System and approach for water heater comfort and efficiency improvement

Information

  • Patent Grant
  • 10132510
  • Patent Number
    10,132,510
  • Date Filed
    Wednesday, December 9, 2015
    8 years ago
  • Date Issued
    Tuesday, November 20, 2018
    6 years ago
Abstract
A system for heating water to improve safety and efficiency. The system may have normal operation measured in time. After a time of normal operation, a water temperature setpoint may be checked. If the setpoint is not at a certain level, normal operation may continue. If the setpoint is within the certain level, water temperature may be measured. If the water temperature is less than a desired level, one or more draws of water may be measured for a preset temperature drop. If the draws do not meet the temperature drop, a return to check the setpoint may be made. If the draws meet the temperature drop, the setpoint may be reduced and a time of normal operation may be measured to determine whether a burn cycle occurs within the time. If not, normal operation may continue; but if so, a return to check the setpoint may be made.
Description
BACKGROUND

The present disclosure pertains to systems designed to heat fluids and particularly to devices that pertain to the efficiency and safety of heating fluids.


SUMMARY

The disclosure reveals a system for heating water in a controlled manner to improve safety and efficiency. The system may have a mode of normal operation measured in terms of time. After a certain amount of time of normal operation, a temperature setpoint of the system may be checked. If the setpoint is not at a certain level, then normal operation may continue. If the setpoint is at the certain level, then water temperature of the system may be measured. If the water temperature is less than a desired level, then one or more draws of water may be checked for a preset temperature drop. If the draws do not meet the temperature drop, then a return to the setpoint may be made with subsequent actions as described herein. If the draws meet the temperature drop, then the setpoint may be reduced and normal operation may be measured in terms of time to determine if a burn cycle occurs within a preset amount of time. If not, then normal operation may continue; but if so, a return to a setpoint check may be made along with the subsequent actions as noted.





BRIEF DESCRIPTION OF THE DRAWING


FIG. 1 is a diagram of a water heater that incorporates the present system and approach for heating water;



FIG. 2 is a diagram of an illustrative example of a controller for a water heater;



FIG. 3 is a diagram of a general water heater flow chart; and



FIG. 4 is a diagram of water temperature control of a water heater system to prevent generating temperatures of water beyond a certain temperature to improve safety and energy savings.





DESCRIPTION

The present system and approach may incorporate one or more processors, computers, controllers, user interfaces, wireless and/or wire connections, and/or the like, in an implementation described and/or shown herein.


This description may provide one or more illustrative and specific examples or ways of implementing the present system and approach. There may be numerous other examples or ways of implementing the system and approach.


Residential and commercial water heaters may use a ten to fifteen degree differential to maintain tank temperature. The temperature control may work sufficiently to deliver hot water; however, after multiple draws, the water tank can begin to stratify, leading to a set point at 135 degrees Fahrenheit (F) producing a temperature near 150 degrees F. at the top of the tank for supply. The hot water is not necessarily safe or comfortable for the user and also may waste more energy by increasing the top of the tank's ambient differential. The present algorithm may limit the return to a setpoint only during excess demand cycles. The reduction in return to setpoint may still maintain sufficient hot water; however, the burner advance turnoff could protect the user from scalding and excess energy consumption.


The burning algorithm may track the gas valve history for the prior four hours of operation. A counter may track the number of burner on and off and total burner on time of each recovery. In the condition of 2 or more burn cycles in one hour, the algorithm may go live and on the third reheat cycle, the return to setpoint may be limited from zero to ten degrees F., depending on a total prior draw load and total burn time tracked leading up to the 3rd draw with in that hour. The reduction in setpoint may allow the regeneration of heat without the overshoot of tank temperature at the top of the tank. The hot water tank algorithm's reduction in set point may stay live for up to four hours to allow the tank to equalize tank temp. At that point, the return to set point may occur and water temp may rise to the desired tank temp within two to three degrees F.



FIG. 1 is a diagram of a water heater 30 that may incorporate the present system and approach for heating water. A water tank 32 may have an input supply pipe or drip tube 44 for receiving fresh water and an output pipe or tube 46 for drawing water, particularly heated water as needed. Tank 32 may have an inner surface 42 and an outer surface 52. Around tank 32 may be an insulating layer 34 and an external shell 36. In tank 32 may be a rust inhibiting layer 50. Toward a bottom of tank 32 may be a drainage valve 48. Water heater 30 and tank 32 may have a top surface 54. At a bottom of heater 30 and tank 32 at a bottom surface 56 may be a heater 38 which can use electricity, gas or a combination to create heat for increasing a temperature of water in tank 32. In the diagram of FIG. 1, a gas burner 58 may be used as an illustrative example of heater 38. There may be a combustion chamber 63 that is supplied with a fuel such as gas in a tube 66. Combustion chamber 63 may have an enclosure 59 and or exhaust pipe flue 66 that runs from chamber 63 through tank 32 and top surface 54 to an outside exhaust vent.


An ignition source 40 such as a pilot light may be fed fuel from tube 66. A valve 67 may be electrically opened and closed. Valve 67 may close if not kept warm by pilot 60, particular in the event that the pilot 60 is extinguished and cannot light the burner in an event that an electric signal from a controller 40 is a command to open valve 67. Also, if pilot 60 goes out, then a thermal valve (a component of valve 67) connected to pilot 60 closes if not kept warm by pilot 60. The precautionary measures are for preventing a release of gas from a non-functioning burner 38 and pilot 60.


A sensor 64 may be connected to controller 40 to provide a temperature of water in tank 32 to controller 40. Input signals 70, sensor signals 84 and settings 86 may go to controller 40. Control signals 82 may be provided by controller 40. Controller 40 may also have controls and indicators for a user. Examples may be gauges, lights, setting selectors, and the like. A controller 40 may be of various versions of models that vary from simple to complex arrangements. Controller 40 may operate relative to a program or algorithm as indicated herein.


A diagram in FIG. 2 shows an illustrative example of controller 40. Input signals 70 may go to a processing block 72 which may incorporate a processor 71 and memory 78 that are connected to each other. A connection line 84 may connect one or more sensors 64 to a sensor input buffer circuit 74. Sensor signals may be provided by sensor input buffer circuit 74 to processor 71. Settings 86, such as those of temperature and time, and the like, may go to settings buffer circuit 80 and then on to processor 71. Output control signals may proceed from processor 71 to along connection line 82 to one or more valve actuators, and other actuators or components, and the like. Indicator signals may proceed from processor 71 along a connection line 83 to various instruments such as displays, gauges, indicator lights, sound emanating devices, and the like. Temperature and other setpoints may be entered along connection line 86 to a settings buffer circuit 80. From circuit 80, setting signals may go to processor 71. Entries from inputs may be from thermostats, keyboards, tunable knobs, switches, and so forth.



FIG. 3 is a diagram of a general water heater flow chart. Symbols may represent blocks, steps, statuses, activity or other items, even though they might be referred to as “symbols” for purposes of the diagram. Symbol 91 may indicate that a water temperature control system is in standby. A question of whether water temperature is less that a setpoint minus tolerance may be asked at symbol 92. If an answer is no, then there may be a return to standby. If the answer is yes, then a heating cycle (burn cycle) may occur at symbol 93. At symbol 94, a question of whether the water temperature is greater than the setpoint plus tolerance may be asked. If an answer is no, then the heating cycle may occur. If the answer is yes, then a return to standby may be made.



FIG. 4 is a diagram of water temperature control that may prevent a water heater system from generating temperatures of water beyond a certain temperature to improve safety and energy savings. Symbol 11 may represent normal operation of a water heater. A timer may be started at symbol 12. A question at symbol 13 may ask whether the timer has run for more than one hour. If an answer is no, then a return may be made to symbol 11 and symbol 12. The question at symbol 13 may be asked again. If the answer is yes, then a question at symbol 14 may be asked as to whether a set point of the water heater is greater than 125 degrees Fahrenheit (F) or less than 150 degrees F. If an answer is no, then a return may be made to symbol 11 of normal operation. If the answer is yes, then a question at symbol 15 may be asked as to whether a water temperature in the water heater is less than C*(88 degrees F.). If the answer is yes, then a return to normal operation at symbol 11 may occur. If the answer is no, then at symbol 16 a question asked may be whether two draws within X minutes (60<X<75) with a temperature drop greater than D*(˜25 degrees F.) in M (˜10) minutes on each draw. If an answer is no, then a return to symbol 14 may be made with sequences to follow symbol 14 as indicated herein. If the answer is yes, then the set point may be reduced by Y*(˜5 to 10 degrees F.) at symbol 17. Subsequently, a timer may be started and normal operation can occur at symbol 18. A question may then be asked at symbol 19 as to whether a burn cycle is within four hours. If an answer is no, then a return to normal operation at symbol 11 may occur. If the answer is yes, then a return may be made to symbol 14 with sequences of operation to follow as indicated herein.


To recap, a water heater control mechanism may incorporate a processor having a memory, a temperature sensor situated in a tank of a water heater and connected to the processor, a heater connected to a valve or switch, a setpoint device connected to the processor, an actuator attached to the valve and connected to the processor, and a program situated in the memory. The processor may have a normal operation for controlling temperature of water in the tank relative to a setpoint for temperature of the water. The program may provide steps that incorporate timing a length of normal operation, reading the setpoint device if the timing of a length of the normal operation exceeds a pre-determined time, reading the temperature sensor if a reading of the setpoint device is between two pre-determined temperatures, measuring one or more draws in terms of time and temperature if the reading of the temperature sensor is equal to or greater than a pre-determined temperature, reducing a setting of the setpoint device if the terms of time and temperature are within pre-defined terms of time and temperature for a draw, timing to when a burn cycle occurs, and reading the setpoint device if a time until a burn cycle occurs is greater than a pre-determined time.


If the reading of the setpoint device is not between the two pre-determined temperatures, then the processor may return to normal operation.


A return to reading the setpoint device may occur if the terms of time temperature for a draw are not within the pre-defined terms of time and temperature for a draw.


If the timing of the length of the normal operation does not exceed the pre-determined time, then the processor may continue in normal operation.


The two pre-determined temperatures for the setpoint device may be between A degrees Fahrenheit and B degrees Fahrenheit.


If the reading of the temperature sensor is equal to or less than the pre-determined temperature, then the processor may return to normal operation.


The pre-determined temperature for the temperature sensor may be C degrees Fahrenheit.


The pre-defined terms of time and temperature may incorporate J draws or K pair or pairs of draws with a period between D minutes and E minutes with a temperature drop of F degrees Fahrenheit in G minutes on each draw.


A return of the processor to normal operation may occur if the time until the burn cycle occurs is equal to or less than the pre-determined time.


The pre-determined time for when the burn cycle occurs may be H hours.


Illustrative example numbers for the variables may be A˜125, B˜150, C˜80, D˜60, E˜75, F˜25, G˜10, H˜4, J˜2 and K˜1.


A fluid heater system may incorporate a tank, a heater at the tank, a fluid input on the tank, a fluid output on the tank, a heater control device connected to the heater, a temperature sensor situated in the tank, a temperature setpoint mechanism, a timer, and a processor connected to the heater control device, the temperature sensor, the temperature setpoint mechanism and the timer. The processor may control the heater control device, adjust the temperature setpoint mechanism and operate a timer in response to the temperature sensor, according to a program.


A maximum temperature of a fluid in the tank may be controlled by the processor and heater control device according to the program.


A setpoint on temperature setpoint mechanism may result in a temperature of a fluid in the tank greater than a temperature indicated by the setpoint due to temperature stratification of the fluid in the tank. The program may limit a return to a setpoint just during excess demand cycles, to reduce the temperature of the fluid in the tank increased by temperature stratification.


The heater may be a gas burner. The heater control device may incorporate a valve connected to the gas burner, and an actuator that controls the valve and is connected to the processor. The program may track a history of the valve that reveals a number of times that a burner turns on and off and the total on-time of the burner. After a sequence of a pre-determined number of times that the burner turns on and off, the program may limit a return to the setpoint by a certain number of degrees less than the setpoint of the temperature setpoint mechanism according to the total on-time of the burner and amount of fluid draw from the tank within a given period of time.


The heater may be electric.


Steps of the program may incorporate 1) measuring a time of a normal operation of the processor, 2) checking a setpoint of the temperature setpoint mechanism if a time of the normal operation exceeds an A hour duration, 3) detecting a temperature less than B degrees Fahrenheit of the fluid if the setpoint of the temperature setpoint mechanism is between C degrees and D degrees Fahrenheit to take the processor out of normal operation, 4) making E draws of fluid from the tank within an F minute duration between a G minute duration and an H minute duration with a temperature drop detected by the temperature sensor greater than I degrees Fahrenheit of a J minute duration on each draw occurring that results in reducing the setpoint by K degrees between L degrees and M degrees, or in absence of each draw occurring as such results in going to step 3), 5) measuring a time of another normal operation of the processor, and 6) determining that an electric heat cycle has occurred within an N hour duration and thus resulting in returning to step iii), or determining that an electric heat cycle has not occurred thus resulting in the processor remaining in normal operation.


A, B, C, D, E, F, G, H, I, J, K, L, M, and N may be numbers associated with units as fitting in their context.


One or more items may be selected from a group incorporating A being about 1, B being about 80, C being about 125, D being about 150, E being about 2, F being between G and H, G being about 60, H being about 75, I being about 25, J being about 10, K being between L and M, L being about 5, M being about 10, and N being about 4.


One or more items may be selected from a group comprising A is between 0.05 and 5, B is between 40 and 120, C is 80, D is 200, E is between 1 and 10, F is between G and H, G is 5, H is 250, I is between 5 and 125, J is between 1 and 60, K is between L and M, L is 0, M is 50, and N is between 0.1 and 10.


A water heater may incorporate a tank, a water heater attached to the tank, a control device connected to the water heater, a temperature sensor in the tank, a temperature setpoint mechanism, and a controller connected to the control device, temperature sensor and a temperature setpoint mechanism. The processor may operate according to a program that causes normal operation of the heater to be overridden by an occasional setpoint adjustment to ensure efficiency and a supply safe hot water temperature.


The program may incorporate occasionally checking the setpoint of the temperature setpoint mechanism, continuing normal operation if the setpoint is at an acceptable setting, obtaining a temperature of water in the tank from the temperature sensor if the setpoint is absent from a predetermined setting, returning to normal operation if the temperature of the water is at predetermined magnitude, obtaining a temperature drop evaluation of one or more draws of water if the temperature of the water is absent from a predetermined magnitude, rechecking the setpoint if the temperature drop evaluation is high, reducing the setpoint if the temperature drop evaluation is low, starting timing normal operation of the heater to detect whether a burn cycle occurs within a predetermined period of time, rechecking the setpoint if the burn cycle occurs, and continuing normal operation if a burn cycle does not occur.


U.S. patent application Ser. No. 14/225,308, filed on Mar. 25, 2014, is hereby incorporated by reference.


Any publication or patent document noted herein is hereby incorporated by reference to the same extent as if each individual publication or patent document was specifically and individually indicated to be incorporated by reference.


In the present specification, some of the matter may be of a hypothetical or prophetic nature although stated in another manner or tense.


Although the present system and/or approach has been described with respect to at least one illustrative example, many variations and modifications will become apparent to those skilled in the art upon reading the specification. It is therefore the intention that the appended claims be interpreted as broadly as possible in view of the related art to include all such variations and modifications.

Claims
  • 1. A water heater control mechanism comprising: a processor having a memory;a temperature sensor situated in a tank of a water heater, and connected to the processor; a heater connected to a valve or switch;a controller connected to the processor, the controller configured to receive at least a temperature setpoint and communicate the controller setpoint to the processor;an actuator attached to the valve and connected to the processor; anda program situated in the memory; andwherein:the processor has a normal operation for controlling temperature of water in the tank relative to a setpoint for temperature of the water;the program provides steps that comprise:timing a length of normal operation;reading the temperature setpoint if the timing of a length of the normal operation exceeds a first pre-determined time;reading the temperature sensor if a reading of the temperature setpoint is between an upper pre-determined temperature and a lower pre-determined temperature;measuring one or more draws in terms of time and temperature if the reading of the temperature sensor is equal to or greater than said upper pre-determined temperature;reducing a setting of the temperature setpoint if the terms of time and temperature are within pre-defined terms of time and temperature for one of the one or more draws;timing to when a burn cycle occurs from the step of reducing a setting of the temperature setpoint; andreading the temperature setpoint if a time until said burn cycle occurs is greater than a second pre-determined time.
  • 2. The mechanism of claim 1, wherein if the reading of the temperature setpoint is not between the two pre-determined temperatures, then the processor returns to normal operation.
  • 3. The mechanism of claim 2, wherein the two pre-determined temperatures for the temperature setpoint are between A degrees Fahrenheit and B degrees Fahrenheit.
  • 4. The mechanism of claim 2, wherein the pre-determined temperature for the temperature sensor is C degrees Fahrenheit.
  • 5. The mechanism of claim 1, wherein a return to reading the temperature setpoint occurs if the terms of time temperature for a draw are not within the pre-defined terms of time and temperature for a draw.
  • 6. The mechanism of claim 5, wherein the pre-defined terms of time and temperature comprise J draws with a period between D minutes and E minutes between the draws with a temperature drop of F degrees Fahrenheit in G minutes on each draw.
  • 7. The mechanism of claim 1, wherein if the timing of the length of the normal operation does not exceed the pre-determined time, then the processor continues in normal operation.
  • 8. The mechanism of claim 1, wherein if the reading of the temperature sensor is less than said upper pre-determined temperature, then the processor returns to normal operation.
  • 9. The mechanism of claim 1, wherein a return of the processor to normal operation if the time until the burn cycle occurs is equal to or less than the pre-determined time.
  • 10. The mechanism of claim 9, wherein the pre-determined time for when the burn cycle occurs is H hours.
  • 11. A fluid heater system comprising: a tank;a heater at the tank;a fluid input on the tank;a fluid output on the tank;a heater control device connected to the heater, the heater control device including at least a valve connected to the gas burner and an actuator that controls the valve;a controller configured to receive input signals and control parameters including at least a temperature setpoint and output control signals;a temperature sensor situated in the tank;a timer; anda processor connected to the controller, heater control device, the temperature sensor, and the timer; and
  • 12. The system of claim 11, wherein a maximum temperature of a fluid in the tank is controlled by the processor and heater control device according to the program.
  • 13. The system of claim 11, wherein: the heater is a gas burner;the heater control device is connected to the processor;the program tracks a history of the valve that reveals a number of times that a burner turns on and off and the total on-time of the burner; andafter a sequence of a pre-determined number of times that the burner turns on and off, the program limits a return to the temperature setpoint by a certain number of degrees less than the setpoint of the temperature setpoint according to the total on-time of the burner and amount of fluid draw from the tank within a given period of time.
  • 14. The system of claim 11, wherein the heater is electric.
  • 15. The system of claim 11, wherein steps of the program comprise: i) measuring a time of a normal operation of the processor;ii) checking a setpoint of the temperature setpoint if a time of the normal operation exceeds an A minute duration;iii) detecting a temperature less than B degrees Fahrenheit of the fluid if the setpoint of the temperature setpoint is between C degrees Fahrenheit and D degrees Fahrenheit to take the processor out of normal operation;iv) making E draws of fluid from the tank within an F minute duration between a G minute duration and an H minute duration with a temperature drop detected by the temperature sensor greater than I degrees Fahrenheit of a J minute duration on each draw occurring then results in reducing the setpoint by K degrees Fahrenheit between L degrees Fahrenheit and M degrees Fahrenheit, or in absence of each draw occurring as such results in going to step iii);v) measuring a time of another normal operation of the processor; andvi) determining that an electric heat cycle has occurred within an N minute duration and thus resulting in returning to step iii), or determining that an electric heat cycle has not occurred thus resulting in the processor remaining in normal operation.
  • 16. The system of claim 15, wherein A, B, C, D, E, F, G, H, I, J, K, L, M and N are numbers having units as fitting in their respective contexts.
  • 17. The system of claim 16, wherein one or more items can be selected from a group comprising A is between 5 and 300, B is between 40 and 120, C is 80, D is 200, E is between 1 and 10, F is between G and H, G is 5, H is 250, I is between 5 and 125, J is between 1 and 60, K is between L and M, L is 0, M is 50, and N is between 10 and 600.
  • 18. A water heater comprising: a tank;a water heater attached to the tank;a control device connected to the water heater, the heater control device including at least a valve connected to the gas burner and an actuator that controls the valve;a temperature sensor in the tank;a temperature setpoint mechanism; anda controller connected to the control device and temperature sensor, the controller configured to receive input signals and control parameters including at least a temperature setpoint and output control signals; andwherein the processor operates according to a program that causes normal operation of the heater to be overridden by an occasional setpoint adjustment to ensure efficiency and a supply safe hot water temperature; andwherein the program comprises:checking the setpoint of the temperature setpoint;continuing normal operation if the setpoint is at an acceptable setting;obtaining a temperature of water in the tank from the temperature sensor if the setpoint is not at a predetermined setting;returning to normal operation if the temperature of the water is at predetermined magnitude;obtaining a temperature drop evaluation of one or more draws of water if the temperature of the water is not at a predetermined magnitude;rechecking to the setpoint if the temperature drop evaluation is high;reducing the setpoint if the temperature drop evaluation is low;starting timing normal operation of the heater to detect whether a burn cycle occurs within a predetermined period of time;rechecking the setpoint if the burn cycle occurs; andcontinuing normal operation if a burn cycle does not occur.
US Referenced Citations (210)
Number Name Date Kind
2331718 Newton Oct 1943 A
2920126 Hajny Jan 1960 A
3272432 Davidson Sep 1966 A
3759279 Smith, Jr. Sep 1973 A
3833428 Snyder et al. Sep 1974 A
3847350 Thompson Nov 1974 A
3849350 Matsko Nov 1974 A
3909816 Teeters Sep 1975 A
3948439 Heeger Apr 1976 A
4127380 Straitz, III Nov 1978 A
4131413 Ryno Dec 1978 A
4221557 Jalics Sep 1980 A
4305547 Cohen Dec 1981 A
4324207 Leuthard Apr 1982 A
4324944 Weihrich et al. Apr 1982 A
RE30936 Kmetz et al. May 1982 E
4333002 Kozak Jun 1982 A
4421062 Padilla, Sr. Dec 1983 A
4438728 Fracaro Mar 1984 A
4467178 Swindle Aug 1984 A
4483672 Wallace et al. Nov 1984 A
4507938 Hama et al. Apr 1985 A
4508261 Blank Apr 1985 A
4511790 Kozak Apr 1985 A
4568821 Boe Feb 1986 A
4588875 Kozak et al. May 1986 A
4638789 Ueki et al. Jan 1987 A
4655705 Shute et al. Apr 1987 A
4692598 Yoshida et al. Sep 1987 A
4696639 Bohan, Jr. Sep 1987 A
4734658 Bohan, Jr. Mar 1988 A
4742210 Tsuchiyama et al. May 1988 A
4770629 Bohan, Jr. Sep 1988 A
4778378 Dolnick et al. Oct 1988 A
4830601 Dahlander et al. May 1989 A
4834284 Vandermeyden May 1989 A
4906337 Palmer Mar 1990 A
4965232 Mauleon et al. Oct 1990 A
4977885 Herweyer et al. Dec 1990 A
4984981 Pottebaum Jan 1991 A
4986468 Deisinger Jan 1991 A
5007156 Hurtgen Apr 1991 A
5037291 Clark Aug 1991 A
5077550 Cormier Dec 1991 A
5103078 Boykin et al. Apr 1992 A
5112217 Ripka et al. May 1992 A
5125068 McNair et al. Jun 1992 A
5126721 Butcher et al. Jun 1992 A
5222888 Jones et al. Jun 1993 A
5232582 Takahashi et al. Aug 1993 A
5236328 Tate et al. Aug 1993 A
5280802 Comuzie, Jr. Jan 1994 A
5317670 Elia May 1994 A
5391074 Meeker Feb 1995 A
5424554 Marran et al. Jun 1995 A
5442157 Jackson Aug 1995 A
5567143 Servidio Oct 1996 A
5622200 Schulze Apr 1997 A
5660328 Momber Aug 1997 A
5779143 Michaud et al. Jul 1998 A
5791890 Maughan Aug 1998 A
5797358 Brandt et al. Aug 1998 A
5857845 Paciorek Jan 1999 A
5896089 Bowles Apr 1999 A
5968393 Demaline Oct 1999 A
5971745 Bassett et al. Oct 1999 A
5975884 Dugger Nov 1999 A
6053130 Shellenberger Apr 2000 A
6059195 Adams et al. May 2000 A
6069998 Barnes et al. May 2000 A
6075923 Wu Jun 2000 A
6080971 Seitz et al. Jun 2000 A
6208806 Langford Mar 2001 B1
6212894 Brown et al. Apr 2001 B1
6236321 Troost, IV May 2001 B1
6261087 Bird et al. Jul 2001 B1
6271505 Henderson Aug 2001 B1
6286464 Abraham et al. Sep 2001 B1
6293471 Stettin et al. Sep 2001 B1
6299433 Gauba et al. Oct 2001 B1
6350967 Scott Feb 2002 B1
6351603 Waithe et al. Feb 2002 B2
6363218 Lowenstein et al. Mar 2002 B1
6371057 Henderson Apr 2002 B1
6375087 Day et al. Apr 2002 B1
6390029 Alphs May 2002 B2
RE37745 Brandt et al. Jun 2002 E
6410842 McAlonan Jun 2002 B1
6455820 Bradenbaugh Sep 2002 B2
6553946 Abraham et al. Apr 2003 B1
6560409 Troost, IV May 2003 B2
6606968 Iwamam et al. Aug 2003 B2
6629021 Cline et al. Sep 2003 B2
6631622 Ghent et al. Oct 2003 B1
6633726 Bradenbaugh Oct 2003 B2
6684821 Lannes et al. Feb 2004 B2
6701874 Schultz et al. Mar 2004 B1
6732677 Donnelly et al. May 2004 B2
6794771 Orloff Sep 2004 B2
6795644 Bradenbaugh Sep 2004 B2
6835307 Talbert et al. Dec 2004 B2
6845110 Gibson Jan 2005 B2
6861621 Ghent Mar 2005 B2
6880493 Clifford Apr 2005 B2
6920377 Chian Jul 2005 B2
6934862 Sharood et al. Aug 2005 B2
6936798 Moreno Aug 2005 B2
6955301 Munsterhuis et al. Oct 2005 B2
6959876 Chian et al. Nov 2005 B2
6967565 Lingemann Nov 2005 B2
6973819 Ruhland et al. Dec 2005 B2
6995301 Shorrosh Feb 2006 B1
7032542 Donnelly et al. Apr 2006 B2
7065431 Patterson et al. Jun 2006 B2
7076373 Munsterhuis et al. Jul 2006 B1
7088238 Karaoguz et al. Aug 2006 B2
7103272 Baxter Sep 2006 B2
7117825 Phillips Oct 2006 B2
7137373 Seymour, II et al. Nov 2006 B2
7162150 Welch et al. Jan 2007 B1
7167813 Chian et al. Jan 2007 B2
7221862 Miller et al. May 2007 B1
7252502 Munsterhuis Aug 2007 B2
7255285 Troost et al. Aug 2007 B2
7298968 Boros et al. Nov 2007 B1
7317265 Chian et al. Jan 2008 B2
7346274 Bradepbaugh Mar 2008 B2
7373080 Baxter May 2008 B2
7380522 Krell et al. Jun 2008 B2
7432477 Teti Oct 2008 B2
7434544 Donnelly et al. Oct 2008 B2
7469550 Chapman, Jr. et al. Dec 2008 B2
7506617 Paine Mar 2009 B2
7526539 Hsu Apr 2009 B1
7561057 Kates Jul 2009 B2
7603204 Patterson et al. Oct 2009 B2
7613855 Phillips et al. Nov 2009 B2
7623771 Lentz et al. Nov 2009 B2
7634976 Gordon et al. Dec 2009 B2
7672751 Patterson et al. Mar 2010 B2
7712677 Munsterhuis et al. May 2010 B1
7744007 Beagen et al. Jun 2010 B2
7744008 Chapman, Jr. et al. Jun 2010 B2
7770807 Robinson et al. Aug 2010 B2
7798107 Chian et al. Sep 2010 B2
7804047 Zak et al. Sep 2010 B2
7902959 Yamada et al. Mar 2011 B2
7932480 Gu et al. Apr 2011 B2
7934662 Jenkins May 2011 B1
7970494 Fima Jun 2011 B2
7974527 Adler Jul 2011 B1
8061308 Phillips Nov 2011 B2
8074894 Beagen Dec 2011 B2
8083104 Roetker et al. Dec 2011 B2
8111980 Bradenbaugh Feb 2012 B2
8165726 Nordberg et al. Apr 2012 B2
8204633 Harbin, III et al. Jun 2012 B2
8245987 Hazzard et al. Aug 2012 B2
8322312 Strand Dec 2012 B2
8360334 Nold et al. Jan 2013 B2
8367984 Besore Feb 2013 B2
8422870 Nelson et al. Apr 2013 B2
8485138 Leeland et al. Jul 2013 B2
8498527 Roetker et al. Jul 2013 B2
8600556 Nesler et al. Dec 2013 B2
8606092 Amiran et al. Dec 2013 B2
8660701 Phillips et al. Feb 2014 B2
8667112 Roth et al. Mar 2014 B2
8726789 Clark May 2014 B2
8770152 Leeland et al. Jul 2014 B2
9080769 Bronson et al. Jul 2015 B2
9122283 Rylski et al. Sep 2015 B2
9195242 Zobrist et al. Nov 2015 B2
9228746 Hughes et al. Jan 2016 B2
9249986 Hazzard et al. Feb 2016 B2
9268342 Beyerle et al. Feb 2016 B2
9310098 Buescher et al. Apr 2016 B2
20020099474 Khesin Jul 2002 A1
20030093186 Patterson et al. May 2003 A1
20040042772 Whitford et al. Mar 2004 A1
20040079749 Young et al. Apr 2004 A1
20060027571 Miyoshi et al. Feb 2006 A1
20060272830 Fima Dec 2006 A1
20070023333 Mouhebaty et al. Feb 2007 A1
20070210177 Karasek Sep 2007 A1
20070292810 Maiello et al. Dec 2007 A1
20080003530 Donnelly et al. Jan 2008 A1
20080023564 Hall Jan 2008 A1
20080048046 Wagner et al. Feb 2008 A1
20080188995 Hotton et al. Aug 2008 A1
20080197206 Murakami et al. Aug 2008 A1
20080314999 Strand Dec 2008 A1
20090117503 Cain May 2009 A1
20100065764 Canpolat Mar 2010 A1
20100163016 Pan Jul 2010 A1
20110254661 Fawcett et al. Oct 2011 A1
20110259322 Davis et al. Oct 2011 A1
20110305444 Pussell Dec 2011 A1
20120060771 Brian et al. Mar 2012 A1
20120060829 DuPlessis et al. Mar 2012 A1
20130104814 Reyman May 2013 A1
20140060457 Hill et al. Mar 2014 A1
20140202549 Hazzard et al. Jul 2014 A1
20140203093 Young et al. Jul 2014 A1
20140212821 Banu et al. Jul 2014 A1
20150083384 Lewis, Jr. et al. Mar 2015 A1
20150120067 Wing et al. Apr 2015 A1
20150276268 Hazzard et al. Oct 2015 A1
20150277463 Hazzard et al. Oct 2015 A1
20150354833 Kreutzman Dec 2015 A1
Foreign Referenced Citations (26)
Number Date Country
2158120 Mar 1997 CA
201772614 Mar 2011 CN
201909441 Jul 2011 CN
102213489 Oct 2011 CN
203203717 Sep 2013 CN
0356609 Mar 1990 EP
0531072 Mar 1993 EP
0699316 Jul 1999 EP
0967440 Dec 1999 EP
1148298 Oct 2004 EP
1621814 Feb 2006 EP
1178748 Oct 2006 EP
2108140 Jun 2012 EP
2820206 Aug 2002 FR
2211331 Jun 1999 GB
H 08264469 Oct 1996 JP
2005283039 Oct 2005 JP
2006084322 Mar 2006 JP
2008008548 Jan 2008 JP
2011220560 Nov 2011 JP
1431223 Mar 2014 TW
9718417 May 1997 WO
WO 2008102263 Aug 2008 WO
WO 2009022226 Feb 2009 WO
WO 2009061622 May 2009 WO
WO 2011104592 Sep 2011 WO
Non-Patent Literature Citations (27)
Entry
Reliance Water Heaters, “Service Handbook for Standard Residential FVIR Gas Water Heaters, Models: G/LORT, G/LORS, G/LBRT, G/LRS/ G/LBCT, G/LBCS, G/LKRT, G/LKRS, G/LKCT, G/LART, G/LARS, G/LXRT, GLQRT—Series 200/201 and Series 202/203,” 44 pages, Nov. 2009.
“Results and Methodology of the Engineering Analysis for Residential Water Heater Efficiency Standards,” 101 pages, Oct. 1998.
AO Smith, “IComm Remote Monitoring System, Instruction Manual,” 64 pages, Jun. 2009.
U.S. Appl. No. 14/689,896, filed Apr. 17, 2015.
U.S. Appl. No. 15/061,520, filed Mar. 4, 2016.
U.S. Appl. No. 15/166,110, filed May 26, 2016.
Filibeli et al., “Embedded Web Server-Based Home Appliance Networks,” Journal of Network and Computer Applications, vol. 30, pp. 499-514, 2007.
Halfbakery.com, “Hot Water Alarm,” 2 pages, Sep. 4, 2002.
Heat Transfer Products Inc., “Specification for Heat Transfer Products, Inc., Vision 3 System,” 2 pages, Mar. 17, 2006.
Hiller, “Dual-Tank Water Heating System Options,” ASHRAE Transactions: Symposia, pp. 1028-1037, Downloaded Nov. 16, 2012.
Honeywell International Inc., “CS8800 General Assembly, Drawing No. 50000855,” 2 pages, Oct. 24, 2008.
Honeywell International Inc., “Thermopile Assembly, Drawing No. 50006821,” 1 page, Jun. 18, 2010.
Honeywell International Inc., “Thermopile Element, Drawing No. 50010166,” 1 page, Apr. 1, 2005.
Honeywell International Inc., “Thermopile General Assembly, Drawing No. 50006914,” 1 page, Jan. 12, 2006.
Honeywell International Inc., Photograph of a CS8800 Thermocouple Assembly, 1 page, saved Oct. 9, 2014.
http://nachi.org/forum/f22/dual-water-heater-installations-36034/, “Dual Water Heater Installation,” 10 pages, printed Oct. 1, 2012.
http://www.whirlpoolwaterheaters.com/learn_more/energysmartelectricwaterheateroperation.aspx, link no longer functions, “Energy Smart Electric Water Heater Operation,” 3 pages, prior to Nov. 13, 2012.
http://www.whirlpoolwaterheaters.com/learn-more/eletric-water-heaters/6th-sense%E2% . . . , “Whirlpool Energy Smart Electric Water Heater, Learn More,” 3 pages, printed Jan. 15, 2015.
Industrial Controls, “Basics of PID Control (Proportional+Integral+Derivative),” downloaded from https://web.archive.org/web/20110206195004/http://wwww.industrialcontrolsonline.com/training/online/basics-pid-control-proportionalintegralderivative, 4 pages, Feb. 6, 2011.
InspectAPedia, “Guide to Alternative Hot Water Sources,” 6 pages, printed Oct. 1, 2012.
Johnson Controls, “K Series BASO Thermocouples, Heating Line Product Guide 435.0, Thermocouples Section, Product Bulletin K Series,” 8 pages, Oct. 1998.
Lennox, “Network Control Panel, User's Manual,” 18 pages, Nov. 1999.
Moog, “M3000 Control System, RTEMP 8, Remote 8-Channel Temperature Controller with CanOpen Interface,” 6 pages, Nov. 2004.
Process Technology, “Troubleshooting Electric Immersion Heaters,” downloaded from http://www.processtechnology.com/troubleshootheaters.html, 3 pages, Mar. 22, 2010.
Raychem, “HWAT-ECO,” Tyco Thermal Control, 4 pages, 2012.
Techno Mix, “Installation-Series and Parallel,” downloaded from www.chinawinds.co.uk/diy_tips/installation_series_and_parallel.html, 5 pages, printed Oct. 1, 2012.
Triangle Tube, “Prestige Solo Condensing High Efficiency Gas Boiler,” 4 pages, revised Apr. 30, 2012.
Related Publications (1)
Number Date Country
20170167736 A1 Jun 2017 US