System and approach for dynamic vehicle speed optimization

Information

  • Patent Grant
  • 10272779
  • Patent Number
    10,272,779
  • Date Filed
    Friday, July 15, 2016
    8 years ago
  • Date Issued
    Tuesday, April 30, 2019
    5 years ago
Abstract
A system and approach for a vehicle system. The vehicle system may include a vehicle, a propulsion device (e.g., a combustion engine or electric motor), and a controller. The propulsion device may at least partially power the vehicle. The controller may be in communication with the propulsion device and may control the propulsion device according to a target speed of the vehicle. The controller may include a model of energy balances of the vehicle and may use the model to estimate energy losses over a travel horizon of the vehicle. The controller may optimize a cost function over the travel horizon of the vehicle based at least in part on the estimated energy losses to set an actual speed for the vehicle. The estimated energy losses may include one or more of aerodynamic drag, vehicle friction, and conversion efficiency from the propulsion device.
Description
BACKGROUND

The present disclosure pertains to vehicle systems, and particularly to controlling speeds of a vehicle. More particularly, the disclosure pertains to performance improvement in speed control systems.


SUMMARY

The disclosure reveals systems and approaches for controlling speeds of a vehicle. A vehicle system may include a vehicle, a propulsion device, such as a combustion engine or an electric motor, and a controller in communication with the propulsion device. The propulsion device may at least partially power the vehicle and may consume primary energy, such as fuel or electric energy stored in a battery. The controller may control the propulsion device. In some cases, the controller may control the propulsion device according to a target speed of the vehicle.


The controller may include a model of energy balances of the vehicle and may use the model to estimate energy losses over a travel horizon of the vehicle. The model estimating energy losses over a travel horizon of the vehicle may take into account one or more measures of parameters related to the travel horizon, where the parameters related to the travel horizon may include one or more of a mass of the vehicle and a road grade of a road on which the vehicle is positioned over the travel horizon, and one or more other parameters may be utilized. In some cases, the controller may use the estimated energy losses over the travel horizon of the vehicle to optimize a cost function over the travel horizon and set an actual speed for the vehicle.





BRIEF DESCRIPTION OF THE DRAWING


FIG. 1 is a schematic diagram depicting an illustrative travel of a vehicle from place A to place B;



FIG. 2 is a schematic block diagram of an illustrative vehicle;



FIG. 3 is a schematic block diagram of a controller of the illustrative vehicle in FIG. 2;



FIG. 4 is a schematic block diagram of illustrative inputs to and outputs from a processing unit of the illustrative controller of FIG. 3;



FIG. 5 is a schematic flow diagram of an illustrative approach for controlling a speed of a vehicle; and



FIG. 6 is a diagram of energy flows that correspond to powers in equations.





DESCRIPTION

The present system and approach, as described herein and/or shown in the Figures, may incorporate one or more processors, computers, controllers, user interfaces, wireless and/or wire connections, and/or the like, wherever desired.


Typical operation of a vehicle may have the goal to transport people or goods from place A to place B, along a predetermined route. An operator of the vehicle and/or potential passengers of the vehicle, hereafter referred to as users, may have certain expectations and requirements connected to transportation from place A to place B. Illustratively, users may have expectations and/or requirements that have to do with comfort of driving and/or riding, the duration of the transport from place A to place B, fuel required to reach place B from place A, and/or one or more other expectations or requirements. True user expectations and/or requirements, in many cases, may trade-off different individual expectations and/or requirements of a user over a horizon, which may exceed many travel horizons that are practical in context of solving an optimization problem over the travel horizon, and which may possibly even exceed a route of a trip from place A to place B. The expectations and requirements of users may be turned into an optimization issue to maximize overall satisfaction of users of a vehicle.


In some cases, a comfort of driving and/or riding expectation and/or requirement may be expressed in terms of acceleration and/or change of acceleration of the vehicle. For a fuel consumption expectation and/or requirement, one or more different terms may be used. In many cases, a scaled, distance-specific fuel consumption model may be used, but this is not always the case. Illustratively, a scaled, distance-specific fuel consumption related optimization variable used in a cost function may be minimized by an optimizer and/or controller of a vehicle.


In one example, a scaled, distance-specific fuel consumption optimization model may not be desirable for use in an optimization problem that does not solve the optimization problem for the complete remaining route from place A to place B, but rather only for a limited future horizon representing a part of the remaining route to place B. Such limited horizon optimizers that, amongst others minimize the fuel consumption and that do not solve the optimization problem for the entire remaining trip from place A to place B may be expected to become a common solution for real-world implementable vehicle-speed control solutions in next generation vehicle systems.


An issue with optimizing a distance-specific fuel consumption parameter for a travel horizon may be that such an approach does not consider energy consumed, but rather fuel consumed. In particular, optimizing a distance-specific fuel consumption parameter may be related to the fuel mass consumed over a travel horizon by a change in altitude or change in vehicle speed over that travel horizon. A fuel mass flow signal (measured or estimated from propulsion-device operation) may correspond to a flow of chemical energy (e.g., power) invested for propulsion of the vehicle. However, a portion of this chemical energy flow invested may not necessarily be optimizeable because it is outside of the scope of the optimization problem. Additionally, a part of the chemical energy flow invested may be recollected completely or at least partially at the end of the interval and thus may not be necessarily consumed in an energetic sense.


In the general case, fuel consumed may not necessarily be proportional to energy consumed in a context of a user's expectations and/or requirements. This may be so because a part of fuel energy consumed by a propulsion device (e.g., a combustion engine, an electric motor, or other propulsion device) of a vehicle might still be available in a form of an increased potential or kinetic energy in the vehicle at the end of the horizon with respect to the initial level of potential or kinetic energy. In one example, an investment of fuel energy into a vehicle energy (e.g., potential or kinetic energy of the vehicle) over the travel horizon (e.g., when driving uphill or when accelerating), the fuel consumption over the horizon may be higher than for a case where the vehicle energy is equal at a beginning and at an end of the travel horizon. This difference in fuel consumption may lead to a bias of the user-defined trade-off between a user's true expectations and/or requirements if the vehicle energy is ignored in the optimization problem. In another example, if a change in vehicle energy is not considered explicitly in an optimization problem, a fuel-cost over a travel horizon may appear to be higher resulting in over-weighting of the fuel consumption related expectations and/or requirements. Similarly, if a vehicle energy decreases over a travel horizon, the fuel consumption related expectations and/or requirements may be under-weighted.


Further, potential energy of a vehicle with a given mass may change as the vehicle travels. As long as the horizon of at least a portion along a route from place A to place B and/or the vehicle mass are not changed, a potential energy of the vehicle connected to differences in altitude over the horizon may have to be invested and it does not necessarily matter if potential energy is invested with high or lower power (e.g., high or low speed). Further, as speed (e.g., kinetic energy) may change over a travel horizon, the fuel mass flow may be higher during phases of acceleration than in phases of constant speed (e.g., zero acceleration) because additional chemical energy flow may need to be invested to accelerate the vehicle. Therefore, fuel consumption of the vehicle may seem high during acceleration, but the additional kinetic energy at the end of the travel horizon may be available in the vehicle and may be recovered completely for moving the vehicle forward on the route. As a result, there may be a need to correct a fuel energy flow invested over the travel horizon to take into account a change in vehicle potential and kinetic energy when an altitude of a vehicle at an end of a route (e.g., the end of the travel horizon) may be different than an altitude of the vehicle at a beginning of the route (e.g., the beginning of the travel horizon) and/or when a speed the vehicle at an end of a route (e.g., the end of the travel horizon) may be different from a speed of the vehicle at a beginning of a route (e.g., the beginning of the travel horizon).


To address the bias issue that may result when distance-specific fuel consumption parameters are optimized without considering vehicle energy, a more appropriate optimization approach may be used such that true user expectations and/or requirements may be met when optimizing a vehicle speed trajectory from place A to place B. A more appropriate optimization approach that addresses the bias issue may include an optimization approach that uses a cost function taking into consideration energy losses of a vehicle over a travel horizon by subtracting the fuel-energy parameters required for a change in kinetic energy of the vehicle and for the change in potential energy of the vehicle from the fuel energy invested over a travel horizon. That is, instead of considering fuel energy or fuel power (e.g., fuel mass flow) in a cost function of an optimization problem, the cost function of the optimization problem may consider energy losses (e.g., a part of the fuel mass flow that is being consumed by losses, such as friction, drag, and so forth). In one example, a fuel mass flow signal that may typically be used as an input for an optimization problem may be corrected by subtracting the rate of potential energy change of the vehicle and by subtracting the rate of kinetic energy change of the vehicle, both corrected by a lower heating value of fuel in the vehicle.


To make use of an optimization approach for controlling a vehicle (e.g., a vehicle speed or other vehicle variable), a vehicle controller may utilize a mathematical model of energy flows and/or balances of the vehicle. Further, expectations and/or requirements of users and the relative importance of each of the expectations and/or requirements may be considered in the optimization approach. Some of the expectations and/or requirements of users may include, but are not limited to, limits on fuel consumption, limits on deviation from a desired speed (e.g., a target speed), limits on speed, limits on deviation from desired distance from or to a lead vehicle (e.g., a vehicle in front of a subject vehicle for which optimization is desired), limits on a distance to a lead vehicle, limits on vehicle acceleration, and/or other expectations and/or requirements of users.


In some cases, the optimization approach for controlling a vehicle may consider estimated and/or measured values of the vehicle mass and/or a current or future road grade of a road on which the vehicle travels from place A to place B. Such mass of the vehicle and road grade of a road on which the vehicle travels may be measured by sensors on the vehicle. Alternatively, or in addition, a road grade may be provided to a controller of the vehicle via computer program (e.g., a maps/directions program) and/or via a positioning system (e.g., a global position system (GPS) or other positioning system) in communication with the controller of the vehicle.


The disclosed optimization approach using a model of vehicle energy flows and balances may be further described below. Illustratively, the model of vehicle energy flows and balances may be used to estimate the power losses of the vehicle over a travel horizon. The calculated power losses may then be used in a cost function of the optimization problem to minimize a trade-off of user expectations and/or requirements (e.g., a total cost) over the travel horizon.


Turning to the figures, FIG. 1 depicts a schematic elevation view of an illustrative vehicle 10 on a route 12. The vehicle 10 may be traveling from place A to place B along the route 12 or at least part of the route from place A to place B. Any interval between the current vehicle position to place B may represent a travel horizon where the travel horizon may be measured in time (e.g., a time interval) or distance (e.g., a distance interval), or both time and distance.



FIG. 2 depicts illustrative components of a vehicle 10. For example, as shown in FIG. 2, the vehicle 10 may include a propulsion device 14, such as a combustion engine (as shown), electric motor, or other propulsion device, and a controller 16. Additionally, or alternatively, the vehicle 10 may include one or other components. The propulsion device 14 may be configured to at least partially power the vehicle 10. In some cases, the controller 16 may be in communication with the propulsion device and may control the propulsion device according to one or more parameters. In one example, the controller 16 may be configured to control the propulsion device based, at least in part, according to a target speed of the vehicle 10.


A target speed of the vehicle 10 may be selected in any manner. For example, a target speed of the vehicle 10 may be pre-set by a manufacturer or user, the target speed may be automatically set based on local speed limits, the target speed may be set by a user during operation of the vehicle, and/or the target speed may set in one or more other manners.


The controller 16 of the vehicle 10 may include one or more components. As shown in FIG. 3, the controller 16 may include a processing unit 18, a cruise control module 19, memory 20 in communication with the processing unit 18, an input/output block 22 in communication with the processing unit 18, and/or one or more other components. In one example, the memory 20 may include one or more control system algorithms and/or other algorithms and the processing unit 18 may execute instructions (e.g., software code or other instructions) related to the algorithms in the memory 20.


The memory 20 may be local and/or remote memory. The memory 20 may be one or more portions of memory and/or may be any type of memory and/or may include any combination of types of memory. For example, the memory may be volatile memory, non-volatile memory, random access memory (RAM), FLASH, read-only memory (ROM), and/or one or more other types of memory.


The input/output block 22 may include one or more ports for communicating with components of the vehicle 10 and/or remote components (e.g., remote computing devices, global positioning systems, and so forth) In one example, the input/output block 22 may include an input port 24 for receiving a target speed, one or more measures of parameters, and/or other information, where the received target speed, one or more measures of parameters, and/or other information may be sent to the processing unit 18. In one example, the one or more measures of parameters may be related to a travel horizon of the vehicle or other features and may include one or more measures of a mass of the vehicle, a road grade of a road on which the vehicle is or is to be positioned over the travel horizon and/or one or more other measures of parameters. Further, the input/output block 22 may include an output port 26, where the output port 26 may be used by the controller 16 to provide one or more operating set points to the propulsion device and/or provide one or more other pieces of information. In one example, the operating set points of the propulsion device may be related to set points for actuators of a combustion engine or an electric motor. Actuators of a combustion engine may include one or more of a turbocharger waste gate (WG), variable geometry turbocharger (VGT), exhaust gas recirculation (EGR), start of injection (SOI), throttling valve (TV), and so on.


Turning to FIG. 4, the processing unit 18 is depicted with illustrative inputs and outputs, where the outputs may be based at least in part on the inputs. In some cases, the output of the processing unit may include operating set points for the propulsion device 14 based, at least in part, on received one or more measures of the parameters related to a travel horizon.


The processing unit 18 may include a vehicle operating model and a cost function 28. In one example, the vehicle operating model may be or may include a model of energy balances of the vehicle 10, such as an energy losses model 30 for the vehicle 10. The processing unit 18 of the controller 16 may optimize a cost function over a travel horizon, where the cost function is based at least in part on estimated energy losses according to the energy losses model 30 to set an actual speed for the vehicle.


The energy losses model 30 may estimate the energy losses over a travel horizon for a vehicle 10. In some cases, the energy losses model 30 may take into account losses of power and/or recoverable power. Example losses of power may include power loss due to aerodynamic drag for the vehicle 10, power loss due to friction of tires and powertrain (e.g., which may include engine friction), power loss due to conversion of primary energy into mechanical energy in the propulsion device (e.g. thermal losses of a combustion engine), and/or other power losses. Recoverable power may include power related to the grade-force and acceleration power.


Power losses due to aerodynamic drag and a quadratic term of friction may be represented by:

Pl,1=(θ1·v2v  (1)

where, θ1 is a constant proportional to a combination of a drag coefficient and a quadratic term of friction, and v is a velocity of the vehicle 10.


Power losses due to friction of tires on the vehicle 10 and a powertrain of the vehicle 10 may be represented by:

Pl,2=(θ2·v+θ3v  (2)

where, θ2 is a constant proportional to a linear term of friction, θ3 is a constant proportional to a friction force and v is a velocity of the vehicle 10.


As mentioned above, the losses model 30 may take into account recoverable power of the vehicle 10, including but not limited to power related to the grade-force acting on vehicle 10 and acceleration power. Power related to the grade-force acting on a vehicle may be represented by:

Pg=m·g·sin(φ)·v  (3)

where, m is the mass of the vehicle and its contents, g is a gravitational acceleration constant (e.g., 9.81 meters per second squared), φ is a grade angle of the route on which the vehicle is traveling, and v is the velocity of the vehicle 10. Power related to the grade-force acting on a vehicle may be accumulated as potential energy of the vehicle 10. The grade angle may be road grades of roads on which the vehicle 10 is to travel over the travel horizon and/or a current road grade of a road on which the vehicle 10 may be positioned. Further, the grade angle may be determined by sensors in the vehicle 10, a GPS in communication with the controller 16 of the vehicle 10, a maps program saved in the memory 20 of the controller 16, a remote maps program in communication with the controller 16, and/or in one or more other manners.


Acceleration power may be represented by:

Pα=m·a·v  (4)

where, m is the mass of the vehicle 10 and its contents, a is the acceleration of the vehicle 10, and v is the velocity of the vehicle 10. Acceleration power may be accumulated as kinetic energy of the vehicle 10.


Acceleration of the vehicle may be represented by:









a
=


1
m

·

(


f


(

u
e

)


-

(



θ
1

·

v
2


+


θ
2

·
v

+

θ
3

+

m
·
g
·

sin


(
φ
)




)


)






(
5
)








where, f(ue) is an algebraic function for the vehicle propulsion force depending on variable ue, ue is a variable that could be one or more parameters of the propulsion device including brake torque, Tbrake, m is the mass of the vehicle 10 and its contents, θ1 is a constant proportional to a combination of a drag coefficient and a quadratic term of friction, θ2 is a constant proportional to a linear term of friction, θ3 is a constant proportional to a friction force, g is a gravitational acceleration constant, φ is a grade angle of the route on which the vehicle is traveling, and v is the velocity of the vehicle 10.


Velocity of the vehicle may be represented by:

v=v0+∫a dt  (6)

where, v0 is an initial velocity of the vehicle 10, a is the acceleration of the vehicle 10.


Power losses due to conversion efficiency of the propulsion device may be represented by:










P

l
,
e


=



1
-


η
e



(


n
e

,

u
e


)





η
e



(


n
e

,

u
e


)



·

(


P

l
,
1


+

P

l
,
2


+

P
g

+

P
a


)






(
7
)








where, ηee, ue) is a conversion efficiency of the propulsion device 14 (e.g. the thermal efficiency of a combustion engine) of the vehicle 10 and may typically be a value between zero and one, ne is propulsion device speed, ue is a variable that could be one or more parameters of the propulsion device including brake torque, Tbrake, and Pl,1, Pl,1, Pg, Pa are power terms according to equations (1) to (4) above. In some cases, to determine power losses due to conversion efficiency of the propulsion device, only the difference between a physically maximum possible efficiency (e.g. the Carnot efficiency of a combustion engine) and an effective conversion efficiency may be considered.


Generally, distance-specific total primary-energy (e.g. fuel energy or electrical energy) over a travel horizon may be modeled by:










E
tot

=


1


v
mean

·
T






0
T





1


η
e



(


n
e

,

u
e


)



·

(


P

l
,
1


+

P

l
,
2


+

P
g

+

P
a


)





t








(
8
)








where, vmean is an average velocity of the vehicle over the travel horizon, T is a travel horizon of the vehicle 10, ηe(ne,ue) is a conversion efficiency of the propulsion device 14 (e.g. a thermal efficiency of a combustion engine) of the vehicle 10, ne is propulsion device speed, ue is a variable that could be one or more parameters of the propulsion device including brake torque, Tbrake.


The distance-specific total primary-energy (e.g. fuel energy) model of equation (8) has typically been used to model the energy consumed by a vehicle 10 over a travel horizon. However, herein a different proposed model may utilize distance specific total losses of energy of the vehicle 10 based on the energy losses referred to above and may be represented by:










E
loss

=


1


v
mean

·
T






0
T




(




1
-


η
e



(


n
e

,

u
e


)





η
e



(


n
e

,

u
e


)



·

(


P

l
,
1


+

P

l
,
2


+

P
g

+

P
a


)


+

P

l
,
1


+

P

l
,
2



)


dt







(
9
)








where, vmean is an average velocity of the vehicle over the travel horizon, T is a travel horizon of the vehicle 10, the first summand in the integral represents power losses due to conversion efficiency of the propulsion device (see equation (7)), and Pl,1 and Pl,2 represent drag and friction losses of the vehicle according to equations (1) and (2), respectively.


The energy losses model may then be used in a cost function 28 to determine an optimum speed of the vehicle 10 over a travel horizon, which may be represented as follows as a sum over Nhorz incremental parts of the travel horizon:









J
=





i
=
1


N
horz





c
E

·


(


E
i


E
n


)

2



+


c
v

·


(



v
i

-

v
ref



v
n


)

2







(
10
)








where, cE and cv are weights that typically may sum to one and are determined based on experimentation and/or user preferences, Ei is the energy model of the vehicle over increment i of the travel horizon (e.g., either the energy losses model 30 using equation (9) or the energy losses model 30 using the distance-specific primary-energy model according to equation (8)), En is an energy normalization factor that may be a function of target speed of the vehicle 10, v1 is an average speed of the vehicle 10 over increment i of the travel horizon, Vref is a target speed of the vehicle, and vn is a speed normalization factor of the vehicle. The cost function 28 shown in equation (10) may be extended or expanded to include other terms based on user preferences. Such user preferences may include a desired maximum change in acceleration, a desired maximum acceleration, a desired time to travel a travel horizon, and/or one or more other desired factors.


Thus, based on using an energy losses model for a vehicle 10 traveling over a travel horizon one can obtain a more precise understanding of energy consumed by the vehicle 10 over the travel horizon. From this, the controller 16 of the vehicle 10 may be able to more precisely calculate an optimized speed for the vehicle to travel based on a target speed for the vehicle 10.


The optimization technique for a vehicle utilizing an energy losses model 30 of the vehicle 10 may be used in one or more approaches or methods, including a cruise control system approach. FIG. 5 depicts one example of using the above described energy losses model 30 in a process 100 for establishing an actual speed of a vehicle 10 from a user-specified target speed. The process 100 may include at step 102 receiving a target speed for a vehicle. In some cases, the target speed for the vehicle 10 may be received at the controller 16 in communication with the propulsion device 14 that may power the vehicle 10. At step 104, the process 100 may include optimizing a cost function 30 over a travel horizon of the vehicle 10. In some cases, the cost function 28 may be optimized over the travel horizon of the vehicle 10 based, at least in part, on energy losses of the vehicle over the travel horizon relative to the received target speed. For example, the controller 16 may use the cost function 28 utilizing a model as in equation (9) to determine and minimize the energy losses of the vehicle 10 over the travel horizon to determine an optimal speed of the vehicle 10 in view of the target speed. At step 106, an actual speed of the vehicle 10 may be set based, at least in part, on optimizing the cost function over the travel horizon.


The controller 16 of the vehicle 10 may optimize the cost function over the travel horizon. However, in some cases, one or more other controllers may optimize the cost function over the travel horizon and input the results of optimization to the controller 16 for determining propulsion-device set points (e.g. engine brake torque).


In some cases, the actual speed set may be the optimal speed of the vehicle identified by the cost function 28. Alternatively or in addition, the optimal speed may be presented to a user (e.g., driver) of the vehicle and the user may be given an option of setting the speed of the vehicle at the determined optimal speed or some other speed based on knowing the optimal speed for the user's requirements and the energy losses of the vehicle.


In some cases, the approach 100 may be used in a cruise control module 19 of the controller 16. The cruise control module 19 may control the propulsion device to establish a speed of the vehicle 10. In the cruise control module 19, the target speed may be a user specified cruise control speed and the set actual speed may be the established speed of the vehicle.



FIG. 6 is a diagram of energy flows that correspond to the powers in equations. The power distribution “part” may balance the energy flows (powers) depending on physics and parameters such as vehicle mass, road grade, vehicle speed, such that the sum of all energy flows connected to the power distribution “part” is zero. Symbol 41 may resemble a primary energy reservoir (e.g., fuel reservoir or battery) having a primary-energy flow 42 to a propulsion device 43 (e.g., combustion engine). Energy conversion losses 44 may flow from device 43. An energy flow 45 propelling a vehicle may go to a symbol 46 indicating parameter dependent distribution (balancing) of energy flows (e.g., parameters of speed, road grade, vehicle mass, so forth. From symbol 46 is shown a flow 49 of drag and friction losses. There may be a two way flow 47 between symbol 46 and a vehicle kinetic energy block 51. Also, there may be a two way flow 48 between symbol 46 and a vehicle potential energy block 52.


The following is a recap of the above disclosure. A vehicle system may include a vehicle, a propulsion device such as a combustion engine, and a controller. The propulsion device may be configured to at least partially power the vehicle and the controller may be in communication with the propulsion device for controlling the propulsion device according to a target speed of the vehicle. The controller may include a model of energy balances of the vehicle and may be configured to use the model to estimate energy losses over a travel horizon of the vehicle. The controller may be configured to optimize in each processing step a cost function over the travel horizon of the vehicle based at least in part on the estimated energy losses to set an actual speed for the vehicle.


Further, the controller of the vehicle system may be configured to optimize the cost function at least in part by minimizing the energy losses relative to the target speed.


Further, the controller of the vehicle system may include a cruise control module and the target speed is a user specified cruise control speed.


The actual speed of the vehicle system as set by the controller may be the actual speed of the vehicle after a user has specified the user specified cruise control speed.


The travel horizon of the vehicle of the vehicle system may be a time interval.


The model of energy balances of the vehicle may include a parameter of road grades of roads on which the vehicle may travel over the travel horizon.


The model of energy balances of the vehicle system may include a parameter of a current road grade on which the vehicle is positioned.


The model of energy balances of the vehicle of the vehicle system may include a mass of the vehicle as a parameter.


The estimated energy losses of the vehicle system over the travel horizon may include energy loss due to aerodynamic drag of the vehicle.


The estimated energy losses of the vehicle system over the travel horizon may include energy loss due to friction.


The estimated energy losses of the vehicle over the travel horizon may include energy loss due to energy-conversion loss propulsion device (e.g., thermal loss from the engine) of the vehicle.


An approach for establishing an actual speed of a vehicle from a user-specified target speed may include receiving a target speed for a vehicle. The target speed is received at a controller in communication with a propulsion device configured to at least partially power the vehicle, optimizing a cost function over a travel horizon based at least in part on energy losses of the vehicle over the travel horizon relative to the target speed, and setting an actual speed of the vehicle based at least in part on optimizing the cost function over the travel horizon.


Further, the controller in the approach may include a model of vehicle energy balances to calculate the energy losses of the vehicle over the travel horizon.


Further, the approach may include optimizing a cost function over a travel horizon based at least in part on energy losses of the vehicle over a travel horizon based, at least in part, on minimizing energy losses of the vehicle over the travel horizon relative to target speed to establish an optimal speed.


The approach may further include obtaining one or more measures of parameters related to the travel horizon, wherein optimizing the cost function may take into account the obtained one or more measures of parameters related to the travel horizon.


Further, the controller in the approach may include a cruise control module configured to control the propulsion device to establish a speed of the vehicle and the target speed may be a user specified cruise control speed and the set actual speed may be the established speed of the vehicle.


A controller may be provided for a vehicle powered by a propulsion device. The controller may include a processing unit, an input for receiving one or more measures of parameters at the processing unit, and an output for providing one or more operating set points to the propulsion device based at least in part on the received one or more measures of parameters. The processing unit may receive a target speed for the vehicle over a travel horizon, may obtain one or more measures of parameters related to a travel horizon, and may optimize a cost function of the vehicle to provide operating set points for the propulsion device by minimizing energy losses of the vehicle relative to the received target speed and one or more obtained measures of parameters related to the travel horizon.


The provided operating conditions determined by the controller may establish an actual speed of the vehicle.


The energy losses minimized may include one or more of energy loss due to aerodynamic drag, friction present in the propulsion device, the powertrain, and in the tires, and a conversion loss from the propulsion device (e.g., thermal loss from the combustion engine).


The obtained measures of parameters related to a travel horizon may include one or more of a mass of the vehicle and a road grade of a road on which the vehicle is positioned over a travel horizon.


In the present specification, some of the matter may be of a hypothetical or prophetic nature although stated in another manner or tense.


Although the present system and/or approach has been described with respect to at least one illustrative example, many variations and modifications will become apparent to those skilled in the art upon reading the specification. It is therefore the intention that the appended claims be interpreted as broadly as possible in view of the related art to include all such variations and modifications.

Claims
  • 1. A vehicle system comprising: a vehicle;a propulsion device configured to at least partially power the vehicle; anda controller in communication with the propulsion device for controlling the propulsion device according to a target speed of the vehicle; andwherein: the controller includes a model of energy balances of the vehicle and is configured to use the model to estimate energy losses over a travel horizon of the vehicle;the controller is configured to optimize a cost function over the travel horizon of the vehicle based at least in part on the estimated energy losses and the target speed to determine an actual speed for the vehicle;the controller is configured to control the propulsion device to cause the vehicle to travel at the determined actual speed for the vehicle;the controller is configured to optimize the cost function at least in part by minimizing the energy losses relative to the target speed; andthe controller includes a cruise control module and the target speed is a user specified cruise control speed.
  • 2. The vehicle system of claim 1, wherein the set actual speed for the vehicle is the actual speed of the vehicle after a user has specified the user specified cruise control speed.
  • 3. The vehicle system of claim 1, wherein the travel horizon of the vehicle is a time interval.
  • 4. The vehicle system of claim 3, wherein the model of energy balances of the vehicle includes a parameter of road grades of roads on which the vehicle is to travel over the travel horizon.
  • 5. The vehicle system of claim 1, wherein the model of energy balances of the vehicle includes a parameter of a current road grade on which the vehicle is positioned.
  • 6. The vehicle system of claim 1, wherein the model of energy balances of the vehicle includes a mass of the vehicle as a parameter.
  • 7. The vehicle system of claim 1, wherein the estimated energy losses includes energy loss due to aerodynamic drag.
  • 8. The vehicle system of claim 1, wherein the estimated energy losses include energy loss due to friction.
  • 9. The vehicle system of claim 1, wherein the estimated energy losses include energy loss due to conversion efficiency from the propulsion device.
Parent Case Info

This present application claims the benefit of U.S. Provisional Patent Application No. 62/201,388, filed Aug. 5, 2015. U.S. Provisional Patent Application No. 62/201,388, filed Aug. 5, 2015, is hereby incorporated by reference.

US Referenced Citations (526)
Number Name Date Kind
3744461 Davis Jul 1973 A
4005578 McInerney Feb 1977 A
4055158 Marsee Oct 1977 A
4206606 Yamada Jun 1980 A
4252098 Tomczak et al. Feb 1981 A
4359991 Stumpp et al. Nov 1982 A
4383441 Willis et al. May 1983 A
4426982 Lehner et al. Jan 1984 A
4438497 Willis et al. Mar 1984 A
4440140 Kawagoe et al. Apr 1984 A
4456883 Bullis et al. Jun 1984 A
4485794 Kimberley et al. Dec 1984 A
4601270 Kimberley et al. Jul 1986 A
4616308 Morshedi et al. Oct 1986 A
4653449 Kamel et al. Mar 1987 A
4671235 Hosaka Jun 1987 A
4735181 Kaneko et al. Apr 1988 A
4947334 Massey et al. Aug 1990 A
4962570 Hosaka et al. Oct 1990 A
5044337 Williams Sep 1991 A
5076237 Hartman et al. Dec 1991 A
5089236 Clerc Feb 1992 A
5094213 Dudek et al. Mar 1992 A
5095874 Schnaibel et al. Mar 1992 A
5108716 Nishizawa et al. Apr 1992 A
5123397 Richeson Jun 1992 A
5150289 Badavas Sep 1992 A
5186081 Richardson et al. Feb 1993 A
5233829 Komatsu Aug 1993 A
5270935 Dudek et al. Dec 1993 A
5273019 Matthews et al. Dec 1993 A
5282449 Takahashi et al. Feb 1994 A
5293553 Dudek et al. Mar 1994 A
5349816 Sanbayashi et al. Sep 1994 A
5365734 Takeshima Nov 1994 A
5394322 Hansen Feb 1995 A
5394331 Dudek et al. Feb 1995 A
5398502 Watanabe Mar 1995 A
5408406 Mathur et al. Apr 1995 A
5431139 Grutter et al. Jul 1995 A
5452576 Hamburg et al. Sep 1995 A
5477840 Neumann Dec 1995 A
5560208 Halimi et al. Oct 1996 A
5570574 Yamashita et al. Nov 1996 A
5598825 Neumann Feb 1997 A
5609139 Ueda et al. Mar 1997 A
5611198 Lane et al. Mar 1997 A
5682317 Keeler et al. Oct 1997 A
5690086 Kawano et al. Nov 1997 A
5692478 Nogi et al. Dec 1997 A
5697339 Esposito Dec 1997 A
5704011 Hansen et al. Dec 1997 A
5740033 Wassick et al. Apr 1998 A
5746183 Parke et al. May 1998 A
5765533 Nakajima Jun 1998 A
5771867 Amstutz et al. Jun 1998 A
5785030 Paas Jul 1998 A
5788004 Friedmann et al. Aug 1998 A
5842340 Bush et al. Dec 1998 A
5846157 Reinke et al. Dec 1998 A
5893092 Driscoll Apr 1999 A
5917405 Joao Jun 1999 A
5924280 Tarabulski Jul 1999 A
5942195 Lecea et al. Aug 1999 A
5964199 Atago et al. Oct 1999 A
5970075 Wasada Oct 1999 A
5974788 Hepburn et al. Nov 1999 A
5995895 Watt et al. Nov 1999 A
6029626 Bruestle Feb 2000 A
6035640 Kolmanovsky et al. Mar 2000 A
6048620 Zhong et al. Apr 2000 A
6048628 Hilman et al. Apr 2000 A
6055810 Borland et al. May 2000 A
6056781 Wassick et al. May 2000 A
6058700 Yamashita et al. May 2000 A
6067800 Kolmanovsky et al. May 2000 A
6076353 Freudenberg et al. Jun 2000 A
6105365 Deeba et al. Aug 2000 A
6122555 Lu Sep 2000 A
6134883 Kato et al. Oct 2000 A
6153159 Engeler et al. Nov 2000 A
6161528 Akao et al. Dec 2000 A
6170259 Boegner et al. Jan 2001 B1
6171556 Burk et al. Jan 2001 B1
6178743 Hirota et al. Jan 2001 B1
6178749 Kolmanovsky et al. Jan 2001 B1
6208914 Ward et al. Mar 2001 B1
6216083 Ulyanov et al. Apr 2001 B1
6233922 Maloney May 2001 B1
6236956 Mantooth et al. May 2001 B1
6237330 Takahashi et al. May 2001 B1
6242873 Drozdz et al. Jun 2001 B1
6263672 Roby et al. Jul 2001 B1
6273060 Cullen Aug 2001 B1
6279551 Iwano et al. Aug 2001 B1
6312538 Latypov et al. Nov 2001 B1
6314351 Chutorash Nov 2001 B1
6314662 Ellis, III Nov 2001 B1
6314724 Kakuyama et al. Nov 2001 B1
6321538 Hasler et al. Nov 2001 B2
6327361 Harshavardhana et al. Dec 2001 B1
6338245 Shimoda et al. Jan 2002 B1
6341487 Takahashi et al. Jan 2002 B1
6347619 Whiting et al. Feb 2002 B1
6360159 Miller et al. Mar 2002 B1
6360541 Ivaszkiewicz et al. Mar 2002 B2
6360732 Bailey et al. Mar 2002 B1
6363715 Bidner et al. Apr 2002 B1
6363907 Arai et al. Apr 2002 B1
6379281 Collins et al. Apr 2002 B1
6389203 Jordan et al. May 2002 B1
6425371 Majima Jul 2002 B2
6427436 Allansson et al. Aug 2002 B1
6431160 Sugiyama et al. Aug 2002 B1
6445963 Blevins et al. Sep 2002 B1
6446430 Roth et al. Sep 2002 B1
6453308 Zhao et al. Sep 2002 B1
6463733 Zhao et al. Sep 2002 B1
6463734 Tamura et al. Oct 2002 B1
6466893 Latwesen et al. Oct 2002 B1
6470682 Gray, Jr. Oct 2002 B2
6470862 Isobe et al. Oct 2002 B2
6470886 Jestrabek-Hart Oct 2002 B1
6481139 Weldle Nov 2002 B2
6494038 Kobayashi et al. Dec 2002 B2
6502391 Hirota et al. Jan 2003 B1
6505465 Kanazawa et al. Jan 2003 B2
6510351 Blevins et al. Jan 2003 B1
6512974 Houston et al. Jan 2003 B2
6513495 Franke et al. Feb 2003 B1
6532433 Bharadwaj et al. Mar 2003 B2
6542076 Joao Apr 2003 B1
6546329 Bellinger Apr 2003 B2
6549130 Joao Apr 2003 B1
6550307 Zhang et al. Apr 2003 B1
6553754 Meyer et al. Apr 2003 B2
6560528 Gitlin et al. May 2003 B1
6560960 Nishimura et al. May 2003 B2
6571191 York et al. May 2003 B1
6579206 Liu et al. Jun 2003 B2
6591605 Lewis Jul 2003 B2
6594990 Kuenstler et al. Jul 2003 B2
6601387 Zurawski et al. Aug 2003 B2
6612293 Schweinzer et al. Sep 2003 B2
6615584 Ostertag Sep 2003 B2
6625978 Eriksson et al. Sep 2003 B1
6629408 Murakami et al. Oct 2003 B1
6637382 Brehob et al. Oct 2003 B1
6644017 Takahashi et al. Nov 2003 B2
6647710 Nishiyama et al. Nov 2003 B2
6647971 Vaughan et al. Nov 2003 B2
6651614 Flamig-Vetter et al. Nov 2003 B2
6662058 Sanchez Dec 2003 B1
6666198 Mitsutani Dec 2003 B2
6666410 Boelitz et al. Dec 2003 B2
6671596 Kawashima et al. Dec 2003 B2
6671603 Cari et al. Dec 2003 B2
6672052 Taga et al. Jan 2004 B2
6672060 Buckland et al. Jan 2004 B1
6679050 Takahashi et al. Jan 2004 B1
6687597 Sulatisky et al. Feb 2004 B2
6688283 Jaye Feb 2004 B2
6694244 Meyer et al. Feb 2004 B2
6694724 Tanaka et al. Feb 2004 B2
6705084 Allen et al. Mar 2004 B2
6718254 Hashimoto et al. Apr 2004 B2
6718753 Bromberg et al. Apr 2004 B2
6725208 Hartman et al. Apr 2004 B1
6736120 Surnilla May 2004 B2
6738682 Pasadyn May 2004 B1
6739122 Kitajima et al. May 2004 B2
6742330 Genderen Jun 2004 B2
6743352 Ando et al. Jun 2004 B2
6748936 Kinomura et al. Jun 2004 B2
6752131 Poola et al. Jun 2004 B2
6752135 McLaughlin et al. Jun 2004 B2
6757579 Pasadyn Jun 2004 B1
6758037 Terada et al. Jul 2004 B2
6760631 Berkowitz et al. Jul 2004 B1
6760657 Katoh Jul 2004 B2
6760658 Yasui et al. Jul 2004 B2
6770009 Badillo et al. Aug 2004 B2
6772585 Iihoshi et al. Aug 2004 B2
6775623 Ali et al. Aug 2004 B2
6779344 Hartman et al. Aug 2004 B2
6779512 Mitsutani Aug 2004 B2
6788072 Nagy et al. Sep 2004 B2
6789533 Hashimoto et al. Sep 2004 B1
6792927 Kobayashi Sep 2004 B2
6804618 Junk Oct 2004 B2
6814062 Esteghlal et al. Nov 2004 B2
6817171 Zhu Nov 2004 B2
6823667 Braun et al. Nov 2004 B2
6826903 Yahata et al. Dec 2004 B2
6827060 Huh Dec 2004 B2
6827061 Nytomt et al. Dec 2004 B2
6827070 Fehl et al. Dec 2004 B2
6834497 Miyoshi et al. Dec 2004 B2
6837042 Colignon et al. Jan 2005 B2
6839637 Moteki et al. Jan 2005 B2
6849030 Yamamoto et al. Feb 2005 B2
6857264 Ament Feb 2005 B2
6873675 Kurady et al. Mar 2005 B2
6874467 Hunt et al. Apr 2005 B2
6879906 Makki et al. Apr 2005 B2
6882929 Liang et al. Apr 2005 B2
6904751 Makki et al. Jun 2005 B2
6911414 Kimura et al. Jun 2005 B2
6915779 Sriprakash Jul 2005 B2
6920865 Lyon Jul 2005 B2
6923902 Ando et al. Aug 2005 B2
6925372 Yasui Aug 2005 B2
6925796 Nieuwstadt et al. Aug 2005 B2
6928362 Meaney Aug 2005 B2
6928817 Ahmad Aug 2005 B2
6931840 Strayer et al. Aug 2005 B2
6934931 Plumer et al. Aug 2005 B2
6941744 Tanaka Sep 2005 B2
6945033 Sealy et al. Sep 2005 B2
6948310 Roberts, Jr. et al. Sep 2005 B2
6953024 Linna et al. Oct 2005 B2
6965826 Andres et al. Nov 2005 B2
6968677 Tamura Nov 2005 B2
6971258 Rhodes et al. Dec 2005 B2
6973382 Rodriguez et al. Dec 2005 B2
6978744 Yuasa et al. Dec 2005 B2
6988017 Pasadyn et al. Jan 2006 B2
6990401 Neiss et al. Jan 2006 B2
6996975 Radhamohan et al. Feb 2006 B2
7000379 Makki et al. Feb 2006 B2
7013637 Yoshida Mar 2006 B2
7016779 Bowyer Mar 2006 B2
7028464 Rosel et al. Apr 2006 B2
7039475 Sayyarrodsari et al. May 2006 B2
7047938 Flynn et al. May 2006 B2
7050863 Mehta et al. May 2006 B2
7052434 Makino et al. May 2006 B2
7055311 Beutel et al. Jun 2006 B2
7059112 Bidner et al. Jun 2006 B2
7063080 Kita et al. Jun 2006 B2
7067319 Wills et al. Jun 2006 B2
7069903 Sumilla et al. Jul 2006 B2
7082753 Dalla Betta et al. Aug 2006 B2
7085615 Persson et al. Aug 2006 B2
7106866 Astorino et al. Sep 2006 B2
7107978 Itoyama Sep 2006 B2
7111450 Surnilla Sep 2006 B2
7111455 Okugawa et al. Sep 2006 B2
7113835 Boyen et al. Sep 2006 B2
7117046 Boyden et al. Oct 2006 B2
7124013 Yasui Oct 2006 B2
7149590 Martin et al. Dec 2006 B2
7151976 Lin Dec 2006 B2
7152023 Das Dec 2006 B2
7155334 Stewart et al. Dec 2006 B1
7164800 Sun Jan 2007 B2
7165393 Betta et al. Jan 2007 B2
7165399 Stewart Jan 2007 B2
7168239 Ingram et al. Jan 2007 B2
7182075 Shahed et al. Feb 2007 B2
7184845 Sayyarrodsari et al. Feb 2007 B2
7184992 Polyak et al. Feb 2007 B1
7188637 Dreyer et al. Mar 2007 B2
7194987 Mogi Mar 2007 B2
7197485 Fuller Mar 2007 B2
7200988 Yamashita Apr 2007 B2
7204079 Audoin Apr 2007 B2
7212908 Li et al. May 2007 B2
7275374 Stewart et al. Oct 2007 B2
7275415 Rhodes et al. Oct 2007 B2
7277010 Joao Oct 2007 B2
7281368 Miyake et al. Oct 2007 B2
7292926 Schmidt et al. Nov 2007 B2
7302937 Ma et al. Dec 2007 B2
7321834 Chu et al. Jan 2008 B2
7323036 Boyden et al. Jan 2008 B2
7328577 Stewart et al. Feb 2008 B2
7337022 Wojsznis et al. Feb 2008 B2
7349776 Spillane et al. Mar 2008 B2
7383118 Imai et al. Mar 2008 B2
7357125 Kolavennu Apr 2008 B2
7375374 Chen et al. May 2008 B2
7376471 Das et al. May 2008 B2
7380547 Ruiz Jun 2008 B1
7389773 Stewart et al. Jun 2008 B2
7392129 Hill et al. Jun 2008 B2
7397363 Joao Jul 2008 B2
7398082 Schwinke et al. Jul 2008 B2
7398149 Ueno et al. Jul 2008 B2
7400933 Rawlings et al. Jul 2008 B2
7400967 Ueno et al. Jul 2008 B2
7413583 Langer et al. Aug 2008 B2
7415389 Stewart et al. Aug 2008 B2
7418372 Nishira et al. Aug 2008 B2
7430854 Yasui et al. Oct 2008 B2
7433743 Pistikopoulos et al. Oct 2008 B2
7444191 Caldwell et al. Oct 2008 B2
7444193 Cutler Oct 2008 B2
7447554 Cutler Nov 2008 B2
7467614 Stewart et al. Dec 2008 B2
7469177 Samad et al. Dec 2008 B2
7474953 Hulser et al. Jan 2009 B2
7493236 Mock et al. Feb 2009 B1
7505879 Tomoyasu et al. Mar 2009 B2
7505882 Jenny et al. Mar 2009 B2
7515975 Stewart Apr 2009 B2
7522963 Boyden et al. Apr 2009 B2
7536232 Boyden et al. May 2009 B2
7577483 Fan et al. Aug 2009 B2
7587253 Rawlings et al. Sep 2009 B2
7591135 Stewart Sep 2009 B2
7599749 Sayyarrodsari et al. Oct 2009 B2
7599750 Piche Oct 2009 B2
7603185 Stewart et al. Oct 2009 B2
7603226 Henein Oct 2009 B2
7627843 Dozorets et al. Dec 2009 B2
7630868 Turner et al. Dec 2009 B2
7634323 Vermillion et al. Dec 2009 B2
7634417 Boyden et al. Dec 2009 B2
7650780 Hall Jan 2010 B2
7668704 Perchanok et al. Feb 2010 B2
7676318 Allain Mar 2010 B2
7698004 Boyden et al. Apr 2010 B2
7702519 Boyden et al. Apr 2010 B2
7712139 Westendorf et al. May 2010 B2
7721030 Fuehrer et al. May 2010 B2
7725199 Brackney et al. May 2010 B2
7734291 Mazzara, Jr. Jun 2010 B2
7738975 Denison et al. Jun 2010 B2
7743606 Havelena et al. Jun 2010 B2
7748217 Muller Jul 2010 B2
7752840 Stewart Jul 2010 B2
7765792 Rhodes et al. Aug 2010 B2
7779680 Sasaki et al. Aug 2010 B2
7793489 Wang et al. Sep 2010 B2
7798938 Matsubara et al. Sep 2010 B2
7808371 Blanchet et al. Oct 2010 B2
7813884 Chu et al. Oct 2010 B2
7826909 Attarwala Nov 2010 B2
7831318 Bartee et al. Nov 2010 B2
7840287 Wojsznis et al. Nov 2010 B2
7844351 Piche Nov 2010 B2
7844352 Vouzis et al. Nov 2010 B2
7846299 Backstrom et al. Dec 2010 B2
7850104 Havlena et al. Dec 2010 B2
7856966 Saitoh Dec 2010 B2
7860586 Boyden et al. Dec 2010 B2
7861518 Federle Jan 2011 B2
7862771 Boyden et al. Jan 2011 B2
7877239 Grichnik et al. Jan 2011 B2
7878178 Stewart et al. Feb 2011 B2
7891669 Araujo et al. Feb 2011 B2
7904280 Wood Mar 2011 B2
7905103 Larsen et al. Mar 2011 B2
7907769 Sammak et al. Mar 2011 B2
7925399 Comeau Apr 2011 B2
7930044 Attarwala Apr 2011 B2
7933849 Bartee et al. Apr 2011 B2
7958730 Stewart et al. Jun 2011 B2
7970482 Srinivasan et al. Jun 2011 B2
7987145 Baramov Jul 2011 B2
7996140 Stewart et al. Aug 2011 B2
8001767 Kakuya et al. Aug 2011 B2
8019911 Dressler et al. Sep 2011 B2
8025167 Schneider et al. Sep 2011 B2
8032235 Sayyar-Rodsari Oct 2011 B2
8046089 Renfro et al. Oct 2011 B2
8046090 MacArthur et al. Oct 2011 B2
8060290 Stewart et al. Nov 2011 B2
8078291 Pekar et al. Dec 2011 B2
8108790 Morrison, Jr. et al. Jan 2012 B2
8109255 Stewart et al. Feb 2012 B2
8121818 Gorinevsky Feb 2012 B2
8145329 Pekar et al. Mar 2012 B2
8146850 Havlena et al. Apr 2012 B2
8157035 Whitney et al. Apr 2012 B2
8185217 Thiele May 2012 B2
8197753 Boyden et al. Jun 2012 B2
8200346 Thiele Jun 2012 B2
8209963 Kesse et al. Jul 2012 B2
8229163 Coleman et al. Jul 2012 B2
8245501 He et al. Aug 2012 B2
8246508 Matsubara et al. Aug 2012 B2
8265854 Stewart et al. Sep 2012 B2
8281572 Chi et al. Oct 2012 B2
8295951 Crisalle et al. Oct 2012 B2
8311653 Zhan et al. Nov 2012 B2
8312860 Yun et al. Nov 2012 B2
8316235 Boehl et al. Nov 2012 B2
8360040 Stewart et al. Jan 2013 B2
8370052 Lin et al. Feb 2013 B2
8379267 Mestha et al. Feb 2013 B2
8396644 Kabashima et al. Mar 2013 B2
8402268 Dierickx Mar 2013 B2
8418441 He et al. Apr 2013 B2
8453431 Wang et al. Jun 2013 B2
8473079 Havlena Jun 2013 B2
8478506 Grichnik et al. Jul 2013 B2
RE44452 Stewart et al. Aug 2013 E
8504175 Pekar et al. Aug 2013 B2
8505278 Farrell et al. Aug 2013 B2
8543170 Mazzara, Jr. et al. Sep 2013 B2
8555613 Wang et al. Oct 2013 B2
8571689 Machiara et al. Oct 2013 B2
8596045 Tuomivaara et al. Dec 2013 B2
8620461 Kihas Dec 2013 B2
8634940 Macharia et al. Jan 2014 B2
8639925 Schuetze Jan 2014 B2
8649884 MacArthur et al. Feb 2014 B2
8649961 Hawkins et al. Feb 2014 B2
8667288 Yavuz Mar 2014 B2
8694197 Rajagopalan et al. Apr 2014 B2
8700291 Herrmann Apr 2014 B2
8751241 Oesterling et al. Jun 2014 B2
8762026 Wolfe et al. Jun 2014 B2
8763377 Yacoub Jul 2014 B2
8768996 Shokrollahi et al. Jul 2014 B2
8813690 Kumar et al. Aug 2014 B2
8825243 Yang et al. Sep 2014 B2
8839967 Schneider et al. Sep 2014 B2
8867746 Ceskutti et al. Oct 2014 B2
8892221 Kram et al. Nov 2014 B2
8899018 Frazier et al. Dec 2014 B2
8904760 Mital Dec 2014 B2
8983069 Merchan et al. Mar 2015 B2
9100193 Newsome et al. Aug 2015 B2
9141996 Christensen et al. Sep 2015 B2
9170573 Kihas Oct 2015 B2
9175595 Ceynow et al. Nov 2015 B2
9223301 Stewart et al. Dec 2015 B2
9243576 Yu et al. Jan 2016 B2
9253200 Schwarz et al. Feb 2016 B2
9325494 Boehl Apr 2016 B2
9367701 Merchan et al. Jun 2016 B2
9367968 Giraud et al. Jun 2016 B2
9483881 Comeau et al. Nov 2016 B2
9560071 Ruvio et al. Jan 2017 B2
9779742 Newsome, Jr. Oct 2017 B2
20020112469 Kanazawa et al. Aug 2002 A1
20040006973 Makki et al. Jan 2004 A1
20040086185 Sun May 2004 A1
20040144082 Mianzo et al. Jul 2004 A1
20040199481 Hartman et al. Oct 2004 A1
20040226287 Edgar et al. Nov 2004 A1
20050171667 Morita Aug 2005 A1
20050187643 Sayyar-Rodsari et al. Aug 2005 A1
20050193739 Brunnell et al. Sep 2005 A1
20050210868 Funabashi Sep 2005 A1
20060047607 Boyden et al. Mar 2006 A1
20060111881 Jackson May 2006 A1
20060137347 Stewart et al. Jun 2006 A1
20060168945 Samad et al. Aug 2006 A1
20060185626 Allen et al. Aug 2006 A1
20060212140 Brackney Sep 2006 A1
20070144149 Kolavennu et al. Jun 2007 A1
20070156259 Baramov et al. Jul 2007 A1
20070240213 Karam et al. Oct 2007 A1
20070261648 Reckels et al. Nov 2007 A1
20070275471 Coward Nov 2007 A1
20080010973 Gimbres Jan 2008 A1
20080103747 Macharia et al. May 2008 A1
20080132178 Chatterjee et al. Jun 2008 A1
20080208778 Sayyar-Rodsari et al. Aug 2008 A1
20080289605 Ito Nov 2008 A1
20090172416 Bosch et al. Jul 2009 A1
20090312998 Berckmans et al. Dec 2009 A1
20100122523 Vosz May 2010 A1
20100126481 Willi et al. May 2010 A1
20100300069 Herrmann et al. Dec 2010 A1
20110056265 Yacoub Mar 2011 A1
20110060424 Havlena Mar 2011 A1
20110125295 Bednasch et al. May 2011 A1
20110131017 Cheng et al. Jun 2011 A1
20110167025 Danai et al. Jul 2011 A1
20110173315 Aguren Jul 2011 A1
20110264353 Atkinson et al. Oct 2011 A1
20110270505 Chaturvedi et al. Nov 2011 A1
20120024089 Couey et al. Feb 2012 A1
20120109620 Gaikwad et al. May 2012 A1
20120174187 Argon et al. Jul 2012 A1
20120180468 Knapp Jul 2012 A1
20130024069 Wang et al. Jan 2013 A1
20130067894 Stewart et al. Mar 2013 A1
20130111878 Pachner et al. May 2013 A1
20130111905 Pekar et al. May 2013 A1
20130131954 Yu et al. May 2013 A1
20130131956 Thibault et al. May 2013 A1
20130158834 Wagner et al. Jun 2013 A1
20130204403 Zheng et al. Aug 2013 A1
20130242706 Newsome, Jr. Sep 2013 A1
20130326232 Lewis et al. Dec 2013 A1
20130326630 Argon Dec 2013 A1
20130338900 Ardanese et al. Dec 2013 A1
20140032189 Hehle et al. Jan 2014 A1
20140034460 Chou Feb 2014 A1
20140171856 McLaughlin et al. Jun 2014 A1
20140258736 Merchan et al. Sep 2014 A1
20140270163 Merchan Sep 2014 A1
20140316683 Whitney et al. Oct 2014 A1
20140318216 Singh Oct 2014 A1
20140343713 Ziegler et al. Nov 2014 A1
20140358254 Chu et al. Dec 2014 A1
20150121071 Schwarz et al. Apr 2015 A1
20150275783 Wong et al. Oct 2015 A1
20150321642 Schwepp et al. Nov 2015 A1
20150324576 Quirant et al. Nov 2015 A1
20150334093 Mueller Nov 2015 A1
20150354877 Burns et al. Dec 2015 A1
20160003180 McNulty et al. Jan 2016 A1
20160043832 Ahn et al. Feb 2016 A1
20160108732 Huang et al. Apr 2016 A1
20160127357 Zibuschka et al. May 2016 A1
20160216699 Pekar et al. Jul 2016 A1
20160239593 Pekar et al. Aug 2016 A1
20160259584 Schlottmann et al. Sep 2016 A1
20160330204 Baur et al. Nov 2016 A1
20160344705 Stumpf et al. Nov 2016 A1
20160362838 Badwe et al. Dec 2016 A1
20160365977 Boutros et al. Dec 2016 A1
20170031332 Santin Feb 2017 A1
20170048063 Mueller Feb 2017 A1
20170126701 Glas et al. May 2017 A1
20170218860 Pachner et al. Aug 2017 A1
20170300713 Fan et al. Oct 2017 A1
20170306871 Fuxman et al. Oct 2017 A1
20170320481 Johannesson Mardh Nov 2017 A1
Foreign Referenced Citations (53)
Number Date Country
102063561 May 2011 CN
102331350 Jan 2012 CN
19628796 Oct 1997 DE
10219382 Nov 2002 DE
102009016509 Oct 2010 DE
102011103346 Aug 2012 DE
0301527 Feb 1989 EP
0877309 Jun 2000 EP
1134368 Sep 2001 EP
1180583 Feb 2002 EP
1221544 Jul 2002 EP
1245811 Oct 2002 EP
1273337 Jan 2003 EP
0950803 Sep 2003 EP
1420153 May 2004 EP
1447727 Aug 2004 EP
1498791 Jan 2005 EP
1425642 Nov 2005 EP
1686251 Aug 2006 EP
1399784 Oct 2007 EP
2107439 Oct 2009 EP
2146258 Jan 2010 EP
1794339 Jul 2011 EP
1529941 Nov 2011 EP
2543845 Jan 2013 EP
2551480 Jan 2013 EP
2589779 May 2013 EP
2617975 Jul 2013 EP
2267559 Jan 2014 EP
2919079 Sep 2015 EP
59190433 Oct 1984 JP
2010282618 Dec 2010 JP
0144629 Jun 2001 WO
0169056 Sep 2001 WO
0232552 Apr 2002 WO
02097540 Dec 2002 WO
02101208 Dec 2002 WO
03023538 Mar 2003 WO
03048533 Jun 2003 WO
03065135 Aug 2003 WO
03078816 Sep 2003 WO
03102394 Dec 2003 WO
2004027230 Apr 2004 WO
2006021437 Mar 2006 WO
2007078907 Jul 2007 WO
2008033800 Mar 2008 WO
2008115911 Sep 2008 WO
2011162706 Dec 2011 WO
2012076838 Jun 2012 WO
2013119665 Aug 2013 WO
20140149043 Sep 2014 WO
2014165439 Oct 2014 WO
2016053194 Apr 2016 WO
Non-Patent Literature Citations (185)
Entry
Locker, et al., “Diesel Particulate Filter Operational Characterization,” Coming Incorporated, 10 pages, prior to Feb. 2, 2005.
Lu, “Challenging Control Problems and Engineering Technologies in Enterprise Optimization,” Honeywell Hi-Spec Solutions, 30 pages, Jun. 4-6, 2001.
Maciejowski, “Predictive Control with Constraints,” Prentice Hall, Pearson Education Limited, 4 pages, 2002.
Manchur et al., “Time Resolution Effects on Accuracy of Real-Time NOx Emissions Measurements,” SAE Technical Paper Series 2005-01-0674, 2005 SAE World Congress, 19 pages, Apr. 11-14, 2005.
Mariethoz et al., “Sensorless Explicit Model Predictive Control of the DC-DC Buck Converter with Inductor Current Limitation,” IEEE Applied Power Electronics Conference and Exposition, pp. 1710-1715, 2008.
Marjanovic, “Towards a Simplified Infinite Horizon Model Predictive Controller,” 6 pages, Proceedings of the 5th Asian Control Conference, 6 pages, Jul. 20-23, 2004.
Mehta, “The Application of Model Predictive Control to Active Automotive Suspensions,” 56 pages, May 17, 1996.
Mohammadpour et al., “A Survey on Diagnostics Methods for Automotive Engines,” 2011 American Control Conference, pp. 985-990, Jun. 29-Jul. 1, 2011.
Moore, “Living with Cooled-EGR Engines,” Prevention Illustrated, 3 pages, Oct. 3, 2004.
Moos, “Catalysts as Sensors—A Promising Novel Approach in Automotive Exhaust Gas Aftertreatment,” http://www.mdpi.com/1424-8220/10/7/6773htm, 10 pages, Jul. 13, 2010.
Murayama et al., “Speed Control of Vehicles with Variable Valve Lift Engine by Nonlinear MPC,” ICROS-SICE International Joint Conference, pp. 4128-4133, 2009.
National Renewable Energy Laboratory (NREL), “Diesel Emissions Control—Sulfur Effects Project (DECSE) Summary of Reports,” U.S. Department of Energy, 19 pages, Feb. 2002.
Olsen, “Analysis and Simulation of the Rate of Heat Release (ROHR) in Diesel Engines,” MSc-Assignment, 105 pages, Jun. 2013.
Ortner et al., “MPC for a Diesel Engine Air Path Using an Explicit Approach for Constraint Systems,” Proceedings of the 2006 IEEE Conference on Control Applications, Munich Germany, pp. 2760-2765, Oct. 4-6, 2006.
Ortner et al., “Predictive Control of a Diesel Engine Air Path,” IEEE Transactions on Control Systems Technology, vol. 15, No. 3, pp. 449-456, May 2007.
Pannocchia et al., “Combined Design of Disturbance Model and Observer for Offset-Free Model Predictive Control,” IEEE Transactions on Automatic Control, vol. 52, No. 6, 6 pages, 2007.
Patrinos et al., “A Global Piecewise Smooth Newton Method for Fast Large-Scale Model Predictive Control,” Tech Report TR2010-02, National Technical University of Athens, 23 pages, 2010.
Payri et al., “Diesel NOx Modeling with a Reduction Mechanism for the Initial NOx Coming from EGR or Re-Entrained Burned Gases,” 2008 World Congress, SAE Technical Paper Series 2008-01-1188, 13 pages, Apr. 14-17, 2008.
Payri et al., “Methodology for Design and Calibration of a Drift Compensation Method for Fuel-to-Air Ratio,” SAE International 2012-01-0717, 13 pages, Apr. 16, 2012.
Pipho et al., “NO2 Formation in a Diesel Engine,” SAE Technical Paper Series 910231, International Congress and Exposition, 15 pages, Feb. 25-Mar. 1, 1991.
Qin et al., “A Survey of Industrial Model Predictive Control Technology,” Control Engineering Practice, 11, pp. 733-764, 2003.
Querel et al., “Control of an SCR System Using a Virtual NOx Sensor,” 7th IFAC Symposium on Advances in Automotive Control, The International Federation of Automotive Control, pp. 9-14, Sep. 4-7, 2013.
Rajamani, “Data-based Techniques to Improve State Estimation in Model Predictive Control,” Ph.D. Dissertation, 257 pages, 2007.
Rawlings, “Tutorial Overview of Model Predictive Control,” IEEE Control Systems Magazine, pp. 38-52, Jun. 2000.
Ricardo Software, “Powertrain Design at Your Fingertips,” retrieved from http://www.ricardo.com/PageFiles/864/WaveFlyerA4_4PP.pdf, 2 pages, downloaded Jul. 27, 2015.
Salvat, et al., “Passenger Car Serial Application of a Particulate Filter System on a Common Rail Direct Injection Engine,” SAE Paper No. 2000-01-0473, 14 pages, Feb. 2000.
Santin et al., “Combined Gradient/Newton Projection Semi-Explicit QP Solver for Problems with Bound Constraints,” 2 pages, prior to Jan. 29, 2016.
Schauffele et al., “Automotive Software Engineering Principles, Processes, Methods, and Tools,” SAE International, 10 pages, 2005.
Schilling et al., “A Real-Time Model for the Prediction of the NOx Emissions in DI Diesel Engines,” Proceedings of the 2006 IEEE International Conference on Control Applications, pp. 2042-2047, Oct. 4-7, 2006.
Schilling, “Model-Based Detection and Isolation of Faults in the Air and Fuel Paths of Common-Rail DI Diesel Engines Equipped with a Lambda and a Nitrogen Oxides Sensor,” Doctor of Sciences Dissertation, 210 pages, 2008.
Shahzad et al., “Preconditioners for Inexact Interior Point Methods for Predictive Control,” 2010 American Control Conference, pp. 5714-5719, Jun. 30-Jul. 2010.
Shamma, et al. “Approximate Set-Valued Observers for Nonlinear Systems,” IEEE Transactions on Automatic Control, vol. 42, No. 5, May 1997.
Signer et al., “European Programme on Emissions, Fuels and Engine Technologies (EPEFE)—Heavy Duty Diesel Study,” International Spring Fuels and Lubricants Meeting, SAE 961074, May 6-8, 1996.
Soltis, “Current Status of NOx Sensor Development,” Workshop on Sensor Needs and Requirements for PEM Fuel Cell Systems and Direct-Injection Engines, 9 pages, Jan. 25-26, 2000.
Stefanopoulou, et al., “Control of Variable Geometry Turbocharged Diesel Engines for Reduced Emissions,” IEEE Transactions on Control Systems Technology, vol. 8, No. 4, pp. 733-745, Jul. 2000.
Stewart et al., “A Model Predictive Control Framework for Industrial Turbodiesel Engine Control,” Proceedings of the 47th IEEE Conference on Decision and Control, 8 pages, 2008.
Stewart et al., “A Modular Model Predictive Controller for Turbodiesel Problems,” First Workshop on Automotive Model Predictive Control, Schloss Muhldorl, Feldkirchen, Johannes Kepler University, Linz, 3 pages, 2009.
Storset et al., “Air Charge Estimation for Turbocharged Diesel Engines,” vol. 1 Proceedings of the American Control Conference, 8 pages, Jun. 28-30, 2000.
Stradling et al., “The Influene of Fuel Properties and Injection Timing on the Exhaust Emissions and Fuel Consumption of an Iveco Heavy-Duty Diesel Engine,” International Spring Fuels and Lubricants Meeting, SAE 971635, May 5-8, 1997.
Takacs et al., “Newton-Raphson Based Efficient Model Predictive Control Applied on Active Vibrating Structures,” Proceeding of the European Control Conference 2009, Budapest, Hungary, pp. 2845-2850, Aug. 23-26, 2009.
The MathWorks, “Model-Based Calibration Toolbox 2.1 Calibrate complex powertrain systems,” 4 pages, prior to Feb. 2, 2005.
The MathWorks, “Model-Based Calibration Toolbox 2.1.2,” 2 pages, prior to Feb. 2, 2005.
Theiss, “Advanced Reciprocating Engine System (ARES) Activities at the Oak Ridge National Lab (ORNL), Oak Ridge National Laboratory,” U.S. Department of Energy, 13 pages, Apr. 14, 2004.
Tondel et al., “An Algorithm for Multi-Parametric Quadratic Programming and Explicit MPC Solutions,” Automatica, 39, pp. 489-497, 2003.
Traver et al., “A Neural Network-Based Virtual NOx Sensor for Diesel Engines,” 7 pages, prior to Jan. 29, 2016.
Tschanz et al., “Cascaded Multivariable Control of the Combustion in Diesel Engines,” The International Federation of Automatic Control (IFAC), 2012 Workshop on Engine and Powertrain Control, Simulation and Modeling, pp. 25-32, Oct. 23-25, 2012.
Tschanz et al., “Control of Diesel Engines Using NOx-Emission Feedback,” International Journal of Engine Research, vol. 14, No. 1, pp. 45-56, 2013.
Tschanz et al., “Feedback Control of Particulate Matter and Nitrogen Oxide Emissions in Diesel Engines,” Control Engineering Practice, vol. 21, pp. 1809-1820, 2013.
Turner, “Automotive Sensors, Sensor Technology Series,” Momentum Press, Unable to Obtain the Entire Book, a Copy of the Front and Back Covers and Table of Contents are Provided, 2009.
Van Basshuysen et al., “Lexikon Motorentechnik,” (Dictionary of Automotive Technology) published by Vieweg Verlag, Wiesbaden 039936, p. 518, 2004. (English Translation).
Delphi, Delphi Diesel NOx Trap (DNT), 3 pages, Feb. 2004.
Diehl et al., “Efficient Numerical Methods for Nonlinear MPC and Moving Horizon Estimation,” Int. Workshop on Assessment and Future Directions of NMPC, 24 pages, Pavia, Italy, Sep. 5-9, 2008.
Ding, “Characterising Combustion in Diesel Engines, Using Parameterised Finite Stage Cylinder Process Models,” 281 pages, Dec. 21, 2011.
Docquier et al., “Combustion Control and Sensors: a Review,” Progress in Energy and Combustion Science, vol. 28, pp. 107-150, 2002.
Dunbar, “Model Predictive Control: Extension to Coordinated Multi-Vehicle Formations and Real-Time Implementation,” CDS Technical Report 01-016, 64 pages, Dec. 7, 2001.
Egnell, “Combustion Diagnostics by Means of Multizone Heat Release Analysis and NO Calculation,” SAE Technical Paper Series 981424, International Spring Fuels and Lubricants Meeting and Exposition, 22 pages, May 4-6, 1998.
Ericson, “NOx Modelling of a Complete Diesel Engine/SCR System,” Licentiate Thesis, 57 pages, 2007.
Finesso et al., “Estimation of the Engine-Out NO2/NOx Ration in a Euro VI Diesel Engine,” SAE International 2013-01-0317, 15 pages, Apr. 8, 2013.
Fleming, “Overview of Automotive Sensors,” IEEE Sensors Journal, vol. 1, No. 4, pp. 296-308, Dec. 2001.
Ford Motor Company, “2012 My OBD System Operation Summary for 6.7L Diesel Engines,” 149 pages, Apr. 21, 2011.
Formentin et al., “NOx Estimation in Diesel Engines Via In-Cylinder Pressure Measurement,” IEEE Transactions on Control Systems Technology, vol. 22, No. 1, pp. 396-403, Jan. 2014.
Galindo, “An On-Engine Method for Dynamic Characterisation of NOx Concentration Sensors,” Experimental Thermal and Fluid Science, vol. 35, pp. 470-476, 2011.
Gamma Technologies, “Exhaust Aftertreatment with GT-Suite,” 2 pages, Jul. 17, 2014.
GM “Advanced Diesel Technology and Emissions,” powertrain technologies—engines, 2 pages, prior to Feb. 2, 2005.
Goodwin, “Researchers Hack a Corvette's Brakes Via Insurance Black Box,” Downloaded from http://www.cnet.com/roadshow/news/researchers-hack-a-corvettes-brakes-via-insurance-black-box/, 2 pages, Aug. 2015.
Greenberg, “Hackers Remotely Kill a Jeep on the Highway—With Me In It,” Downloaded from http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/, 24 pages, Jul. 21, 2015.
Guardiola et al., “A Bias Correction Method for Fast Fuel-to-Air Ratio Estimation in Diesel Engines,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 227, No. 8, pp. 1099-1111, 2013.
Guardiola et al., “A Computationally Efficient Kalman Filter Based Estimator for Updating Look-Up Tables Applied to NOx Estimation in Diesel Engines,” Control Engineering Practice, vol. 21, pp. 1455-1468.
Guerreiro et al., “Trajectory Tracking Nonlinear Model Predictive Control for Autonomous Surface Craft,” Proceedings of the European Control Conference, Budapest, Hungary, 6 pages, Aug. 2009.
Guzzella et al., “Introduction to Modeling and Control of Internal Combustion Engine Systems,” 303 pages, 2004.
Guzzella, et al., “Control of Diesel Engines,” IEEE Control Systems Magazine, pp. 53-71, Oct. 1998.
Hahlin, “Single Cylinder ICE Exhaust Optimization,” Master's Thesis, retrieved from https://pure.ltu.se/portal/files/44015424/LTU-EX-2013-43970821.pdf, 50 pages, Feb. 1, 2014.
Hammacher Schlemmer, “The Windshield Heads Up Display,” Catalog, p. 47, prior to Apr. 26, 2016.
Havelena, “Componentized Architecture for Advanced Process Management,” Honeywell International, 42 pages, 2004.
Heywood, “Pollutant Formation and Control,” Internal Combustion Engine Fundamentals, pp. 567-667, 1988.
Hiranuma, et al., “Development of DPF System for Commercial Vehicle—Basic Characteristic and Active Regeneration Performance,” SAE Paper No. 2003-01-3182, Mar. 2003.
Hirsch et al., “Dynamic Engine Emission Models,” Automotive Model Predictive Control, Chapter 5, 18 pages, LNCIS 402, 2012.
Hirsch et al., “Grey-Box Control Oriented Emissions Models,” The International Federation of Automatic Control (IFAC), Proceedings of the 17th World Congress, pp. 8514-8519, Jul. 6-11, 2008.
Hockerdal, “EKF-based Adaptation of Look-Up Tables with an Air Mass-Flow Sensor Application,” Control Engineering Practice, vol. 19, 12 pages, 2011.
Honeywell, “Profit Optimizer A Distributed Quadratic Program (DQP) Concepts Reference,” 48 pages, prior to Feb. 2, 2005.
http://nexceris.com/news/nextech-materials/, “NEXTECH Materials is Now NEXCERIS,” 7 pages, printed Oct. 4, 2016.
http://www.arb.ca.gov/msprog/obdprog/hdobdreg.htm, “Heavy-Duty OBD Regulations and Rulemaking,” 8 pages, printed Oct. 4, 2016.
http://www.not2fast.wryday.com/turbo/glossary/turbo_glossary.shtml, “Not2Fast: Turbo Glossary,” 22 pages, printed Oct. 1, 2004.
http://www.tai-cwv.com/sb1106.0.html, “Technical Overview—Advanced Control Solutions,” 6 pages, printed Sep. 9, 2004.
https://www.dieselnet.com/standards/us/obd.php, “Emission Standards: USA: On-Board Diagnostics,” 6 pages, printed Oct. 3, 2016.
https://www.en.wikipedia.org/wiki/Public-key_cryptography, “Public-Key Cryptography,” 14 pages, printed Feb. 26, 2016.
Ishida et al., “An Analysis of the Added Water Effect on NO Formation in D.I. Diesel Engines,” SAE Technical Paper Series 941691, International Off-Highway and Power-Plant Congress and Exposition, 13 pages, Sep. 12-14, 1994.
Ishida et al., “Prediction of NOx Reduction Rate Due to Port Water Injection in a DI Diesel Engine,” SAE Technical Paper Series 972961, International Fall Fuels and Lubricants Meeting and Exposition, 13 pages, Oct. 13-16, 1997.
Jensen, “The 13 Monitors of an OBD System,” http://www.oemoffhighway.com/article/1 0855512/the-13-monito . . . , 3 pages, printed Oct. 3, 2016.
Johansen et al., “Hardware Architecture Design for Explicit Model Predictive Control,” Proceedings of ACC, 6 pages, 2006.
Johansen et al., “Hardware Synthesis of Explicit Model Predictive Controllers,” IEEE Transactions on Control Systems Technology, vol. 15, No. 1, Jan. 2007.
Jonsson, “Fuel Optimized Predictive Following in Low Speed Conditions,” Master's Thesis, 46 pages, Jun. 28, 2003.
Kelly, et al., “Reducing Soot Emissions from Diesel Engines Using One Atmosphere Uniform Glow Discharge Plasma,” SAE Paper No. 2003-01-1183, Mar. 2003.
Keulen et al., “Predictive Cruise Control in Hybrid Electric Vehicles,” World Electric Journal, vol. 3, ISSN 2032-6653, 11 pages, May 2009.
Khair et al., “Emission Formation in Diesel Engines,” Downloaded from https://www.dieselnet.com/tech/diesel_emiform.php, 33 pages, printed Oct. 14, 2016.
Kihas et al., “Chapter 14, Diesel Engine SCR Systems: Modeling Measurements and Control,” Catalytic Reduction Technology (book), Part 1, Chapter 14, prior to Jan. 29, 2016.
Kolmanovsky et al., “Issues in Modeling and Control of Intake Flow in Variable Geometry Turbocharged Engines”, 18th IFIP Conf. System Modeling and Optimization, pp. 436-445, Jul. 1997.
Krause et al., “Effect of Inlet Air Humidity and Temperature on Diesel Exhaust Emissions,” SAE International Automotive Engineering Congress, 8 pages, Jan. 8-12, 1973.
Kulhavy et al. “Emerging Technologies for Enterprise Optimization in the Process Industries,” Honeywell, 12 pages, Dec. 2000.
Lavoie et al., “Experimental and Theoretical Study of Nitric Oxide Formation in Internal Combustion Engines,” Combustion Science and Technology, vol. 1, pp. 313-326, 1970.
The Extended European Search Report for EP Application No. 17151521.6, dated Oct. 23, 2017.
The Extended European Search Report for EP Application No. 17163452.0, dated Sep. 26, 2017.
Greenberg, “Hackers Cut a Corvette's Brakes Via a Common Car Gadget,” downloaded from https://www.wired.com2015/08/hackers-cut-corvettes-brakes-v . . . , 14 pages, Aug. 11, 2015, printed Dec. 11, 2017.
http://www.blackpoolcommunications.com/products/alarm-immo . . . , “OBD Security OBD Port Protection—Alarms & Immobilizers . . . ,” 1 page, printed Jun. 5, 2017.
http://www.cnbc.com/2016/09/20/chinese-company-hacks-tesla-car-remotely.html, “Chinese Company Hacks Tesla Car Remotely,” 3 pages, Sep. 20, 2016.
ISO, “ISO Document No. 13185-2:2015(E),” 3 pages, 2015.
“Aftertreatment Modeling of RCCI Engine During Transient Operation,” University of Wisconsin—Engine Research Center, 1 page, May 31, 2014.
“Chapter 14: Pollutant Formation,” Fluent Manual, Release 15.0, Chapter 14, pp. 313-345, prior to Jan. 29, 2016.
“Chapter 21, Modeling Pollutant Formation,” Fluent Manual, Release 12.0, Chapter 21, pp. 21-1-21-54, Jan. 30, 2009.
“J1979 E/E Diagnostic Test Modules,” Proposed Regulation, Vehicle E.E. System Diagnostic Standards Committee, 1 page, Sep. 28, 2010.
“MicroZed Zynq Evaluation and Development and System on Module, Hardware User Guide,” Avnet Electronics Marketing, Version 1.6, Jan. 22, 2015.
“Model Predictive Control Toolbox Release Notes,” The Mathworks, 24 pages, Oct. 2008.
“Model Predictive Control,” Wikipedia, pp. 1-5, Jan. 22, 2009. http://en.wikipedia.org/w/index.php/title=Special: Book&bookcmd=download&collecton_id=641cd1b5da77cc22&writer=rl&retum_to=Model predictive control, retrieved Nov. 20, 2012.
“MPC Implementation Methods for the Optimization of the Response of Control Valves to Reduce Variability,” Advanced Application Note 002, Rev. A, 10 pages, 2007.
“SCR, 400-csi Coated Catalyst,” Leading NOx Control Technologies Status Summary, 1 page prior to Feb. 2, 2005.
Actron, “Elite AutoScanner Kit—Enhanced OBD I & II Scan Tool, OBD 1300,” Downloaded from https://actron.com/content/elite-autoscanner-kit-enhanced-obd-i-and-obd-ii-scan-tool?utm_ . . . , 5 pages, printed Sep. 27, 2016.
Advanced Petroleum-Based Fuels-Diesel Emissions Control (APBF-DEC) Project, “Quarterly Update,” No. 7, 6 pages, Fall 2002.
Allanson, et al., “Optimizing the Low Temperature Performance and Regeneration Efficiency of the Continuously Regenerating Diesel Particulate Filter System,” SAE Paper No. 2002-01-0428, 8 pages, Mar. 2002.
Amstuz, et al., “EGO Sensor Based Robust Output Control of EGR in Diesel Engines,” IEEE TCST, vol. 3, No. 1, 12 pages, Mar. 1995.
Andersson et al., “A Predictive Real Time NOx Model for Conventional and Partially Premixed Diesel Combustion,” SAE International 2006-01-3329, 10 pages, 2006.
Andersson et al., “A Real Time NOx Model for Conventional and Partially Premixed Diesel Combustion,” SAE Technical Paper Series 2006-01-0195, 2006 SAE World Congress, 13 pages, Apr. 3-6, 2006.
Andersson et al., “Fast Physical NOx Prediction in Diesel Engines, The Diesel Engine: The Low CO2 and Emissions Reduction Challenge,” Conference Proceedings, Lyon, 2006. Unable to Obtain a Copy of This Reference.
Arregle et al., “On Board NOx Prediction in Diesel Engines: A Physical Approach,” Automotive Model Predictive Control, Models Methods and Applications, Chapter 2, 14 pages, 2010.
Asprion, “Optimal Control of Diesel Engines,” PHD Thesis, Diss ETH No. 21593, 436 pages, 2013.
Assanis et al., “A Predictive Ignition Delay Correlation Under Steady-State and Transient Operation of a Direct Injection Diesel Engine,” ASME, Journal of Engineering for Gas Turbines and Power, vol. 125, pp. 450-457, Apr. 2003.
Axehill et al., “A Dual Gradiant Projection Quadratic Programming Algorithm Tailored for Model Predictive Control,” Proceedings of the 47th IEEE Conference on Decision and Control, Cancun Mexico, pp. 3057-3064, Dec. 9-11, 2008.
Axehill et al., “A Dual Gradient Projection Quadratic Programming Algorithm Tailored for Mixed Integer Predictive Control,” Technical Report from Linkopings Universitet, Report No. Li-Th-ISY-R-2833, 58 pages, Jan. 31, 2008.
Baffi et al., “Non-Linear Model Based Predictive Control Through Dynamic Non-Linear Partial Least Squares,” Trans IChemE, vol. 80, Part A, pp. 75-86, Jan. 2002.
Bako et al., “A Recursive Identification Algorithm for Switched Linear/Affine Models,” Nonlinear Analysis: Hybrid Systems, vol. 5, pp. 242-253, 2011.
Barba et al., “A Phenomenological Combustion Model for Heat Release Rate Prediction in High-Speed DI Diesel Engines with Common Rail Injection,” SAE Technical Paper Series 2000-01-2933, International Fall Fuels and Lubricants Meeting Exposition, 15 pages, Oct. 16-19, 2000.
Bemporad et al., “Model Predictive Control Toolbox 3, User's Guide,” Matlab Mathworks, 282 pages, 2008.
Bemporad et al., “The Explicit Linear Quadratic Regulator for Constrained Systems,” Automatica, 38, pp. 3-20, 2002.
Bemporad, “Model Predictive Control Based on Linear Programming—The Explicit Solution,” IEEE Transactions on Automatic Control, vol. 47, No. 12, pp. 1974-1984, Dec. 2002.
Bemporad, “Model Predictive Control Design: New Trends and Tools,” Proceedings of the 45th IEEE Conference on Decision & Control, pp. 6678-6683, Dec. 13-15, 2006.
Bemporad, et al., “Explicit Model Predictive Control,” 1 page, prior to Feb. 2, 2005.
Bertsekas, “On the Goldstein-Levitin-Polyak Gradient Projection Method,” IEEE Transactions on Automatic Control, vol. AC-21, No. 2, pp. 174-184, Apr. 1976.
Bertsekas, “Projected Newton Methods for Optimization Problems with Simple Constraints*,” SIAM J. Control and Optimization, vol. 20, No. 2, pp. 221-246, Mar. 1982.
Blanco-Rodriguez, “Modelling and Observation of Exhaust Gas Concentrations for Diesel Engine Control,” Phd Dissertation, 242 pages, Sep. 2013.
Blue Streak Electronics Inc., “Ford Modules,” 1 page, May 12, 2010.
Borrelli et al., “An MPC/Hybrid System Approach to Traction Control,” IEEE Transactions on Control Systems Technology, vol. 14, No. 3, pp. 541-553, May 2006.
Borrelli, “Constrained Optimal Control of Linear and Hybrid Systems,” Lecture Notes in Control and Information Sciences, vol. 290, 2003.
Borrelli, “Discrete Time Constrained Optimal Control,” A Dissertation Submitted to the Swiss Federal Institute of Technology (ETH) Zurich, Diss. ETH No. 14666, 232 pages, Oct. 9, 2002.
Bourn et al., “Advanced Compressor Engine Controls to Enhance Operation, Reliability and Integrity,” Southwest Research Institute, DOE Award No. DE-FC26-03NT41859, SwRI Project No. 03.10198, 60 pages, Mar. 2004.
Catalytica Energy Systems, “Innovative NOx Reduction Solutions for Diesel Engines,” 13 pages, 3rd Quarter, 2003.
Charalampidis et al., “Computationally Efficient Kalman Filtering for a Class of Nonlinear Systems,” IEEE Transactions on Automatic Control, vol. 56, No. 3, pp. 483-491, Mar. 2011.
Chatterjee, et al. “Catalytic Emission Control for Heavy Duty Diesel Engines,” JM, 46 pages, prior to Feb. 2, 2005.
Chew, “Sensor Validation Scheme with Virtual NOx Sensing for Heavy Duty Diesel Engines,” Master's Thesis, 144 pages, 2007.
European Search Report for EP Application No. 11167549.2 dated Nov. 27, 2012.
European Search Report for EP Application No. 12191156.4-1603 dated Feb. 9, 2015.
European Search Report for EP Application No. EP 10175270.7-2302419 dated Jan. 16, 2013.
European Search Report for EP Application No. EP 15152957.5-1807 dated Feb. 10, 2015.
The Extended European Search Report for EP Application No. 15155295.7-1606, dated Aug. 4, 2015.
The Extended European Search Report for EP Application No. 15179435.1, dated Apr. 1, 2016.
U.S. Appl. No. 15/005,406, filed Jan. 25, 2016.
U.S. Appl. No. 15/011,445, filed Jan. 29, 2016.
De Oliveira, “Constraint Handling and Stability Properties of Model Predictive Control,” Carnegie Institute of Technology, Department of Chemical Engineering, Paper 197, 64 pages, Jan. 1, 1993.
The Extended European Search Report and Written Opinion for EP Application No. 16181570.9 dated Dec. 12, 2016.
Van Den Boom et al., “MPC for Max-Plus-Linear Systems: Closed-Loop Behavior and Tuning,” Proceedings of the 2001 American Control Conference, Arlington, Va, pp. 325-330, Jun. 2001.
Van Helden et al., “Optimization of Urea SCR deNOx Systems for HD Diesel Engines,” SAE International 2004-01-0154, 13 pages, 2004.
Van Keulen et al., “Predictive Cruise Control in Hybrid Electric Vehicles,” World Electric Vehicle Journal vol. 3, ISSN 2032-6653, pp. 1-11, 2009.
VDO, “UniNOx-Sensor Specification,” Continental Trading GmbH, 2 pages, Aug. 2007.
Vereschaga et al., “Piecewise Affine Modeling of NOx Emission Produced by a Diesel Engine,” 2013 European Control Conference (ECC), pp. 2000-2005, Jul. 17-19, 2013.
Wahlstrom et al., “Modelling Diesel Engines with a Variable-Geometry Turbocharger and Exhaust Gas Recirculation by Optimization of Model Parameters for Capturing Non-Linear System Dynamics,” (Original Publication) Proceedings of the Institution of Mechanical Engineers, Part D, Journal of Automobile Engineering, vol. 225, No. 7, 28 pages, 2011.
Wang et al., “Fast Model Predictive Control Using Online Optimization,” Proceedings of the 17th World Congress, the International Federation of Automatic Control, Seoul, Korea, pp. 6974-6979, Jul. 6-11, 2008.
Wang et al., “PSO-Based Model Predictive Control for Nonlinear Processes,” Advances in Natural Computation, Lecture Notes in Computer Science, vol. 3611/2005, 8 pages, 2005.
Wang et al., “Sensing Exhaust NO2 Emissions Using the Mixed Potential Principal,” SAE 2014-01-1487, 7 pages, Apr. 1, 2014.
Wilhelmsson et al., “A Fast Physical NOx Model Implemented on an Embedded System,” Proceedings of the IFAC Workshop on Engine and Powertrain Control, Simulation and Modeling, pp. 207-215, Nov. 30-Dec. 2, 2009.
Wilhemsson et al., “A Physical Two-Zone NOx Model Intended for Embedded Implementation,” SAE 2009-01-1509, 11 pages, 2009.
Winkler et al., “Incorporating Physical Knowledge About the Formation of Nitric Oxides into Evolutionary System Identification,” Proceedings of the 20th European Modeling and Simulation Symposium (EMSS), 6 pages, 2008.
Winkler et al., “On-Line Modeling Based on Genetic Programming,” 12 pages, International Journal on Intelligent Systems Technologies and Applications 2, 2007.
Winkler et al., “Using Genetic Programming in Nonlinear Model Identification,” 99 pages, prior to Jan. 29, 2016.
Winkler et al., “Virtual Sensors for Emissions of a Diesel Engine Produced by Evolutionary System Identification,” LNCS, vol. 5717, 8 pages, 2009.
Wong, “CARB Heavy-Duty OBD Update,” California Air Resources Board, SAE OBD TOPTEC, Downloaded from http://www.arb.ca.gov/msprog/obdprog/hdobdreg.htm, 72 pages, Sep. 15, 2005.
Wright, “Applying New Optimization Algorithms to Model Predictive Control,” 5th International Conference on Chemical Process Control, 10 pages, 1997.
Yao et al., “The Use of Tunnel Concentration Profile Data to Determine the Ratio of NO2/NOx Directly Emitted from Vehicles,” HAL Archives, 19 pages, 2005.
Zaman, “Lincoln Motor Company: Case study 2015 Lincoln MKC,” Automotive Electronic Design Fundamentals, Chapter 6, 2015.
Zavala et al., “The Advance-Step NMPC Controller: Optimality, Stability, and Robustness,” Automatica, vol. 45, pp. 86-93, 2009.
Zeilinger et al., “Real-Time MPC—Stability Through Robust MPC Design,” Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai, P.R. China, pp. 3980-3986, Dec. 16-18, 2009.
Zeldovich, “The Oxidation of Nitrogen in Combustion and Explosions,” ACTA Physiochimica U.R.S.S., vol. XX1, No. 4, 53 pages, 1946.
Zelenka, et al., “An Active Regeneration as a Key Element for Safe Particulate Trap Use,” SAE Paper No. 2001-0103199, 13 pages, Feb. 2001.
Zhu, “Constrained Nonlinear Model Predictive Control for Vehicle Regulation,” Dissertation, Graduate School of the Ohio State University, 125 pages, 2008.
Zhuiykov et al., “Development of Zirconia-Based Potentiometric NOx Sensors for Automotive and Energy Industries in the Early 21st Century: What Are the Prospects for Sensors?”, Sensors and Actuators B, vol. 121, pp. 639-651, 2007.
Desantes et al., “Development of NOx Fast Estimate Using NOx Sensor,” EAEC 2011 Congress, 2011. Unable to obtain a Copy of This Reference.
Winkler, “Evolutionary System Identification—Modem Approaches and Practical Applications,” Kepler Universitat Linz, Reihe C: Technik and Naturwissenschaften, Universitatsverlag Rudolf Trauner, 2009. Unable to Obtain a Copy of This Reference.
Smith, “Demonstration of a Fast Response On-Board NOx Sensor for Heavy-Duty Diesel Vehicles,” Technical report, Southwest Research Institute Engine and Vehicle Research Division SwRI Project No. 03-02256 Contract No. 98-302, 2000. Unable to Obtain a Copy of This Reference.
Related Publications (1)
Number Date Country
20170036543 A1 Feb 2017 US
Provisional Applications (1)
Number Date Country
62201388 Aug 2015 US