This application is a national phase entry under 35 USC 371 of International Patent Application No. PCT/IB2015/059224 filed on 30 Nov. 2015, which claims priority from Uruguay Application No. 35914 filed on 22 Dec. 2014, the disclosures of which are incorporated in their entirety by reference herein.
In extensive livestock farming, the “natural service” is the main reproductive method, consisting of putting in a same space (called “corral”) a large group of cows with a small number of bulls (e.g., 1 bull per 30 cows), for a period of time that may vary from one to several months (called “cattle breeding season”). The natural service involves essentially no technology, it follows a “black box” model where the inputs are cows, bulls, water and grass; and the outputs are pregnant cows. At most, a veterinarian is hired to perform specific actions at the beginning of the cattle breeding season (checking denture, general status of the animal, etc.). Ranchers more concerned with obtaining a good performance rely on an ultrasound scan of each cow at half-way of the breeding season, obtaining therefrom some information. Once the breeding season has finished, the pregnant cows are diagnosed: the natural service produces an average pregnancy-rate of 75% (with large variations among ranches from 30% to 98%). Even though obtaining rates near 100% depends on weather conditions, soil quality, among other factors that often are not well controlled, the average pregnancy-rate of the natural service is equally low. By obtaining process information, detecting problems in time and taking the respective corrective actions, there is no reason to believe that a substantial increase of the average pregnancy-rate is not possible.
There exist in the state of the art systems similar to the invention described in the present document, but whose purpose is the detection of estrus, generally for artificial insemination. Its application reaches narrow market segments but inclined to introduce technology in their processes, such as, for example, intensive livestock farming, feedlot, dairy or farms specialized in bovine reproduction.
An important subset of the above mentioned inventions is based on detecting the homosexual behavior that cows exhibit prior to or during the estrus cycle. By applying this principle, systems have been developed based on patches with paint placed on the back of the cow (see, for example, Herriot et al. U.S. Pat. No. 5,566,679). Painting patches break when a cow mounts another cow, which would indicate that the cow with the painted back is in heat, and the cow with the painted stomach is close to coming into heat. This is only possible in intensive livestock farming; in extensive livestock farming, installing a patch each time a bull mounting takes place is impractical, and automating detection of estrus is complicated and costly to implement, requiring human intervention to watch the painted animals. Furthermore, the cow estrus could happen at night (specially during hot weather in hot areas) and, as it only lasts a few hours, these systems may not detect it.
Bocquier (U.S. Pat. No. 7,992,521, Method and device for automatically detecting mating of animals, 2004) presents a device and method that allows the automatic detection of animal mounting. It can be seen simply as the modernization and automation of the classical “patch method” described above. It should be noted that this method/device at no time aims at detecting ejaculation. Indeed, the device is carried by a mounting animal that cannot ejaculate, referred to in general as male, but can be a castrated male, or a non-castrated male but unable to penetrate, or androgenized females. The Bocquier method is based on an electronic tag placed on the female and a device attached to the male by a belt, which has a detector of mounting attempts (which can be based on a pressure sensor on the stomach or a verticality sensor or a temperature sensor or a volumetric sensor) and an electronic tag reader placed in the female. Although having some points of contact with the present invention, both patents are fundamentally different regarding the problem they aim to solve. The present invention enhances the reproductive process based on the natural service (where necessarily the male has to ejaculate), while Bocquier et al. relates to the estrus detection (where there is no ejaculation). Moreover, there are several aspects that are not sufficiently addressed by Bocquier. In the first place, Bocquier proposes an anti-collision system for tag reading that works only to avoid male reading: it proposes essentially keeping a database with male IDs and excluding them if they were read. However, the tag reader carried by the male will read tags from any animal near the place of the mounting, and not necessarily the mounted female tag. This issue is important, since Bocquier's invention cannot identify, without a reasonable error margin, the mounted female. Secondly, Bocquier proposes a paternity checkup (col. 8 line 24) that cannot be implemented because if the system cannot detect ejaculation, there is no way to know who is the father. In third place, a reading of a tag (eventually located in the digestive tract of the female) involves radiating electromagnetic signals of great power that force the usage of large and heavy apparatus (since they require large batteries) and, therefore, harnesses or belts difficult to install, difficult to maintain and uncomfortable for the animal. Finally, Bocquier describes a process for the selection and classification of males that allows to conclude that his system would not work correctly with any male. This is a point that produces significant practical complications, since having to perform this process with all males would take too much time and would not be applicable to extensive livestock farming.
By using the same principle of detecting the homosexual behavior exhibited by cows prior and during estrus, systems and electronic devices, which are placed on the back of the cow and, by means of a switch, detect the mounting and report this information, have been developed, see, for example, Starzl et al. (U.S. Pat. No. 5,542,431, Heat detection for animals including Cows, 1996) or Claycomb et al. (U.S. Pat. No. 7,083,575, Electronic estrus detection device, 2006).
The other large subset of inventions found in the state of the art are based on detecting changes in the behavior of females. For example, when the cow is about to come into heat, their movement patterns change (particularly, they walk more) and they feed more. Therefore, by electronic devices installed on the legs or mouth, systems for detecting these changes with the purpose of determining if the cow is in heat have been proposed, see, for example Rodrian (U.S. Pat. No. 4,247,758, Animal Identification and estrus detections system, 1981) or Voronin et al. (U.S. Pat. No. 7,878,149, Method and device for detecting estrus, 2011).
All solutions mentioned so far have the cow as a center, i.e., they are characterized by placing an active (requiring its own power source) and complex (intelligent, with sensors and means of communication, with a large size, complicated to install) device in the cow, thereby not being applicable in extensive livestock farming (where the ratio between the number of cows and the number of bulls is very high, and the production process needs to be developed with no or little human intervention).
Lowe (U.S. Pat. No. 8,066,179, Livestock Breeding and Management System, 2011) presents a method and system for managing livestock breeding that does not have the cow as the center. The system/method consists of each female having a RFID tag and each male carrying a device (referred to as “monitor” by Lowe) capable of detecting mounting (based on the position of the body of the male) and reading the female RFID tag. This allows to generate the following information: ID of the mounted female, ID of the mounting male, date and time of the mounting. This activity information is entered into a management system where information is generated for the management of the reproductive process. According to Lowe, the management information could be: date of conception, indication of whether the female is pregnant or not, estimated date of birth, conception success rate for male, fertility rate for female, ease impregnation rate of female and offspring family information.
Even though Lowe has several points of contact with the present invention, it has an essential difference in the way the efficacy of a mounting is determined, i.e., if there was ejaculation. Lowe determines ejaculation based on the time the mounting lasts (col. 6 line 50; col 7 line 35; col 9 line 56), whereas our invention has a specific system for detecting ejaculation. At this point, it is important to note that ejaculation by the male does not depend on the duration of the mounting. Short duration mountings can involve ejaculation, while long duration mountings may not involve ejaculation. Tag reading as used by Lowe (col. 6 line 55; col 6 line 63) has a significant error margin, adding more uncertainty to the determination of the efficacy of the mounting, since it could read the tag of any female within the reader's range of action and which is not being mounted. There are other aspects that are not sufficiently addressed by Lowe. In the first place, the tag reader carried by the male will read tags from any animal (including the same tag of the male) near the place of the mounting, and not necessarily the mounted cow tag. This issue is important, since Lowe's invention cannot identify, without a reasonable error margin, the mounted female. Secondly, the attachment is not solved correctly. The use of a collar, muzzle or harness (col. 6 line 10) is proposed. This type of solution is difficult to install, difficult to maintain and uncomfortable for the animal. In third place, the magnetic field configuration/modification of parameters of the RFID tag reader for attempting to enhance the detection of the mounting, made in a generic manner (col. 7 line 3) or manually for each monitor (col. 7 line 13) is impractical and its results are unreliable.
As will be shown in the following section, our invention discloses a system seeking to solve the same problem as Lowe, and it succeeds in adequately solving, with inventive step: the identification of the mounted female and determining whether the mounting was effective or not. The shortcomings shown by Bocquier and Lowe regarding the above mentioned points, question whether these inventions can truly solve the problems they claim to solve. For example, Lowe's system, by not being able to adequately identify the mounted female and/or determining whether the mounting was effective or not, would not provide the information he says his system will provide (date of conception, indication whether the female is pregnant or not, estimated date of birth, conception success rate for male, fertility rate for female, ease impregnation rate of female and offspring family information).
The present invention (hereinafter “System”) aims to monitor the cattle breeding season, under extensive livestock farming conditions, through the bull activity. The System allows knowing whether the said bull has performed mounting activities, and which cows it has mounted, date and time the said mountings happened and their effectiveness (i.e., whether there was ejaculation or not). Since the System is based on placing electronic devices on each animal of the herd, in order to be applicable in extensive livestock farming, the device placed on the cow must be simple, cheap, easy to install, comfortable for the animal and cannot require maintenance of any kind (not even changing batteries). On the other hand, the device placed on the bull has more freedom (since there are 30 times less bulls than cows). Therefore, it can be more complex, be subject to sporadic maintenance routines, and it does not need to be so cheap, provided that the average cost per animal is within acceptable limits.
The System provides the veterinarian and the rancher, in a centralized, systematic and friendly manner, the necessary information for controlling the activity of all bulls and cows during the breeding season, accounting for the herd evolution. By way of example, if the System informs that a cow was never mounted after a certain period of time (that can be set) it is to be expected that there is a problem in its ovulation process, which needs to be studied and treated. If the cow is still breastfeeding, this can surely be solved by temporarily or definitively suspending breastfeeding. In other cases, this can be corrected by changing her diet. Should the problem be more serious, it can even be determined that the cow leave the herd and go to the slaughterhouse. On the contrary, if the cow was mounted several times and then stopped being mounted, it could be an indication of pregnancy. Another example is when the System informs about a bull that has not mounted any cow after a certain period of time (that can be set). This situation can be indicative of the bull having a physiological problem (for example, an injured leg) or that another bull assumed a dominant behavior in the herd and does not allow the first bull to mount cows. In this sense, the System allows an accurate determination of the relationships within the herd, for example, it allows the easy detection of a bull always mounting the same cow (phenomenon known as “dominant cow”). In these instances, the problem is solved by removing the dominant bull and/or cow from the herd.
The System provides real-time information allowing taking preventive and corrective actions on the herd, both on cows and bulls. The rancher and/or the veterinarian have information that allows them to make better decisions in time, which translates to an increase of the breeding season productivity.
As can be appreciated in
Microcontroller 8 is in charge of generating the information of each mounting that will be transmitted. In the first place, it has the algorithms that allow to recognize, from the signal acquired by Sensor 10, mounting and ejaculation patterns. Secondly, through the Reader 11 and link 100, it obtains the identification number of the mounted cow 2. In third place, it obtains the date and hour of the mounting through the RTC 9.
Through communication interfaces 12 and 13, and the corresponding links 101 and 102, parameters of Device 3 can be read, written and configured, and information regarding the state of the herd is reported to CS 6. Collected information can be reported from Device 3 to CS 6 directly through a long-range wireless communication technology (link 101) such as, for example: mobile phone, WiFi, WiMax, Satellite link, etc. At the same time, it can be performed using a public data network (such as, for example, Internet) or though a private data network (for example, using RF links and repeater radios), both options are depicted by Network 105. On the other hand, Device 3 can report the collected information indirectly via Hand-Held 5. Communication between Device 3 and Hand-Held 5 can be made through a short-range wireless communication technology, such as NFC, Bluetooth, WiFi, etc.; or using a wired communication technology, such as USB, I2C, SPI, Ethernet, etc.
Data from Sensor 10 are sampled at a rate that can be configured. Mounting is detected when this information indicates that the position of the animal has sufficiently changed with respect to predefined and configurable thresholds.
In cases where there is a need of high savings of battery and/or data traffic, the Device 3 will report to CS 6 for each mounting: date, hour, bull identification number, cow identification number, and an ejaculation presence indicator. Eventually, it could also inform about characteristic data of the acceleration curves: peak-to-peak amplitude, width, maximum, minimum, among others. In the cases where battery duration or the data traffic are not limiting, the device could report: date, hour, bull identification number, cow identification number, and all data stream, in order to perform the analysis in a centralized manner in CS 6. Communication between Reader 11 and Tag 4 can be made in two different manners. On the one hand, Tag 4 can transmit the identification number on demand, each time it is requested by the Reader 11. On the other hand, it can transmit the identification number each time the cow is mounted, with no need for the Reader 11 to request it. In this latter case, transmission can be made a predetermined number of times or during a predetermined period of time.
Since animals within the herd can be located relatively close, it is possible that, during a mounting, another cow (and, therefore, its Tag 4) is close to the cow-bull couple that performed the mounting. In order to avoid incorrect or multiple readings by Reader 11, the present invention is characterized by all cow Tags 4 being disabled for reading by default, being enabled solely by the action of the bull during mounting. For example, in
Tag 4 comprises a microcontroller, a data reception and transmission system having an antenna, a power supply system (which, for example, can be based on the same antenna, thus obtaining energy from the electromagnetic field from the Reader, based on a battery and/or harvest energy from the environment). These elements configure what is normally known as radio-frequency identification tag (hereinafter RFIDTag, identified with number 24 in
Including InhibSys system 25 is crucial in the present invention since this is what allows the identification of the cow that was mounted, with a negligible error margin. Implementation of the said system can be mechanical and/or electronic.
Another way of implementation of disabling and enabling Tag 4 reading can be made through the modification of the distance where RFIDTag 24 can be read. In this scheme, disabling is achieved by forcing that the reading can be made if the Reader is less than a few centimeters away, and enabling implies that the reading can be made a few meters away. Even though, in this case, RFIDTag 24 is not disabled by default for reading from a literal point of view (it is always possible to read it from a short distance), for practical purposes it will be disabled, since Device 3 is usually located at a considerable greater distance than the maximum allowed for reading. Then, as of the start of the mounting and for a certain period of time, the maximum distance from which RFIDTag 24 can be read shall be several meters, therefore the corresponding Device 3 will be able to perform the reading. This could be electrically implemented by modifying, for example, some parameter of the RFIDTag 24 antenna. It could also be mechanically implemented, for example: disabling could be obtained by placing a metallic plate in front of RFIDTag 24 in such a manner that the electromagnetic waves are strongly absorbed by it; and the enabling would consist of removing this plate with the purpose of allowing a RFIDTag 24 reading from a significantly greater distance.
Tag 4 is placed (even though not exclusively) in the tail of cow 2 (see
Should long-range communication fail to work (for example, for lack of suitable mobile phone coverage), the System proposes to use a Hand-Held that can read information stored on Device 3 through link 102 (which can be wired or wireless) and functions as a hub of the said information for all bulls in the ranch. Accordingly, Hand-Held 5 sends the collected information to the CS 6 via Network 105 through links 103 and 104. By Hand-Held 5 and link 102, it is possible to write and configure Device 3.
Hand-Held 5 can be a mobile phone, a tablet, or an electronic device based on a microcontroller 17 having an interface 18 to communicate with Device 3 via link 102, a user interface 19 that can include, for example, a keyboard and a display, and a plurality of interfaces to communicate with CS 6 (for example, directly via a mobile phone modem, or indirectly via a USB cable plugged to a PC connected to Network 105). all these options are summarized in block 20. As it is a mobile device, it shall have a battery 22. Additionally, it may have an additional memory 23. Finally, Hand-Held 5 has suitable means for reading, writing and configuring Tags 4 via interface 21 using link 107.
CS 6 comprises a set of computers, an energy system, communication elements (routers, firewall, etc.) and human resources for managing and control. CS 6 has a server application capable of managing and processing information received by Device 3 and Hand-Held 5. The collected information is stored on a database. An interface for users to have access to information, via a web browser or an application, is implemented through a web server. This interface has a user access privileges management system in order to select information each user can visualize (for example, ranchers have access only to information of their ranch, but veterinarians can have access to information of all ranches they work for). Moreover, via commands sent by CS 6, it is possible to configure Device 3.
System deployment in a ranch involves installing a Tag 4 in each cow, and a Device 3 in each bull. Moreover, each device must be configured based on operation parameters (animal identification, veterinarian identification, ranch identification, starting date and time, etc.) These parameters are programmed with Hand-Held 5.
Unlike other inventions in the state of the art, our invention is capable of providing information necessary for monitoring the breeding season; i.e., if the bull has performed mountings, and which cows have been mounted, date and time and the effectiveness (i.e., if there was or not ejaculation). This is achieved thanks to the possibility of identifying, with no error margin (or with a negligible error margin), the mounted cow, through a system that avoids incorrect or multiple tag readings; as well as through determining the presence of ejaculation based on a detection algorithm of the “ejaculatory thrust”.
In addition to monitoring the breeding season, the System can be used for other applications. On the basis of having no better estrus detector than the bull itself, the System can be applied for estrus detection in the case of artificial insemination. Indeed, using the above mentioned System in androgenized and neutered bulls, which are capable of mounting but not impregnating, information regarding which cows are in heat is directly obtained. This cannot be guaranteed by other systems that cannot identify the cow without error margin.
Another application of the present invention would be using the System to determine the animals “pedigree”. Nowadays, in general, parents are not known and/or registered. Having this information would serve for enhancing a traceability system, easily allowing the addition of the father and mother identification to the available information. As a result, genetic enhancement, avoidance of genetic diseases, etc., could be explored. This function cannot be provided by other systems that cannot determine the presence of ejaculation.
Another example would be using the System as substitution for the “Blackey test”. Blackey test is a test that allows the assessment of the number of cows that a bull is capable of mounting in a determined period of time (referred as “service capacity”). The above mentioned test is performed in such an invasive manner that does not respect animal welfare: the cow is restrained, and the number of times the bull can mount it are counted. By the present System, the actual service capacity of a bull can be determined in a natural way, respecting animals and their welfare. This cannot be provided by other systems that cannot determine the presence of ejaculation.
Although in the foregoing description reference is made to cows and bulls, all the points claimed in the present patent can apply to any animal species whose reproductive process involves characteristic movements that can be related to a mounting and an ejaculation.
Number | Date | Country | Kind |
---|---|---|---|
35914 | Dec 2014 | UY | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2015/059224 | 11/30/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/103079 | 6/30/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3844273 | Polson | Oct 1974 | A |
4247758 | Rodrian | Jan 1981 | A |
4503808 | McAlister | Mar 1985 | A |
5542431 | Starzl et al. | Aug 1996 | A |
5566679 | Herriott | Oct 1996 | A |
7083575 | Claycomb et al. | Aug 2006 | B1 |
7878149 | Voronin et al. | Feb 2011 | B2 |
7992521 | Bocquier | Aug 2011 | B2 |
8066179 | Lowe | Nov 2011 | B2 |
9078416 | Folkers | Jul 2015 | B2 |
9538730 | Torres | Jan 2017 | B1 |
10080348 | Sharpe | Sep 2018 | B2 |
20050012623 | Jackson | Jan 2005 | A1 |
20080128486 | Lowe | Jun 2008 | A1 |
20100111359 | Bal et al. | May 2010 | A1 |
Number | Date | Country |
---|---|---|
2179501 | Jul 1995 | CA |
200215792 | Feb 2002 | WO |
03045273 | Jun 2003 | WO |
03061373 | Jul 2003 | WO |
Entry |
---|
Examination Report dated Oct. 14, 2019 issued in corresponding Uruguay Patent Application No. 035914. |
Number | Date | Country | |
---|---|---|---|
20170367305 A1 | Dec 2017 | US |