EP |
0744821 | Nov 1996 | EP |
0645562 | Dec 1996 | EP |
0678178 | Dec 1996 | EP |
0664422 | Apr 1997 | EP |
0665396 | Jan 1998 | EP |
0822376 | Feb 1998 | EP |
0817931 | Dec 1998 | EP |
0652501 | Mar 1999 | EP |
0907052 | Apr 1999 | EP |
0817934 | May 1999 | EP |
0896192 | Oct 1999 | EP |
0952357 | Oct 1999 | EP |
0757200 | Apr 2000 | EP |
1031792 | Aug 2000 | EP |
1069357 | Jan 2001 | EP |
0896191 | Feb 2001 | EP |
1084358 | Mar 2001 | EP |
0881435 | Sep 2001 | EP |
1186779 | Mar 2002 | EP |
0976957 | Apr 2002 | EP |
1157205 | Sep 2002 | EP |
1084369 | Jan 2003 | EP |
1121511 | Apr 2003 | EP |
0992658 | May 2003 | EP |
1323966 | Jul 2003 | EP |
1078187 | Aug 2003 | EP |
1084357 | Aug 2003 | EP |
1382907 | Jan 2004 | EP |
1403885 | Mar 2004 | EP |
1413045 | Apr 2004 | EP |
1424708 | Jun 2004 | EP |
1176317 | Aug 2004 | EP |
1269054 | Aug 2004 | EP |
1484509 | Dec 2004 | EP |
1073192 | Jan 2005 | EP |
1191676 | Jan 2005 | EP |
1275039 | Jan 2005 | EP |
1499008 | Jan 2005 | EP |
1446607 | Mar 2005 | EP |
1510756 | Mar 2005 | EP |
1299665 | Apr 2005 | EP |
1324496 | Jun 2005 | EP |
1535388 | Jun 2005 | EP |
1584870 | Oct 2005 | EP |
1243857 | Dec 2005 | EP |
1282798 | Dec 2005 | EP |
0843287 | Feb 2006 | EP |
1626321 | Feb 2006 | EP |
1346463 | Mar 2006 | EP |
1659462 | May 2006 | EP |
1703140 | Sep 2006 | EP |
1703146 | Sep 2006 | EP |
1183772 | Oct 2006 | EP |
1303718 | Oct 2006 | EP |
1314240 | Oct 2006 | EP |
1715229 | Oct 2006 | EP |
1256763 | Nov 2006 | EP |
1727268 | Nov 2006 | EP |
1559936 | Dec 2006 | EP |
1748534 | Jan 2007 | EP |
1748545 | Jan 2007 | EP |
1327808 | Feb 2007 | EP |
1329659 | Feb 2007 | EP |
1291532 | Jun 2007 | EP |
1610046 | Jun 2007 | EP |
1592905 | Jul 2007 | EP |
1610045 | Jul 2007 | EP |
1727261 | Oct 2007 | EP |
1860328 | Nov 2007 | EP |
1882882 | Jan 2008 | EP |
1626321 | Feb 2008 | EP |
1848907 | Apr 2008 | EP |
1936778 | Jun 2008 | EP |
1536169 | Nov 2008 | EP |
1298679 | Dec 2008 | EP |
1714040 | Dec 2008 | EP |
2014979 | Jan 2009 | EP |
2014979 | Jan 2009 | EP |
1669648 | Feb 2009 | EP |
2048439 | Apr 2009 | EP |
2107248 | Jul 2009 | EP |
2093545 | Aug 2009 | EP |
1715229 | Oct 2009 | EP |
2116857 | Nov 2009 | EP |
2119946 | Nov 2009 | EP |
1370787 | Mar 2010 | EP |
1413044 | Mar 2010 | EP |
2164164 | Mar 2010 | EP |
2177796 | Apr 2010 | EP |
2178201 | Apr 2010 | EP |
1970610 | May 2010 | EP |
2197101 | Jun 2010 | EP |
2068056 | Aug 2010 | EP |
2212984 | Aug 2010 | EP |
1712800 | Oct 2010 | EP |
2118493 | Oct 2010 | EP |
2242344 | Oct 2010 | EP |
1715582 | Nov 2010 | EP |
1675757 | Dec 2010 | EP |
2267883 | Dec 2010 | EP |
1703139 | Jan 2011 | EP |
2286976 | Feb 2011 | EP |
1596495 | Apr 2011 | EP |
2306622 | Apr 2011 | EP |
2010500 | Jun 2011 | EP |
2113696 | Jul 2011 | EP |
1230517 | Jul 2013 | EP |
2609154 | Jul 1988 | FR |
2099158 | Dec 1982 | GB |
2327750 | Feb 1999 | GB |
2327750 | Feb 1999 | GB |
02-086258 | Mar 1990 | JP |
05-219760 | Aug 1993 | JP |
9061284 | Mar 1997 | JP |
9184600 | Jul 1997 | JP |
2004125809 | Apr 2004 | JP |
2004309159 | Nov 2004 | JP |
2008135922 | Jun 2008 | JP |
2008286478 | Nov 2008 | JP |
744877 | Jun 1980 | SU |
WO 8705375 | Sep 1987 | WO |
WO 9801709 | Jan 1995 | WO |
WO 9627095 | Sep 1996 | WO |
WO 9729538 | Aug 1997 | WO |
WO 9924758 | May 1999 | WO |
WO 9960292 | Nov 1999 | WO |
WO 9964769 | Dec 1999 | WO |
WO 9964770 | Dec 1999 | WO |
WO 0028215 | May 2000 | WO |
WO 0106179 | Jan 2001 | WO |
WO 0133078 | May 2001 | WO |
WO 0161226 | Aug 2001 | WO |
WO 0173297 | Oct 2001 | WO |
WO 0190617 | Nov 2001 | WO |
WO 0204852 | Jan 2002 | WO |
WO 02077502 | Oct 2002 | WO |
WO 02084156 | Oct 2002 | WO |
WO 02086365 | Oct 2002 | WO |
WO 02086918 | Oct 2002 | WO |
WO 02097840 | Dec 2002 | WO |
WO 2004059830 | Jul 2004 | WO |
WO 2004070245 | Aug 2004 | WO |
WO 2005042313 | Mar 2005 | WO |
WO 2005076455 | Aug 2005 | WO |
WO 2005076456 | Aug 2005 | WO |
WO 2005085652 | Sep 2005 | WO |
WO 2005094150 | Oct 2005 | WO |
WO 2006000366 | Jan 2006 | WO |
WO 2006000367 | Jan 2006 | WO |
WO 2006053816 | Mar 2006 | WO |
WO 2006039956 | Apr 2006 | WO |
WO 2006042635 | Apr 2006 | WO |
WO 2006077069 | Jul 2006 | WO |
WO 2006088367 | Aug 2006 | WO |
WO 2007012419 | Feb 2007 | WO |
WO 2007018876 | Feb 2007 | WO |
WO 2007093312 | Aug 2007 | WO |
WO 2007140927 | Dec 2007 | WO |
WO 2008061575 | Mar 2008 | WO |
WO 2008039061 | Apr 2008 | WO |
WO 2008119404 | Oct 2008 | WO |
WO 2008141911 | Nov 2008 | WO |
WO 2008148401 | Dec 2008 | WO |
WO 2009000481 | Dec 2008 | WO |
WO 2009049694 | Apr 2009 | WO |
WO 2009065815 | May 2009 | WO |
WO 2009073510 | Jun 2009 | WO |
WO 2009089857 | Jul 2009 | WO |
WO 2009126020 | Oct 2009 | WO |
WO 2010018192 | Feb 2010 | WO |
WO 2010052137 | May 2010 | WO |
WO 2010056111 | May 2010 | WO |
WO 2010083877 | Jul 2010 | WO |
WO 2011010274 | Jan 2011 | WO |
WO 2011045776 | Apr 2011 | WO |
WO 2011047895 | Apr 2011 | WO |
WO 2011051002 | May 2011 | WO |
WO 2011069805 | Jun 2011 | WO |
WO 2011072888 | Jun 2011 | WO |
WO 2011092011 | Aug 2011 | WO |
WO 2011095928 | Aug 2011 | WO |
WO 2013117516 | Aug 2013 | WO |
Entry |
---|
“Flexible, Compact and with a High Performance—the New Valvario, G. Kromschroder AG Launches it's New, Improved Series of Gas Fittings,” Press Release, 2 pages, 2003. |
“Large-Scale Linearization Circuit for Electrostatic Motors” IBM Technical Disclosure Bulletin, U.S. IBM Corporation, Bulletin, U.S. IBM Corporation, vol. 37, No. 10, pp. 563-564, Oct. 1, 1994. |
Allianz Risk Consulting, “Safety Shutoff Valves for Fuel-Fired Heating Equipment,” Tech Talk, vol. 1, 3 pages, Oct. 2012. |
ASCO RedHat, “2-Way Normally Closed General Purpose & Watertight Enclosure Gas Shutoff Valves ¾″ to 3″ NPT, 2/2 Series 8214 (200),” 8 pages, prior to Dec. 15, 2011. |
ASCO RedHat, “2-Way Normally Closed General Purpose & Watertight Enclosure Gas Shutoff Valves ¾″ to 3″ NPT, 2/2 Series 8214 (200 AH(E) V710(B),” 6 pages, prior to Dec. 15, 2011. |
ASCO Valve, Inc., “8290 Series Angle Body Piston Valves, Introducing the All New 8290 Assembly Configurator,” 12 pages, prior to Dec. 15, 2011. |
ASCO, “2-Way Normally Closed V710(B) Valve Body Pipe Sizes ¾″ to 3″ NPT, Series V710(B),” 4 pages, prior to Dec. 15, 2011. |
ASCO, “On/Off General Purpose & Watertight Hydramotor Actuator for Use with V710 Gas Valve Body, Series AH2E,” 2 pages, prior to Dec. 15, 2011. |
Athavale et al., “Coupled Electrostatics-Structures-Fluidic Simulations of a Bead Mesopump,” Proceedings of the International Mechanical Engineers Congress & Exhibition, pp. 1-7, Oct. 1999. |
Bertz et al., “Silicon Grooves With Sidewall Angles Down to 1° made by Dry Etching”, pp. 331-339, prior to Dec. 29, 2004. |
Bonne et al. “Actuation-Based Fuel Gas Microsensors”, IGT Symposium on “Natural Gas Quality, Energy Measurement, Metering and Utilization Practices”, 17 pages, Mar. 2001. |
Branebjerg, “A New Electrostatic Actuator Providing Improved Stroke Length and Force.” IEEE, pp. 6-11, Feb. 4-7, 1992. |
Bustgens et al., “Micropump Manufactured by Thermoplastic Molding” IEEE, pp. 18-21, 1994. |
Cabuz et al., “Factors Enhancing the Reliability of Touch-Mode Electrostatic Actuators,” Sensors and Actuators 79, pp. 245-250, 2000. |
Cabuz et al., “Mesoscopic Sampler Based on 3D Array of Electrostatically Activated Diaphragms,” Proceedings of the 10th Int. Conf. on Solid-State Sensors and Actuators, Transducers 1999. |
Cabuz et al., “The Dual Diaphragm Pump,” 4 pages prior to Dec. 29, 2004. |
Cabuz, “Dielectric Related Effects in Microromachined Electrostatic Actuators,” IEEE, 1999 Conference on Electrical Insulation and Dielectric Phenomena, pp. 327-332, 1999. |
Cabuz, “Electrical Phenomena at the Interface of Rolling-Contact, Electrostatic Actuators,” 16 pages, prior to Dec. 29, 2004. |
Cabuz, et al., “High Reliability Touch-Mode Electrostatic Actuators”, Technical Digest of the Solid State Sensor and Aauator Workshop, Hilton Head, S.C., pp. 296-299, Jun. 8-11, 1998. |
Cabuz. “Tradeoffs in MEMS Materials,” SPIE, vol. 2881, pp. 160-170, prior to Dec. 29, 2004. |
Carlisle, “10 Tips on Valve-Proving Systems,” Karl Dungs Inc., 5 pages, Aug. 1, 2002, printed May 23, 2012. |
Communication of a Notice of Opposition for EP Application Serial No. EP12196398.7, dated Feb. 15, 2016. |
European Search Report for EP Application No. 12196394.6 dated May 23, 2013. |
European Search Report for EP Application No. 12196396.1 dated Jun. 11, 2013. |
European Search Report for EP Application No. 12196398.7 dated Jun. 11, 2013. |
Examination Report for EP Application No. 12196398.7, dated Apr. 11, 2014. |
European Search Report for EP Application No. 15184490.9 dated May 3, 2016. |
CSA, “B149.3S1-07 Supplement No. 1 to CAN/CAS-B149.3-05 Code for the Field Approval of Fuel-Related Components on Appliances and Equipment,” 40 pages, Jan. 2007. |
Dungs Combustion Controls, “Double Solenoid Valve Combined Pressure Regulator and Safety Valves Servo Pressure Regulator, MBC- . . . -SE DN 65 DN 125,” 8 pages, prior to Dec. 15, 2011. |
Dungs Combustion Controls, “Double Solenoid Valve Combined Pressure Regulator and Safety Valves Infinitely Variable Operating Mode, MBC- . . . -VEF DN65—DN100,” 8 pages, prior to Dec. 15, 2011. |
Dungs Combustion Controls, “Double Solenoid Valve Control and Safety Combination Valve Servo Pressure Controller, DMV-SE 507/11-525/11,” 8 pages, prior to Dec. 15, 2011. |
Dungs Combustion Controls, “Double Solenoid Valve Regulator and Safety Combination Infinitely Variable Floating Operation, DMV-VEF 507-525,” 8 pages, prior to Dec. 15, 2011. |
Dungs Combustion Controls, “Gas/Air Ratio Control MB-VEF, DMV-VEF,” 15 pages, prior to Dec. 15, 2011. |
Dungs Combustion Controls, “GasMultiBloc Combined Regulator and Safety Shut-Off Valves Two-Stage Function, MB-ZRD(LE) 415-420 B01,” pp. 1-6, prior to Dec. 15, 2011. |
Dungs Combustion Controls, “GasMultiBloc Combined Regulator and Safety Valve Infinitely Variable Air/Gas Ratio Control Mode, MBC-300-VEF, MBC-700-VEF, MBC-1200-VEF,” 8 pages, prior to Dec. 15, 2011. |
Dungs Combustion Controls, “GasMultiBloc Combined Servo Pressure Regulator and Safety Shut-Off Valves, MBC-300-SE, MBC-700-SE, MBC-1200-SE, MBC-300-N, MBC-700-N,” 8 pages, prior to Dec. 15, 2011. |
Dungs Combustion Controls, “Pressure Regulator FRN Zero Pressure Regulator,” 4 pages, prior to Dec. 15, 2011. |
Dungs Combustion Controls, “Pressure Regulator FRS,” 6 pages prior to Dec. 15, 2011. |
Dungs Combustion Controls, “Pressure Regulator FRU Circulation Regulator,” 4 pages, prior to Dec. 15, 2011. |
Dungs Combustion Controls, “Pressure Switch for Gas, Air, Flue Gases and Combustion Products, GW 500 A4, GW 500 A4/2” 6 pages, prior to Dec. 15, 2011. |
Dungs Combustion Controls, “Program,” 4 pages, prior to Dec. 15, 2011. |
Dungs Combustion Controls, “Valve Testing System VPS 504 for Multiple Actuators,” 12 pages, prior to Dec. 15, 2011. |
Dungs Combustion Controls, “Valve Testing System VPS 508 for Multiple Actuators,” 12 pages, prior to Dec. 15, 2011. |
Freund et al., “A Chemically Diverse Conducting Polymer-Based ‘Electronic Nose’”, Proceedings of the National Academy of Sciences of the United States of America, vol. 92, No. 7, pp. 2652-2656, Mar. 28, 1995. |
Haig, “On a Nonvolatile Memory Cell Based on Micro-Electro-Mechanics”, IEEE pp. 172-176, 1990. |
Honeywell Inc., “Hall Effect Sensing and Application,” 126 pages, prior to Dec. 15, 2011. |
Honeywell, “RM7800L1087; RM7840G1022,L1075,L1091; EC7840L1014 Relay Modules with Valve Proving,” Installation Instructions, 32 pages, 2009. |
Honeywell, “V4730C/V8730C/V4734C 1:1 Gas/Air Servo Regulated Gas Valves, Product Data,” 16 pages, 2006. |
Honeywell, “V4943A/V8943A On/Off Diaphragm Gas Valves, Product Data,” 8 pages, Apr. 2009. |
Honeywell, “V5055A-F Industrial Gas Valves, Product Data,” 12 pages, Nov. 2012. |
https://en.wikipedia.org/wiki/SCADA, “SCADA,” 10 pages, printed Mar. 29, 2016. |
Korte et al., “Smart Valve Positioners and Their Use in Safety Instrumented Systems,” Industrial Valves, pp. 41-47, 2009. |
Kromschroder, “Governor with Solenoid Valve VAD Air/Gas Ratio Control with Solenoid Valve VAG,” 8 pages, prior to Dec. 15, 2011. |
Kromschroder, “Governor with Solenoid Valve VAD Air/Gas Ratio Control with Solenoid Valve VAG,” 24 pages, prior to Dec. 15, 2011. |
Kromschroder, “Solenoid Valves for Gas VAS,” 28, pages, prior to Dec. 15, 2011. |
Kromschroder, “Solenoid Valves for Gas VAS,” 8 pages, prior to Dec. 15, 2011. |
Kromschroder, “Tightness Control TC,” 8 pages, 2011. |
Maxon Corporation, “Functional Testing of Maxon Shut-off Valves, Valve Technical Data,” 3 pages, 2008. |
Minami et al., “Fabrication of Distributed Electrostatic Micro Actuator (DEMA),” IEEE Journal of Microelectromechanical Systems, vol. 2, No. 3, pp. 121-127, Sep. 1993. |
Ohnstein et al., “Micromachined Silicon Microvalve,” IEEE, pp. 95-98, 1990. |
Porex Technologies, brochure, 4 pages, prior to Dec. 29, 2004. |
Response to Opposition for EP Application Serial No. EP12196398.7, filed Jul. 15, 2016. |
Shikida et al., “Characteristics of an Electrostatically-Driven Gas Valve Under High Pressure Conditions,” IEEE , pp. 235-240, 1994. |
Shikida et al., “Electrostatically Driven Gas Valve With High Conductance,” IEEE Journal of Microelectromechanical Systems, vol. 3, No. 2, pp. 76-80, Jun. 1994. |
Shikida et al., “Fabrication of an S-Shaped Microactuator,” IEEE Journal of Microelectromechanical Systems, vol. 6, No. 1, pp. 18-24, Mar. 1997. |
Siemens Building Technologies, “Double Gas Valves VGD20 . . . , VGD40 . . . ,” 12 pages, Aug. 5, 2002. |
Siemens Building Technologies, Inc., “Siemens Technical Instructions Document No. 155-512P25VG . . . ,” 12 pages, Aug. 11, 2005. |
Siemens Building Technologies, Inc., “SKP . . . 15U . . . Gas Valve Actuator with Safety Shutoff Function,” Document No. 155-751 SKP15 . . . U . . . , 5 pages, Jul. 1, 2005. |
Siemens Building Technologies, Inc., “SKP25 . . . U . . . Air/Gas Ratio Controlling Gas Valve Actuator with Safety Shutoff Function,” Technical Instructions Document No. 155-754, SKP25 . . . U, 9 pages, Jul. 1, 2005. |
Siemens Building Technologies, Inc., “SKP25 . . . U . . . Pressure Regulating Gas Valve Actuator with Safety Shut-Off function,” Technical Instructions Document No. 155-752, SKP25 . . . U, 7 pages, Jul. 1, 2005. |
Srinivasan et al., “Self-Assembled Fluorocarbon Films for Enhanced Stiction Reduction”, IEEE Transducers, 1997 International Conference on Solid-State Sensors and Actuators, Chicago, pp. 1399-1402, Jun. 16-19, 1997. |
Universal Metering, “SmartValve Wireless Shut-Off Valve,” Universal Metering Ltd., 4 pages, prior to Mar. 12, 2013. |
Wagner et al., “Bistable Microvalve with Pneumatically Coupled Membranes,” IEEE, pp. 384-388, 1996. |
Wilkerson, “Understanding Valve Actuatior Diagnostics,” Control Engineering, vol. 56, No. 11, 4 pages, Nov. 2009. |
www.combustion911.com/products/value-proving-controls-tc-410.html, “Kromschroeder Valve Proving Controls TC410,” 7 pages, prior to Dec. 15, 2011, printed May 23, 2012. |
Yang et al., “Fluorescent Porous Polymer Films as TNT Chemosensors: Electronic and Structural Effects”, J. Am. Chem. Soc., pp. 11864-11873, 1998. |
Yang et al., “Porous Shape Persistent Fluorescent Polymer Films: An Approach to TNT Sensory Materials”, J. Am. Chem. Soc., pp. 5321-5322, 1998. |
Number | Date | Country | |
---|---|---|---|
20170254536 A1 | Sep 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13621175 | Sep 2012 | US |
Child | 14992826 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14992826 | Jan 2016 | US |
Child | 15600403 | US | |
Parent | 14485519 | Sep 2014 | US |
Child | 14992826 | US |