The invention is related to the field of wireless transmission in general and, more specifically, to broadband multicarrier wireless transmission links. Still more specifically, the invention is related to a system and associated method for utilizing a frequency offset estimation algorithm and training sequence having improved accuracy for MIMO and SISO broadband multicarrier wireless transmission links.
In multicarrier wireless transmission, a difference in the carrier frequency between a transmitter and a receiver causes overlapping of different subcarriers and, as such, interference, and performance degradation. In systems such as Orthogonal Frequency Division Multiplexing (OFDM), this may result in a loss of orthogonality between subcarriers. It is thus necessary to precisely estimate at the receiver the carrier frequency offset and correct it in the receiver itself (or via feedback at the transmitter). The correction can be made acting directly on the control signal of a voltage-controlled oscillator (VCO) or alternatively by signal processing. Frequency offset correction is usually followed by a phase tracking process, to compensate residual constellation rotation. Frequency offset estimation may be data-aided (e.g., based on a training sequence or on pilot tones) or non data-aided (e.g., based on the statistical properties of the data signal).
Conventional frequency offset estimation algorithms that achieve the foregoing are often based on the phase of the auto-correlation of the received signal. Such algorithms require a time periodicity in the signal. In practice, the periodicity may be designed in the training sequence, or the periodicity may be naturally present between cyclic prefix (CP) and the data portion of an OFDM signal. The phase of the auto-correlation is linearly proportional to the offset, and the maximum offset estimation range is inversely proportional to the time period of the received signal. This limits the maximum estimation range for algorithms based on the CP to half the inter-carrier spacing.
For a number of reasons, it is preferable to use a training sequence rather than CP. For example, the precision of frequency offset estimation depends on the number of samples used to compute the auto-correlation. With a single CP the number of samples does not guarantee a good estimation performance for a low signal-to-noise ratio (SNR), especially if the number of subcarriers is less than 100. So if the CP is used, it is necessary to take an average over several CPs. In packet-based systems, however, there is typically little time available for synchronization processing; thus, an a-priori known training sequence proves to be more efficient and better performing. Another reason why it is preferable to use a training sequence rather than CP, particularly germane in systems with a carrier frequency of several GHz and relatively narrow inter-carrier spacing, the use of commercial oscillators with a long-term accuracy of around 20 parts per million (PPM) results in a maximum offset that is well above the half inter-carrier spacing. It is thus necessary to make available a signal with a time period shorter than the distance from the CP to the tail of a data block.
In a packet-based, broadband multi-carrier system, where a training sequence is adopted, several frequency offset estimation algorithms have been developed, but, in systems wherein the training sequence should be as short as possible, no such systems allow a wide offset estimation range to be combined with high estimation accuracy. Moreover, no such systems guarantee high estimation accuracy for low SNR or SIR, especially in multipath fading channel condition. Finally, it should be noted that in such systems, the estimation of a frequency offset performed with a MIMO antenna system has been utilized to improve the robustness against multipath fading, but has not been fully utilized yet to improve offset estimation accuracy.
Accordingly, a continuing search has been directed to the development of an approach which improves frequency offset estimation accuracy without reducing the estimation range. Such frequency offset estimation would preferably be performed using algorithms which (1) are of limited computational complexity to allow for fast processing, (2) feature a detection range able to cover all practical frequency offsets, (3) maintain a given accuracy even at the lower edge of the operating SNR region, and (4), if based on a training sequence, then the same sequence has to be bandwidth-efficient and with a low Peak-to-Average Power Ratio (PAPR).
The present invention, accordingly, provides a carrier frequency offset estimation and correction algorithm, based on the phase of the auto-correlation of the received signal in a MIMO system, after proper signal processing. The algorithm is based on the adoption of a training sequence wherein different transmit (TX) antennas are divided into groups. The TX antenna groupings are made in such a way that antenna correlation for every group is minimized (i.e., antennas belonging to the same group are chosen so that transmit signals from different antennas have a minimal amount of spatial correlation). Each group performs transmission on a specific frequency band and with a time periodicity different from other groups. Sequences transmitted by every antenna in a given group are reciprocally time-orthogonal to guarantee uniform synchronization performance, even in low channel rank condition.
At each receive (RX) antenna, the signal due to different transmission groups may be separated via fast Fourier transform (FFT) processing or other type of band-pass filtering. The group with the shortest time period determines the maximum estimation range of a frequency offset estimation algorithm. Conversely, the group with longest time period determines the accuracy of the algorithm.
As discussed below, for systems having four or more TX antennas, the training sequence of the invention guarantees high synchronization reliability, while the algorithm has clearly better accuracy than is provided by conventional technology.
The algorithm of the present invention is also applicable to the case of two and three TX antennas and for SISO systems. For a SISO system, the group of antennas is configured from a single element.
For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
In the following discussion, numerous specific details are set forth to provide a thorough understanding of the present invention. However, it will be obvious to those skilled in the art that the present invention may be practiced without such specific details. In other instances, well-known elements have been illustrated in schematic or block diagram form in order not to obscure the present invention in unnecessary detail. Additionally, for the most part, details concerning wireless transmission, MIMO and SISO broadband multicarrier transmission links, frequency offsets, training sequences, and the like, have been omitted inasmuch as such details are not considered necessary to obtain a complete understanding of the present invention, and are considered to be within the skills of persons of ordinary skill in the relevant art.
It is noted that, unless indicated otherwise, all functions described herein are performed by a processor such as a microprocessor, a microcontroller, an application-specific integrated circuit (ASIC), an electronic data processor, a computer, or the like, in accordance with code, such as program code, software, integrated circuits, and/or the like that are coded to perform such functions. Furthermore, it is considered that the design, development, and implementation details of all such code would be apparent to a person having ordinary skill in the art based upon a review of the present description of the invention.
The invention can operate in all multi-carrier systems having one or more TX antennas. However, the case of four TX antennas is well-suited to the invention and, as such is described in particular detail herein. It is understood, though, that the algorithm described herein is applicable to all types of MIMO, MISO and SIMO systems.
The simulations exemplified herein utilize an MC-MIMO system, and hence the notation used in the following refers to a system with N subcarriers, M TX antennas, and P RX antennas. In particular, the system of the invention can provide benefits in future cellular communication systems that are likely to be based on MC-CDMA or OFDM modulation.
Accordingly, let the OFDM signal at the m-th TX antenna be:
Then let the received signal at the p-th RX antenna be:
where Δ represents the maximum delay spread of the channel (i.e., the time unit is the sampling time), clmp is the l-th tap of the mp MIMO subchannel, and the first tap is placed in the time origin. vp is an additive noise contribution.
The M TX antennas are divided in β different groups Γ1, l=1 . . . β. If Γm is the group containing the m-th TX antenna, let Rm be the number of its elements. Moreover, to each group a set of subcarriers Ωm is assigned.
Antenna assignment to groups has to be carried out such that the reciprocal correlation between antennas in the same group is minimized. If, by way of example, M=4 and p=2, then antennas {1, 3} should be assigned to the first group and {2, 4} to the second group. Choosing different groups, such as {1, 2}, brings a drop of performance especially for highly-correlated channels and/or a small number of RX antennas.
If the total length of the sequence is given by an integer number S of OFDM symbols without CP, then, during the transmission interval of the training sequence, the following time-domain signal is transmitted from the m-th TX antenna:
where Dm=N/ξm represents the time period of the training sequence relative to the group Γm. This corresponds, in the frequency domain, to use one subcarrier every ξm subcarriers in the set Ωm, while the remaining subcarriers are set to zero. CmD
It should be noted that a significant difference between the invention and the prior art is that the former assigns a different time period to signals transmitted from different TX antennas.
The various CmD
The pseudo-orthogonality condition is broader than the orthogonality condition and, as such, is inclusive of cases in which the random sequences used to build the training sequence are orthogonal codes, such as Walsh-Hadamard codes.
In the practical design of the training sequence, S will typically be on the order of 1 or 2. CmD
The training symbols defined above in equation (3) may conveniently be utilized for a multi-step frequency offset estimation process as discussed in the following. For example, if β=2, then the offset estimation is performed in two steps.
As a preliminary step, let D1<D2, such that Γ1 is the group of TX antennas performing transmission with the shortest time period. The received signal relative to Γ1 will be processed first and then be followed by Γ2. The signal in equation (2) is filtered so that rpΩ
The first offset estimation step (coarse estimation) is based on the following auto-correlation:
In the case considered here with β=2, it is assumed in equation (5) that l=1.
If fs is the sampling frequency, the coarse estimated frequency offset on the p-th RX antenna is given by:
The coarse estimate has a detection range of ξ/(2kmax) inter-carrier spacings.
In the hypothesis that all RX antennas are subject to the same frequency offset (that applies in case a single local oscillator is used), the frequency offset estimation can be averaged:
A coarse frequency adjustment is then applied to the received signal for every RX antenna:
r{circumflex over (r)}p(t)=rp(t)·e−2πf
Further offset estimation steps are based again on equation (5), performed on a different group Ωl, where the time period is longer than in the previous step. For the case of β=2, the second offset estimation step is also the final one (fine estimation). This step is performed with l=2:
Based on equations (6) and (7) it is, as such, possible to compute a fine offset estimate:
Finally, the fine correction is applied to the received signal for every RX antenna:
{hacek over (r)}p(t)={circumflex over (r)}p(t)·e−2πf
It is noted that the overall above estimation process corresponds to an estimated frequency offset of:
Δfest=fcoarse+ffine (12)
The invention may be generalized to any number of TX antennas. For example, for a case of three TX antennas, there are at least two possible implementations, as discussed further below. For a case of SISO and two TX antennas, the invention may be implemented using a single group (i.e., β=1 ) with respectively one or two elements. Such a group Γl may not use a single set of subcarriers, but preferably two sets which may be designated as Ω1 and Ω2.
The definition from equation (3) of the training sequence is modified as follows:
where CmD
using the subcarriers in Ω1, and CmD
using the subcarriers in Ω2.
Thus, the signal transmitted from every TX antenna is the sum of two signals with different periods and different spectral bands. By adopting this kind of training sequence, it is possible to process the algorithm of the invention embodied in equations (5) through (12) without any modification.
Referring to
A simulation environment for a system such as the system 100 features a wide bandwidth (BW) of 100 MHz, subdivided into 2048 subcarriers (of which 1664 active and 384 fixed to zero value for compliance to a spectral mask with lateral guard bands and no signal in the central position). The channel model is a METRA (see: MIMO Channel Characterisation, METRA Project Deliverable D2 AAU-WP2-D2-V1.1, December 2000, available at http://www.ist-metra.org. IST 1999-11729 METRA project, IST-2000-30148 I METRA Project) channel with re-sampled ITU Pedestrian-A delay profile. The mobile speed is 3 km/h. Noise is injected at the receiver as Additive White Gaussian Noise (AWGN).
The suggested implementation covers specifically the case of a MIMO system having four TX antennas, and P RX antennas, where there are no constraints on P. In the following, some practical training sequences are suggested also for the case where there are two or three TX antennas, or more than four TX antennas.
Simulations have been run with M=P=4, β=2, L=S=1, ξ1=16, ξ2=2, kmax=2 for the case l=1, and kmax=1 for the case l=2. The adopted training sequence is shown in
Filtering has been effectuated by FFT. Ad-hoc filters may be used to further improve performance by a fraction of dB.
The foregoing parameters substantially guarantee a maximum estimation range of ±4 inter-carrier spacings. This is a design specification in the case that in both TX and RX oscillators with long-term stability of 20 ppm are used and the carrier frequency is in the 5 GHz band.
It is understood that a number of different sets of parameters may be used, such as, by way of example, M=P=4, β=2, L=S=1, ξ1=8, ξ2=2, kmax=1 for the case l=1, and also kmax=1 for the case l=2. While this set of parameters is not simulated herein, it has been adopted in the training symbols of
The spectral representation of the training sequence shown in
The implementation of the offset estimation algorithm (e.g., equations 5-12) is shown in the block diagram of
In accordance with the foregoing, it will be apparent to one skilled in the art that, in the example shown with β=2, the algorithm would be performed by the receivers 1 through P and the central processor 106 in the order of steps 404, 406, 408, 410, 412, 414, 404, 406, 408, 410, 412, 414, and 416.
Concerning the implementation of the algorithm, it should be noted that, after the signal belonging to different groups has been separated with a filter, it is also possible to compute the auto-correlation in the frequency domain, as shown in P. Moose, A technique for orthogonal frequency division multiplexing frequency offset correction, IEEE Trans. Commun., vol. 42, pp.2908-2914, October 1994.
The performance of this algorithm may be compared to a traditional implementation transmitting signals having the same time period from every TX antenna. To perform a fair comparison, the traditional implementation has been designed with the same detection range of the proposed approach.
The simulation results for both the traditional method and the method embodied by the invention are shown in
From
Provided that the coarse estimation with the first group (TX 2) is able to give an estimate with error below the half inter-carrier spacing, the type of training sequence shown in
Taking into account this possibility (i.e., that the fading condition on the signal transmitted from TX 2 of
The training sequence detailed in
Similarly, as depicted in
The present invention can also be conveniently applied in the case of cellular systems with heavy co-channel interference. In such cases, the total available BW is divided so that directly interfering base stations use different frequency bands for the transmission of their respective training sequences.
By the use of the present invention, for a given training sequence, the offset estimation accuracy is directly proportional to three factors, namely, (1) the total number of samples in the correlation window, (2) the SNIR at the receiver, and (3) the time period of the training sequence.
If a practical example is considered, where M=4, β=2, ξ1=16, ξ2=2, it is apparent that compared to the prior art, the received SNIR decreases by 3 dB (two times), but the period is increased by eight times, meaning that the average error in the estimation will be roughly four times smaller with the proposed approach.
In formulas, the variance of frequency offset estimators for high SNR in both time domain and frequency domain is given by:
for the case of a correlation window of length N samples.
In the above case the proposed approach reduces the ratio of the estimate variance to the estimate average by 6 dB. In the simulations, a performance advantage may be slightly below 6 dB because of non-ideal filtering in the process of deriving rpΩ
The proposed approach, including training sequence and algorithm, improves considerably the estimation accuracy of the carrier frequency offset. The advantage in performance is several dBs over prior art methods, as shown in
A further advantage of the invention is that space diversity is utilized to reduce the total time length of the training sequence for frequency offset estimation, for a given detection range and estimation accuracy. This in turn improves the spectrum utilization of the packet. The invention is also well-suited for implementation in the presence of a packet detection system that operates with large time variance for low SNIR scenarios. This is a further advantage over possible implementations where different types of short training symbols are inserted consecutively in the training sequence. The proposed training sequence may also be exploited for MIMO symbol timing recovery (the group with the longest time period), and this could result in further optimization of the spectrum usage.
Having thus described the present invention by reference to certain of its preferred embodiments, it is noted that the embodiments disclosed are illustrative rather than limiting in nature and that a wide range of variations, modifications, changes, and substitutions are contemplated in the foregoing disclosure and, in some instances, some features of the present invention may be employed without a corresponding use of the other features. Many such variations and modifications may be considered obvious and desirable by those skilled in the art based upon a review of the foregoing description of preferred embodiments. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the invention.