System and driving method for light emitting device display

Information

  • Patent Grant
  • 10555398
  • Patent Number
    10,555,398
  • Date Filed
    Thursday, November 30, 2017
    7 years ago
  • Date Issued
    Tuesday, February 4, 2020
    5 years ago
Abstract
A light emitting device display, its pixel circuit and its driving technique is provided. The pixel includes a light emitting device and a plurality of transistors. A bias current and programming voltage data are provided to the pixel circuit in accordance with a driving scheme so that the current through the driving transistor to the light emitting device is adjusted.
Description
FIELD OF INVENTION

The present invention relates to a light emitting device displays, and more specifically to a driving technique for the light emitting device displays.


BACKGROUND OF THE INVENTION

Recently active-matrix organic light-emitting diode (AMOLED) displays with amorphous silicon (a-Si), poly-silicon, organic, or other driving backplane technology have become more attractive due to advantages over active matrix liquid crystal displays. An AMOLED display using a-Si backplanes, for example, has the advantages which include low temperature fabrication that broadens the use of different substrates and makes flexible displays feasible, and its low cost fabrication is well-established and yields high resolution displays with a wide viewing angle.


An AMOLED display includes an array of rows and columns of pixels, each having an organic light-emitting diode (OLED) and backplane electronics arranged in the array of rows and columns. Since the OLED is a current driven device, the pixel circuit of the AMOLED should be capable of providing an accurate and constant drive current.


One method that has been employed to drive the AMOLED display is programming the AMOLED pixel directly with current. However, the small current required by the OLED, coupled with a large parasitic capacitance, undesirably increases the settling time of the programming of the current-programmed AMOLED display. Furthermore, it is difficult to design an external driver to accurately supply the required current. For example, in CMOS technology, the transistors must work in sub-threshold regime to provide the small current required by the OLEDs, which is not ideal. Therefore, in order to use current-programmed AMOLED pixel circuits, suitable driving schemes are desirable.


Current scaling is one method that can be used to manage issues associated with the small current required by the OLEDs. In a current mirror pixel circuit, the current passing through the OLED can be scaled by having a smaller drive transistor as compared to the mirror transistor. However, this method is not applicable for other current-programmed pixel circuits. Also, by resizing the two mirror transistors the effect of mismatch increases.


SUMMARY OF THE INVENTION

It is an object of the invention to provide a method and system that obviates or mitigates at least one of the disadvantages of existing systems.


In accordance with an aspect of the present invention there is provided a pixel circuit, which includes a light emitting device, a driving transistor for providing a pixel current to the light emitting device, a storage capacitor provided between a data line for providing programming voltage data and the gate terminal of the driving transistor, a first switch transistor provided between the gate terminal of the driving transistor and the light emitting device, and a second switch transistor provided between the light emitting device and a bias line for providing a bias current to the first terminal of the driving transistor during a programming cycle.


In accordance with a further aspect of the present invention there is provided a pixel circuit, which includes a light emitting device, a storage capacitor, a driving transistor for providing a pixel current to the light emitting device, a plurality of first switch transistors operated by a first select line, one of the first switch transistors being provided between the storage capacitor and a data line for providing programming voltage data, a plurality of second switch transistors operated by a second select line, one of the second switch transistor being provided between the driving transistor and a bias line for providing a bias current to the first terminal of the driving transistor during a programming cycle; and an emission control circuit for setting the pixel circuit into an emission mode.


In accordance with a further aspect of the present invention there is provided a display system, which includes a pixel array having a plurality of pixel circuits, a first driver for selecting the pixel circuit, a second driver for providing the programming voltage data, and a current source for operating on the bias line.


In accordance with a further aspect of the present invention there is provided a a method of driving a pixel circuit, the pixel circuit having a driving transistor for providing a pixel current to a light emitting device, a storage capacitor coupled to a data line, and a switch transistor coupled to the gate terminal of the driving transistor and the storage capacitor. The method includes: at a programming cycle, selecting the pixel circuit, providing a bias current to a connection between the driving transistor and the light emitting device, and providing programming voltage data from the data line to the pixel circuit.


In accordance with a further aspect of the present invention there is provided a a method of driving a pixel circuit, the pixel circuit having a driving transistor for providing a pixel current to a light emitting device, a switch transistor coupled to a data line, and a storage capacitor coupled to the switch transistor and the driving transistor. The method includes: at a programming cycle, selecting the pixel circuit, providing a bias current to a first terminal of the driving transistor, and providing programming voltage data from the data line to a first terminal of the storage capacitor, the second terminal of the storage capacitor being coupled to the first terminal of the driving transistor, a second terminal of the driving transistor being coupled to the light emitting device; and at a driving cycle, setting an emission mode in the pixel circuit.


This summary of the invention does not necessarily describe all features of the invention.


Other aspects and features of the present invention will be readily apparent to those skilled in the art from a review of the following detailed description of preferred embodiments in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features of the invention will become more apparent from the following description in which reference is made to the appended drawings wherein:



FIG. 1 is a diagram showing a pixel circuit in accordance with an embodiment of the present invention;



FIG. 2 is a timing diagram showing exemplary waveforms applied to the pixel circuit of FIG. 1;



FIG. 3 is a timing diagram showing further exemplary waveforms applied to the pixel circuit of FIG. 1;



FIG. 4 is a graph showing a current stability of the pixel circuit of FIG. 1;



FIG. 5 is a diagram showing a pixel circuit which has p-type transistors and corresponds to the pixel circuit of FIG. 1;



FIG. 6 is a timing diagram showing exemplary waveforms applied to the pixel circuit of FIG. 5;



FIG. 7 is a timing diagram showing further exemplary waveforms applied to the pixel circuit of FIG. 5;



FIG. 8 is a diagram showing a pixel circuit in accordance with a further embodiment of the present invention;



FIG. 9 is a timing diagram showing exemplary waveforms applied to the pixel circuit of FIG. 8;



FIG. 10 is a diagram showing a pixel circuit which has p-type transistors and corresponds to the pixel circuit of FIG. 8;



FIG. 11 is a timing diagram showing exemplary waveforms applied to the pixel circuit of FIG. 10;



FIG. 12 is a diagram showing a pixel circuit in accordance with an embodiment of the present invention;



FIG. 13 is a timing diagram showing exemplary waveforms applied to the display of FIG. 12;



FIG. 14 is a graph showing the settling time of a CBVP pixel circuit for different bias currents;



FIG. 15 is a graph showing I-V characteristic of the CBVP pixel circuit as well as the total error induced in the pixel current;



FIG. 16 is a diagram showing a pixel circuit which has p-type transistors and corresponds to the pixel circuit of FIG. 12;



FIG. 17 is a timing diagram showing exemplary waveforms applied to the display of FIG. 16;



FIG. 18 is a diagram showing a VBCP pixel circuit in accordance with a further embodiment of the present invention;



FIG. 19 is a timing diagram showing exemplary waveforms applied to the pixel circuit of FIG. 18;



FIG. 20 is a diagram showing a VBCP pixel circuit which has p-type transistors and corresponds to the pixel circuit of FIG. 18;



FIG. 21 is a timing diagram showing exemplary waveforms applied to the pixel circuit of FIG. 20;



FIG. 22 is a diagram showing a driving mechanism for a display array having CBVP pixel circuits;



FIG. 23 is a diagram showing a driving mechanism for a display array having VBCP pixel circuits;



FIG. 24 is a diagram showing a pixel circuit in accordance with a further embodiment of the present invention;



FIG. 25 is a timing diagram showing exemplary waveforms applied to the pixel circuit of FIG. 24;



FIG. 26 is a diagram showing a pixel circuit in accordance with a further embodiment of the present invention;



FIG. 27 is a timing diagram showing exemplary waveforms applied to the pixel circuit of FIG. 26;



FIG. 28 is a diagram showing a further example of a display system having CBVP pixel circuits;



FIG. 29 is a diagram showing a further example of a display system having CBVP pixel circuits;



FIG. 30 is a photograph showing effect of spatial mismatches on a display using a simple 2-TFT pixel circuit;



FIG. 31 is a photograph showing effect of spatial mismatches on a display using the voltage-programmed circuits; and



FIG. 32 is a photograph showing effect of spatial mismatches on a display using CBVP pixel circuit.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS OF THE INVENTION

Embodiments of the present invention are described using a pixel having an organic light emitting diode (OLED) and a driving thin film transistor (TFT). However, the pixel may include any light emitting device other than OLED, and the pixel may include any driving transistor other than TFT. It is noted that in the description, “pixel circuit” and “pixel” may be used interchangeably.


A driving technique for pixels, including a current-biased voltage-programmed (CBVP) driving scheme, is now described in detail. The CBVP driving scheme uses voltage to provide for different gray scales (voltage programming), and uses a bias to accelerate the programming and compensate for the time dependent parameters of a pixel, such as a threshold voltage shift and OLED voltage shift.



FIG. 1 illustrates a pixel circuit 200 in accordance with an embodiment of the present invention. The pixel circuit 200 employs the CBVP driving scheme as described below. The pixel circuit 200 of FIG. 1 includes an OLED 10, a storage capacitor 12, a driving transistor 14, and switch transistors 16 and 18. Each transistor has a gate terminal, a first terminal and a second terminal. In the description, “first terminal” (“second terminal”) may be, but not limited to, a drain terminal or a source terminal (source terminal or drain terminal).


The transistors 14, 16 and 18 are n-type TFT transistors. The driving technique applied to the pixel circuit 200 is also applicable to a complementary pixel circuit having p-type transistors as shown in FIG. 5.


The transistors 14, 16 and 18 may be fabricated using amorphous silicon, nano/micro crystalline silicon, poly silicon, organic semiconductors technologies (e.g. organic TETs), NMOS technology, or CMOS technology (e.g. MOSFET). A plurality of pixel circuits 200 may form an AMOLED display array.


Two select lines SEL1 and SEL2, a signal line VDATA, a bias line IBIAS, a voltage supply line VDD, and a common ground are provided to the pixel circuit 200. In FIG. 1, the common ground is for the OLED top electrode. The common ground is not a part of the pixel circuit, and is formed at the final stage when the OLED 10 is formed.


The first terminal of the driving transistor 14 is connected to the voltage supply line VDD. The second terminal of the driving transistor 14 is connected to the anode electrode of the OLED 10. The gate terminal of the driving transistor 14 is connected to the signal line VDATA through the switch transistor 16. The storage capacitor 12 is connected between the second and gate terminals of the driving transistor 14.


The gate terminal of the switch transistor 16 is connected to the first select line SEL1. The first terminal of the switch transistor 16 is connected to the signal line VDATA. The second terminal of the switch transistor 16 is connected to the gate terminal of the driving transistor 14.


The gate terminal of the switch transistor 18 is connected to the second select line SEL2. The first terminal of transistor 18 is connected to the anode electrode of the OLED 10 and the storage capacitor 12. The second terminal of the switch transistor 18 is connected to the bias line IBIAS. The cathode electrode of the OLED 10 is connected to the common ground.


The transistors 14 and 16 and the storage capacitor 12 are connected to node A11. The OLED 10, the storage capacitor 12 and the transistors 14 and 18 are connected to B11.


The operation of the pixel circuit 200 includes a programming phase having a plurality of programming cycles, and a driving phase having one driving cycle. During the programming phase, node B11 is charged to negative of the threshold voltage of the driving transistor 14, and node A11 is charged to a programming voltage VP.


As a result, the gate-source voltage of the driving transistor 14 is:

VGS=VP−(−VT)=VP+VT  (1)

where VGS represents the gate-source voltage of the driving transistor 14, and VT represents the threshold voltage of the driving transistor 14. This voltage remains on the capacitor 12 in the driving phase, resulting in the flow of the desired current through the OLED 10 in the driving phase.


The programming and driving phases of the pixel circuit 200 are described in detail. FIG. 2 illustrates one exemplary operation process applied to the pixel circuit 200 of FIG. 1. In FIG. 2, VnodeB represents the voltage of node B11, and VnodeA represents the voltage of node A11. As shown in FIG. 2, the programming phase has two operation cycles X11, X12, and the driving phase has one operation cycle X13.


The first operation cycle X11: Both select lines SEL1 and SEL2 are high. A bias current IB flows through the bias line IBIAS, and VDATA goes to a bias voltage VB.


As a result, the voltage of node B11 is:









VnodeB
=

VB
-


IB
β


-
VT





(
2
)








where VnodeB represents the voltage of node B11, VT represents the threshold voltage of the driving transistor 14, and β represents the coefficient in current-voltage (I-V) characteristics of the TFT given by IDS=β (VGS−VT)2. IDS represents the drain-source current of the driving transistor 14.


The second operation cycle X12: While SEL2 is low, and SEL1 is high, VDATA goes to a programming voltage VP. Because the capacitance 11 of the OLED 20 is large, the voltage of node B11 generated in the previous cycle stays intact.


Therefore, the gate-source voltage of the driving transistor 14 can be found as:









VGS
=

VP
+

Δ





VB

+
VT





(
3
)







Δ





VB

=



IB
β


-
VB





(
4
)







ΔVB is zero when VB is chosen properly based on (4). The gate-source voltage of the driving transistor 14, i.e., VP+VT, is stored in the storage capacitor 12.


The third operation cycle X13: IBIAS goes to low. SEL1 goes to zero. The voltage stored in the storage capacitor 12 is applied to the gate terminal of the driving transistor 14. The driving transistor 14 is on. The gate-source voltage of the driving transistor 14 develops over the voltage stored in the storage capacitor 12. Thus, the current through the OLED 10 becomes independent of the shifts of the threshold voltage of the driving transistor 14 and OLED characteristics.



FIG. 3 illustrates a further exemplary operation process applied to the pixel circuit 200 of FIG. 1. In FIG. 3, VnodeB represents the voltage of node B11, and VnodeA represents the voltage of node A11.


The programming phase has two operation cycles X21, X22, and the driving phase has one operation cycle X23. The first operation cycle X21 is same as the first operation cycle X11 of FIG. 2. The third operation cycle X33 is same as the third operation cycle X13 of FIG. 2. In FIG. 3, the select lines SEL1 and SEL2 have the same timing. Thus, SEL1 and SEL2 may be connected to a common select line.


The second operating cycle X22: SEL1 and SEL2 are high. The switch transistor 18 is on. The bias current IB flowing through IBIAS is zero.


The gate-source voltage of the driving transistor 14 can be VGS=VP+VT as described above. The gate-source voltage of the driving transistor 14, i.e., VP+VT, is stored in the storage capacitor 12.



FIG. 4 illustrates a simulation result for the pixel circuit 200 of FIG. 1 and the waveforms of FIG. 2. The result shows that the change in the OLED current due to a 2-volt VT-shift in the driving transistor (e.g. 14 of FIG. 1) is almost zero percent for most of the programming voltage. Simulation parameters, such as threshold voltage, show that the shift has a high percentage at low programming voltage.



FIG. 5 illustrates a pixel circuit 202 having p-type transistors. The pixel circuit 202 corresponds to the pixel circuit 200 of FIG. 1. The pixel circuit 202 employs the CBVP driving scheme as shown in FIGS. 6-7. The pixel circuit 202 includes an OLED 20, a storage capacitor 22, a driving transistor 24, and switch transistors 26 and 28. The transistors 24, 26 and 28 are p-type transistors. Each transistor has a gate terminal, a first terminal and a second terminal.


The transistors 24, 26 and 28 may be fabricated using amorphous silicon, nano/micro crystalline silicon, poly silicon, organic semiconductors technologies (e.g. organic TFTs), PMOS technology, or CMOS technology (e.g. MOSFET). A plurality of pixel circuits 202 may form an AMOLED display array.


Two select lines SEL1 and SEL2, a signal line VDATA, a bias line IBIAS, a voltage supply line VDD, and a common ground are provided to the pixel circuit 202.


The transistors 24 and 26 and the storage capacitor 22 are connected to node A12. The cathode electrode of the OLED 20, the storage capacitor 22 and the transistors 24 and 28 are connected to B12. Since the OLED cathode is connected to the other elements of the pixel circuit 202, this ensures integration with any OLED fabrication.



FIG. 6 illustrates one exemplary operation process applied to the pixel circuit 202 of FIG. 5. FIG. 6 corresponds to FIG. 2. FIG. 7 illustrates a further exemplary operation process applied to the pixel circuit 202 of FIG. 5. FIG. 7 corresponds to FIG. 3. The CBVP driving schemes of FIGS. 6-7 use IBIAS and VDATA similar to those of FIGS. 2-3.



FIG. 8 illustrates a pixel circuit 204 in accordance with an embodiment of the present invention. The pixel circuit 204 employs the CBVP driving scheme as described below. The pixel circuit 204 of FIG. 8 includes an OLED 30, storage capacitors 32 and 33, a driving transistor 34, and switch transistors 36, 38 and 40. Each of the transistors 34, 35 and 36 includes a gate terminal, a first terminal and a second terminal. This pixel circuit 204 operates in the same way as that of the pixel circuit 200.


The transistors 34, 36, 38 and 40 are n-type TFT transistors. The driving technique applied to the pixel circuit 204 is also applicable to a complementary pixel circuit having p-type transistors, as shown in FIG. 10.


The transistors 34, 36, 38 and 40 may be fabricated using amorphous silicon, nano/micro crystalline silicon, poly silicon, organic semiconductors technologies (e.g. organic TFTs), NMOS technology, or CMOS technology (e.g. MOSFET). A plurality of pixel circuits 204 may form an AMOLED display array.


A select line SEL, a signal line VDATA, a bias line IBIAS, a voltage line VDD, and a common ground are provided to the pixel circuit 204.


The first terminal of the driving transistor 34 is connected to the cathode electrode of the OLED 30. The second terminal of the driving transistor 34 is connected to the ground. The gate terminal of the driving transistor 34 is connected to its first terminal through the switch transistor 36. The storage capacitors 32 and 33 are in series and connected between the gate of the driving transistor 34 and the ground.


The gate terminal of the switch transistor 36 is connected to the select line SEL. The first terminal of the switch transistor 36 is connected to the first terminal of the driving transistor 34. The second terminal of the switch transistor 36 is connected to the gate terminal of the driving transistor 34.


The gate terminal of the switch transistor 38 is connected to the select line SEL. The first terminal of the switch transistor 38 is connected to the signal line VDATA. The second terminal of the switch transistor 38 is connected to the connected terminal of the storage capacitors 32 and 33 (i.e. node C21).


The gate terminal of the switch transistor 40 is connected to the select line SEL. The first terminal of the switch transistor 40 is connected to the bias line IBIAS. The second terminal of the switch transistor 40 is connected to the cathode terminal of the OLED 30. The anode electrode of the OLED 30 is connected to the VDD.


The OLED 30, the transistors 34, 36 and 40 are connected at node A21. The storage capacitor 32 and the transistors 34 and 36 are connected at node B21.


The operation of the pixel circuit 204 includes a programming phase having a plurality of programming cycles, and a driving phase having one driving cycle. During the programming phase, the first storage capacitor 32 is charged to a programming voltage VP plus the threshold voltage of the driving transistor 34, and the second storage capacitor 33 is charged to zero


As a result, the gate-source voltage of the driving transistor 34 is:

VGS=VP+VT  (5)

where VGS represents the gate-source voltage of the driving transistor 34, and VT represents the threshold voltage of the driving transistor 34.


The programming and driving phases of the pixel circuit 204 are described in detail. FIG. 9 illustrates one exemplary operation process applied to the pixel circuit 204 of FIG. 8. As shown in FIG. 9, the programming phase has two operation cycles X31, X32, and the driving phase has one operation cycle X33.


The first operation cycle X31: The select line SEL is high. A bias current IB flows through the bias line IBIAS, and VDATA goes to a VB−VP where VP is and programming voltage and VB is given by:









VB
=


IB
β






(
6
)







As a result, the voltage stored in the first capacitor 32 is:

VC1=VP+VT  (7)

where VC1 represents the voltage stored in the first storage capacitor 32, VT represents the threshold voltage of the driving transistor 34, β represents the coefficient in current-voltage (I-V) characteristics of the TFT given by IDS=β(VGS−VT)2. IDS represents the drain-source current of the driving transistor 34.


The second operation cycle: While SEL is high, VDATA is zero, and IBIAS goes to zero. Because the capacitance 31 of the OLED 30 and the parasitic capacitance of the bias line IBIAS are large, the voltage of node B21 and the voltage of node A21 generated in the previous cycle stay unchanged.


Therefore, the gate-source voltage of the driving transistor 34 can be found as:

VGS=VP+VT  (8)

where VGS represents the gate-source voltage of the driving transistor 34.


The gate-source voltage of the driving transistor 34 is stored in the storage capacitor 32.


The third operation cycle X33: IBIAS goes to zero. SEL goes to zero. The voltage of node C21 goes to zero. The voltage stored in the storage capacitor 32 is applied to the gate terminal of the driving transistor 34. The gate-source voltage of the driving transistor 34 develops over the voltage stored in the storage capacitor 32. Considering that the current of driving transistor 34 is mainly defined by its gate-source voltage, the current through the OLED 30 becomes independent of the shifts of the threshold voltage of the driving transistor 34 and OLED characteristics.



FIG. 10 illustrates a pixel circuit 206 having p-type transistors. The pixel circuit 206 corresponds to the pixel circuit 204 of FIG. 8. The pixel circuit 206 employs the CBVP driving scheme as shown in FIG. 11. The pixel circuit 206 of FIG. 10 includes an OLED 50, a storage capacitors 52 and 53, a driving transistor 54, and switch transistors 56, 58 and 60. The transistors 54, 56, 58 and 60 are p-type transistors. Each transistor has a gate terminal, a first terminal and a second terminal.


The transistors 54, 56, 58 and 60 may be fabricated using amorphous silicon, nano/micro crystalline silicon, poly silicon, organic semiconductors technologies (e.g. organic TFTs), PMOS technology, or CMOS technology (e.g. MOSFET). A plurality of pixel circuits 206 may form an AMOLED display array.


Two select lines SEL1 and SEL2, a signal line VDATA, a bias line IBIAS, a voltage supply line VDD, and a common ground are provided to the pixel circuit 206. The common ground may be same as that of FIG. 1.


The anode electrode of the OLED 50, the transistors 54, 56 and 60 are connected at node A22. The storage capacitor 52 and the transistors 54 and 56 are connected at node B22. The switch transistor 58, and the storage capacitors 52 and 53 are connected at node C22.



FIG. 11 illustrates one exemplary operation process applied to the pixel circuit 206 of FIG. 10. FIG. 11 corresponds to FIG. 9. As shown in FIG. 11, the CBVP driving scheme of FIG. 11 uses IBIAS and VDATA similar to those of FIG. 9.



FIG. 12 illustrates a display 208 in accordance with an embodiment of the present invention. The display 208 employs the CBVP driving scheme as described below. In FIG. 12, elements associated with two rows and one column are shown as example. The display 208 may include more than two rows and more than one column.


The display 208 includes an OLED 70, storage capacitors 72 and 73, transistors 76, 78, 80, 82 and 84. The transistor 76 is a driving transistor. The transistors 78, 80 and 84 are switch transistors. Each of the transistors 76, 78, 80, 82 and 84 includes a gate terminal, a first terminal and a second terminal.


The transistors 76, 78, 80, 82 and 84 are n-type TFT transistors. The driving technique applied to the pixel circuit 208 is also applicable to a complementary pixel circuit having p-type transistors, as shown in FIG. 16.


The transistors 76, 78, 80, 82 and 84 may be fabricated using amorphous silicon, nano/micro crystalline silicon, poly silicon, organic semiconductors technologies (e.g. organic TFTs), NMOS technology, or CMOS technology (e.g. MOSFET). The display 208 may form an AMOLED display array. The combination of the CBVP driving scheme and the display 208 provides a large-area, high-resolution AMOLED display.


The transistors 76 and 80 and the storage capacitor 72 are connected at node A31. The transistors 82 and 84 and the storage capacitors 72 and 74 are connected at B31.



FIG. 13 illustrates one exemplary operation process applied to the display 208 of FIG. 12. In FIG. 13, “Programming cycle [n]” represents a programming cycle for the row [n] of the display 208.


The programming time is shared between two consecutive rows (n and n+1). During the programming cycle of the nth row, SEL[n] is high, and a bias current IB is flowing through the transistors 78 and 80. The voltage at node A31 is self-adjusted to (IB/β)½+VT, while the voltage at node B31 is zero, where VT represents the threshold voltage of the driving transistor 76, and β represents the coefficient in current-voltage (I-V) characteristics of the TFT given by IDS=β (VGS−VT)2, and IDS represents the drain-source current of the driving transistor 76.


During the programming cycle of the (n+1)th row, VDATA changes to VP−VB. As a result, the voltage at node A31 changes to VP+VT if VB=(IB/β)½. Since a constant current is adopted for all the pixels, the IBIAS line consistently has the appropriate voltage so that there is no necessity to pre-charge the line, resulting in shorter programming time and lower power consumption. More importantly, the voltage of node B31 changes from VP−VB to zero at the beginning of the programming cycle of the nth row. Therefore, the voltage at node A31 changes to (IB/β)½+VT, and it is already adjusted to its final value, leading to a fast settling time.


The settling time of the CBVP pixel circuit is depicted in FIG. 14 for different bias currents. A small current can be used as IB here, resulting in lower power consumption.



FIG. 15 illustrates I-V characteristic of the CBVP pixel circuit as well as the total error induced in the pixel current due to a 2-V shift in the threshold voltage of a driving transistor (e.g. 76 of FIG. 12). The result indicates the total error of less than 2% in the pixel current. It is noted that IB=4.5 μA.



FIG. 16 illustrates a display 210 having p-type transistors. The display 210 corresponds to the display 208 of FIG. 12. The display 210 employs the CBVP driving scheme as shown in FIG. 17. In FIG. 12, elements associated with two rows and one column are shown as example. The display 210 may include more than two rows and more than one column.


The display 210 includes an OLED 90, a storage capacitors 92 and 94, and transistors 96, 98, 100, 102 and 104. The transistor 96 is a driving transistor. The transistors 100 and 104 are switch transistors. The transistors 24, 26 and 28 are p-type transistors. Each transistor has a gate terminal, a first terminal and a second terminal.


The transistors 96, 98, 100, 102 and 104 may be fabricated using amorphous silicon, nano/micro crystalline silicon, poly silicon, organic semiconductors technologies (e.g. organic TFTs), PMOS technology, or CMOS technology (e.g. MOSFET). The display 210 may form an AMOLED display array.


In FIG. 16, the driving transistor 96 is connected between the anode electrode of the OLED 90 and a voltage supply line VDD.



FIG. 17 illustrates one exemplary operation process applied to the display 210 of FIG. 16. FIG. 17 corresponds to FIG. 13. The CBVP driving scheme of FIG. 17 uses IBIAS and VDATA similar to those of FIG. 13.


According to the CBVP driving scheme, the overdrive voltage provided to the driving transistor is generated so as to be independent from its threshold voltage and the OLED voltage.


The shift(s) of the characteristic(s) of a pixel element(s) (e.g. the threshold voltage shift of a driving transistor and the degradation of a light emitting device under prolonged display operation) is compensated for by voltage stored in a storage capacitor and applying it to the gate of the driving transistor. Thus, the pixel circuit can provide a stable current though the light emitting device without any effect of the shifts, which improves the display operating lifetime. Moreover, because of the circuit simplicity, it ensures higher product yield, lower fabrication cost and higher resolution than conventional pixel circuits.


Since the settling time of the pixel circuits described above is much smaller than conventional pixel circuits, it is suitable for large-area display such as high definition TV, but it also does not preclude smaller display areas either.


It is noted that a driver for driving a display array having a CBVP pixel circuit (e.g. 200, 202 or 204) converts the pixel luminance data into voltage.


A driving technique for pixels, including voltage-biased current-programmed (VBCP) driving scheme is now described in detail. In the VBCP driving scheme, a pixel current is scaled down without resizing mirror transistors. The VBCP driving scheme uses current to provide for different gray scales (current programming), and uses a bias to accelerate the programming and compensate for a time dependent parameter of a pixel, such as a threshold voltage shift. One of the terminals of a driving transistor is connected to a virtual ground VGND. By changing the voltage of the virtual ground, the pixel current is changed. A bias current IB is added to a programming current IP at a driver side, and then the bias current is removed from the programming current inside the pixel circuit by changing the voltage of the virtual ground.



FIG. 18 illustrates a pixel circuit 212 in accordance with a further embodiment of the present invention. The pixel circuit 212 employs the VBCP driving scheme as described below. The pixel circuit 212 of FIG. 18 includes an OLED 110, a storage capacitor 111, a switch network 112, and mirror transistors 114 and 116. The mirror transistors 114 and 116 form a current mirror. The transistor 114 is a programming transistor. The transistor 116 is a driving transistor. The switch network 112 includes switch transistors 118 and 120. Each of the transistors 114, 116, 118 and 120 has a gate terminal, a first terminal and a second terminal.


The transistors 114, 116, 118 and 120 are n-type TFT transistors. The driving technique applied to the pixel circuit 212 is also applicable to a complementary pixel circuit having p-type transistors as shown in FIG. 20.


The transistors 114, 116, 118 and 120 may be fabricated using amorphous silicon, nano/micro crystalline silicon, poly silicon, organic semiconductors technologies (e.g. organic TFTs), NMOS technology, or CMOS technology (e.g. MOSFET). A plurality of pixel circuits 212 may form an AMOLED display array.


A select line SEL, a signal line IDATA, a virtual grand line VGND, a voltage supply line VDD, and a common ground are provided to the pixel circuit 150.


The first terminal of the transistor 116 is connected to the cathode electrode of the OLED 110. The second terminal of the transistor 116 is connected to the VGND. The gate terminal of the transistor 114, the gate terminal of the transistor 116, and the storage capacitor 111 are connected to a connection node A41.


The gate terminals of the switch transistors 118 and 120 are connected to the SEL. The first terminal of the switch transistor 120 is connected to the IDATA. The switch transistors 118 and 120 are connected to the first terminal of the transistor 114. The switch transistor 118 is connected to node A41.



FIG. 19 illustrates an exemplary operation for the pixel circuit 212 of FIG. 18. Referring to FIGS. 18 and 19, current scaling technique applied to the pixel circuit 212 is described in detail. The operation of the pixel circuit 212 has a programming cycle X41, and a driving cycle X42.


The programming cycle X41: SEL is high. Thus, the switch transistors 118 and 120 are on. The VGND goes to a bias voltage VB. A current (IB+IP) is provided through the IDATA, where IP represents a programming current, and IB represents a bias current. A current equal to (IB+IP) passes through the switch transistors 118 and 120.


The gate-source voltage of the driving transistor 116 is self-adjusted to:









VGS
=




IP
+
IB

β


+
VT





(
9
)








where VT represents the threshold voltage of the driving transistor 116, and β represents the coefficient in current-voltage (I-V) characteristics of the TFT given by IDS=β(VGS−VT)2. IDS represents the drain-source current of the driving transistor 116.


The voltage stored in the storage capacitor 111 is:









VCS
=




IP
+
IB

β


-
VB
+
VT





(
10
)








where VCS represents the voltage stored in the storage capacitor 111.


Since one terminal of the driving transistor 116 is connected to the VGND, the current flowing through the OLED 110 during the programming time is:

Ipixel=IP+IB+β·(VB)2−2√{square root over (β)}·VB·√{square root over ((IP+IB))}  (11)

where Ipixel represents the pixel current flowing through the OLED 110.


If IB>>IP, the pixel current Ipixel can be written as:

Ipixel=IP+(IB+β·(VB)2−2√{square root over (B)}·VB·√{square root over (IB)})  (12)


VB is chosen properly as follows:









VB
=


IB
β






(
13
)







The pixel current Ipixel becomes equal to the programming current IP. Therefore, it avoids unwanted emission during the programming cycle.


Since resizing is not required, a better matching between two mirror transistors in the current-mirror pixel circuit can be achieved.



FIG. 20 illustrates a pixel circuit 214 having p-type transistors. The pixel circuit 214 corresponds to the pixel circuit 212 of FIG. 18. The pixel circuit 214 employs the VBCP driving scheme as shown FIG. 21. The pixel circuit 214 includes an OLED 130, a storage capacitor 131, a switch network 132, and mirror transistors 134 and 136. The mirror transistors 134 and 136 form a current mirror. The transistor 134 is a programming transistor. The transistor 136 is a driving transistor. The switch network 132 includes switch transistors 138 and 140. The transistors 134, 136, 138 and 140 are p-type TFT transistors. Each of the transistors 134, 136, 138 and 140 has a gate terminal, a first terminal and a second terminal.


The transistors 134, 136, 138 and 140 may be fabricated using amorphous silicon, nano/micro crystalline silicon, poly silicon, organic semiconductors technologies (e.g. organic TFTs), PMOS technology, or CMOS technology (e.g. MOSFET). A plurality of pixel circuits 214 may form an AMOLED display array.


A select line SEL, a signal line IDATA, a virtual grand line VGND, and a voltage supply line VSS are provided to the pixel circuit 214.


The transistor 136 is connected between the VGND and the cathode electrode of the OLED 130. The gate terminal of the transistor 134, the gate terminal of the transistor 136, the storage capacitor 131 and the switch network 132 are connected at node A42.



FIG. 21 illustrates an exemplary operation for the pixel circuit 214 of FIG. 20. FIG. 21 corresponds to FIG. 19. The VBCP driving scheme of FIG. 21 uses IDATA and VGND similar to those of FIG. 19.


The VBCP technique applied to the pixel circuit 212 and 214 is applicable to current programmed pixel circuits other than current mirror type pixel circuit.


For example, the VBCP technique is suitable for the use in AMOLED displays. The VBCP technique enhances the settling time of the current-programmed pixel circuits display, e.g. AMOLED displays.


It is noted that a driver for driving a display array having a VBCP pixel circuit (e.g. 212, 214) converts the pixel luminance data into current.



FIG. 22 illustrates a driving mechanism for a display array 150 having a plurality of CBVP pixel circuits 151 (CBVP1-1, CBVP1-2, CBVP2-1, CBVP2-2). The CBVP pixel circuit 151 is a pixel circuit to which the CBVP driving scheme is applicable. For example, the CBVP pixel circuit 151 may be the pixel circuit shown in FIG. 1, 5, 8, 10, 12 or 16. In FIG. 22, four CBVP pixel circuits 151 are shown as example. The display array 150 may have more than four or less than four CBVP pixel circuits 151.


The display array 150 is an AMOLED display where a plurality of the CBVP pixel circuits 151 are arranged in rows and columns. VDATA1 (or VDATA 2) and IBIAS1 (or IBIAS2) are shared between the common column pixels while SEL1 (or SEL2) is shared between common row pixels in the array structure.


The SEL1 and SEL2 are driven through an address driver 152. The VDATA1 and VDATA2 are driven through a source driver 154. The IBIAS1 and IBIAS2 are also driven through the source driver 154. A controller and scheduler 156 is provided for controlling and scheduling programming, calibration and other operations for operating the display array, which includes the control and schedule for the CBVP driving scheme as described above.



FIG. 23 illustrates a driving mechanism for a display array 160 having a plurality of VBCP pixel circuits. In FIG. 23, the pixel circuit 212 of FIG. 18 is shown as an example of the VBCP pixel circuit. However, the display array 160 may include any other pixel circuits to which the VBCP driving scheme described is applicable.


SEL1 and SEL2 of FIG. 23 correspond to SEL of FIG. 18. VGND1 and VGAND2 of FIG. 23 correspond to VDATA of FIG. 18. IDATA1 and IDATA 2 of FIG. 23 correspond to IDATA of FIG. 18. In FIG. 23, four VBCP pixel circuits are shown as example. The display array 160 may have more than four or less than four VBCP pixel circuits.


The display array 160 is an AMOLED display where a plurality of the VBCP pixel circuits are arranged in rows and columns. IDATA1 (or IDATA2) is shared between the common column pixels while SEL1 (or SEL2) and VGND1 (or VGND2) are shared between common row pixels in the array structure.


The SEL1, SEL2, VGND1 and VGND2 are driven through an address driver 162. The IDATA1 and IDATA are driven through a source driver 164. A controller and scheduler 166 is provided for controlling and scheduling programming, calibration and other operations for operating the display array, which includes the control and schedule for the VBCP driving scheme as described above.



FIG. 24 illustrates a pixel circuit 400 in accordance with a further embodiment of the present invention. The pixel circuit 400 of FIG. 24 is a 3-TFT current-biased voltage programmed pixel circuit and employs the CBVP driving scheme. The driving scheme improves the display lifetime and yield by compensating for the mismatches.


The pixel circuit 400 includes an OLED 402, a storage capacitor 404, a driving transistor 406, and switch transistors 408 and 410. Each transistor has a gate terminal, a first terminal and a second terminal. The transistors 406, 408 and 410 are p-type TFT transistors. The driving technique applied to the pixel circuit 400 is also applicable to a complementary pixel circuit having n-type transistors as well understood by one of ordinary skill in the art.


The transistors 406, 408 and 410 may be implemented using poly silicon, nano/micro (crystalline) silicon, amorphous silicon, CMOS, organic semiconductor, metal organic technologies, or combination thereof. A plurality of pixel circuits 400 may form an active matrix array. The driving scheme applied to the pixel circuit 400 compensates for temporal and spatial non-uniformities in the active matrix display.


A select line SEL, a signal line Vdata, a bias line Ibias, and a voltage supply line Vdd are connected to the pixel circuit 400. The bias line Ibias provides a bias current (Ibias) that is defined based on display specifications, such as lifetime, power, and device performance and uniformity.


The first terminal of the driving transistor 406 is connected to the voltage supply line Vdd. The second terminal of the driving transistor 406 is connected to the OLED 402 at node B20. One terminal of the capacitor 404 is connected to the signal line Vdata, and the other terminal of the capacitor 404 is connected to the gate terminal of the driving transistor 406 at node A20.


The gate terminals of the switch transistors 408 and 410 are connected to the select line SEL. The switch transistor 408 is connected between node A20 and node B20. The switch transistor 410 is connected between the node B20 and the bias line Ibias.


For the pixel circuit 400, a predetermined fixed current (Ibias) is provided through the transistor 410 to compensate for all spatial and temporal non-uniformities and voltage programming is used to divide the current in different current levels required for different gray scales.


As shown in FIG. 25, the operation of the pixel circuit 400 includes a programming phase X61 and a driving phase X62. Vdata [j] of FIG. 25 corresponds to Vdd of FIG. 24. Vp[k,j] of FIG. 25 (k=1, 2, . . . , n) represents the kth programming voltage on Vdata [j] where “j” is the column number.


Referring to FIGS. 24 and 25, during the programming cycle X61, SEL is low so that the switch transistors 408 and 410 are on. The bias current Ibias is applied via the bias line Ibias to the pixel circuit 400, and the gate terminal of the driving transistor 406 is self-adjusted to allow all the current passes through source-drain of the driving transistor 406. At this cycle, Vdata has a programming voltage related to the gray scale of the pixel. During the driving cycle X62, the switch transistors 408 and 410 are off, and the current passes through the driving transistor 406 and the OLED 402.



FIG. 26 is a diagram showing a pixel circuit 420 in accordance with a further embodiment of the present invention. The pixel circuit 420 of FIG. 26 is a 6-TFT current-biased voltage programmed pixel circuit and employs the CBVP driving scheme, with emission control. This driving scheme improves the display lifetime and yield by compensating for the mismatches.


The pixel circuit 420 includes an OLED 422, a storage capacitor 424, and transistors 426-436. Each transistor has a gate terminal, a first terminal and a second terminal. The transistors 426-436 are p-type TFT transistors. The driving technique applied to the pixel circuit 420 is also applicable to a complementary pixel circuit having n-type transistors as well understood by one of ordinary skill in the art.


The transistors 426-436 may be implemented using poly silicon, nano/micro (crystalline) silicon, amorphous silicon, CMOS, organic semiconductor, metal organic technologies, or combination thereof. A plurality of pixel circuits 420 may form an active matrix array. The driving scheme applied to the pixel circuit 420 compensates for temporal and spatial non-uniformities in the active matrix display.


One select line SEL, a signal line Vdata, a bias line Ibias, a voltage supply line Vdd, a reference voltage line Vref, and an emission signal line EM are connected to the pixel circuit 420. The bias line Ibias provides a bias current (Ibias) that is defined based on display specifications, such as lifetime, power, and device performance and uniformity. The reference voltage line Vref provides a reference voltage (Vref). The reference voltage Vref may be determined based on the bias current Ibias and the display specifications that may include gray scale and/or contrast ratio. The signal line EM provides an emission signal EM that turns on the pixel circuit 420. The pixel circuit 420 goes to emission mode based on the emission signal EM.


The gate terminal of the transistor 426, one terminal of the transistor 432 and one terminal of the transistor 434 are connected at node A21. One terminal of the capacitor 424, one terminal of the transistor 428 and the other terminal of the transistor 434 are connected at node B21. The other terminal of the capacitor 424, one terminal of the transistor 430, one terminal of the transistor 436, and one terminal of the transistor 426 are connected at node C21. The other terminal of the transistor 430 is connected to the bias line Ibias. The other terminal of the transistor 432 is connected to the reference voltage line Vref. The select line SEL is connected to the gate terminals of the transistors 428, 430 and 432. The select line EM is connected to the gate terminals of the transistors 434, and 436. The transistor 426 is a driving transistor. The transistors 428, 430, 432, 434, and 436 are switching transistors.


For the pixel circuit 420, a predetermined fixed current (Ibias) is provided through the transistor 430 while the reference voltage Vref is applied to the gate terminal of the transistor 426 through the transistor 432 and a programming voltage VP is applied to the other terminal of the storage capacitor 424 (i.e., node B21) through the transistor 428. Here, the source voltage of the transistor 426 (i.e., voltage of node C21) will be self-adjusted to allow the bias current goes through the transistor 426 and thus it compensates for all spatial and temporal non-uniformities. Also, voltage programming is used to divide the current in different current levels required for different gray scales.


As shown in FIG. 27, the operation of the pixel circuit 420 includes a programming phase X71 and a driving phase X72.


Referring to FIGS. 26 and 27, during the programming cycle X71, SEL is low so that the transistors 428, 430 and 432 are on, a fixed bias current is applied to Ibias line, and the source of the transistor 426 is self-adjusted to allow all the current passes through source-drain of the transistor 426. At this cycle, Vdata has a programming voltage related to the gray scale of the pixel and the capacitor 424 stores the programming voltage and the voltage generated by current for mismatch compensation. During the driving cycle X72, the transistors 428, 430 and 432 are off, while the transistors 434 and 436 are on by the emission signal EM. During this driving cycle X72, the transistor 426 provides current for the OLED 422.


In FIG. 25, the entire display is programmed, then it is light up (goes to emission mode). By contrast, in FIG. 27, each row can light up after programming by using the emission line EM.


In the operations of FIGS. 25 and 27, the bias line provides a predetermined fixed bias current. However, the bias current Ibias may be adjustable, and the bias current Ibias may be adjusted during the operation of the display.



FIG. 28 illustrates an example of a display system having array structure for implementation of the CBVP driving scheme. The display system 450 of FIG. 28 includes a pixel array 452 having a plurality of pixels 454, a gate driver 456, a source driver 458 and a controller 460 for controlling the drivers 456 and 458. The gate driver 456 operates on address (select) lines (e.g., SEL [1], SEL[2], . . . ). The source driver 458 operates on data lines (e.g., Vdata [1], Vdata [2], . . . ). The display system 450 includes a calibrated current mirrors block 462 for operating on bias lines (e.g., Ibias [1], Ibias [2]) using a reference current Iref. The block 462 includes a plurality of calibrated current mirrors, each for the corresponding Ibias. The reference current Iref may be provided to the calibrated current mirrors block 462 through a switch.


The pixel circuit 454 may be the same as the pixel circuit 400 of FIG. 24 or the pixel circuit 420 of FIG. 26 where SEL [i] (i=1, 2, . . . ) corresponds to SEL of FIG. 24 or 26, Vdata [j] (j=1, 2, . . . ) corresponds to Vdata of FIG. 24 or 26, and Ibias [j] (j=1, 2, . . . ) corresponds to Ibias of FIG. 24 or 26. When using the pixel circuit 420 of FIG. 26 as the pixel circuit 454, a driver at the peripheral of the display, such as the gate driver 456, controls each emission line EM.


In FIG. 28, the current mirrors are calibrated with a reference current source. During the programming cycle of the panel (e.g., X61 of FIG. 25, X71 of FIG. 27), the calibrated current mirrors (block 462) provide current to the bias line Ibias. These current mirrors can be fabricated at the edge of the panel.



FIG. 29 illustrates another example of a display system having array structure for implementation of the CBVP driving scheme. The display system 470 of FIG. 29 includes a pixel array 472 having a plurality of pixels 474, a gate driver 476, a source driver 478 and a controller 480 for controlling the drivers 476 and 478. The gate driver 476 operates on address (select) lines (e.g., SEL[0], SEL [1], SEL[2], . . . ). The source driver 478 operates on data lines (e.g., Vdata [1], Vdata [2], . . . ). The display system 470 includes a calibrated current sources block 482 for operating on bias lines (e.g., Ibias [1], Ibias [2]) using Vdata lines. The block 482 includes a plurality of calibrated current sources, each being provided for the Ibias line.


The pixel circuit 474 may be the same as the pixel circuit 400 of FIG. 24 or the pixel circuit 420 of FIG. 26 where SEL [i] (i=1, 2, . . . ) corresponds to SEL of FIG. 24 or 26, Vdata [j] (j=1, 2, . . . ) corresponds to Vdata of FIG. 24 or 26, and Ibias [j] (j=1, 2, . . . ) corresponds to Ibias of FIG. 24 or 26. When using the pixel circuit 420 of FIG. 26 as the pixel circuit 474, a driver at the peripheral of the display, such as the gate driver 456, controls each emission line EM.


Each current source 482 includes a voltage to current convertor that converts voltage via Vdata line to current. One of the select lines is used to operate a switch 490 for connecting Vdata line to the current source 482. In this example, address line SEL [0] operates the switch 490. The current sources 482 are treated as one row of the display (i.e., the 0th row). After the conversion of voltage on Vdata line at the current source 482, Vdata line is used to program the real pixel circuits 474 of the display.


A voltage related to each of the current sources is extracted at the factory and is stored in a memory (e.g. flash, EPROM, or PROM). This voltage (calibrated voltage) may be different for each current source due to their mismatches. At the beginning of each frame, the current sources 482 are programmed through the source driver 478 using the stored calibrated voltages so that all the current sources 482 provides the same current.


In FIG. 28, the bias current (Ibias) is generated by the current mirror 462 with the reference current Iref. However, the system 450 of FIG. 28 may use the current source 482 to generate Ibias. In FIG. 29, the bias current (Ibias) is generated by the current converter of the current source 482 with Vdata line. However, the system 470 of FIG. 29 may use the current mirror 462 of FIG. 28.


Effect of spatial mismatches on the image quality of panels using different driving scheme is depicted in FIGS. 30-32. The image of display with conventional 2-TFT pixel circuit is suffering from both threshold voltage mismatches and mobility variations (FIG. 30). On the other hand, the voltage programmed pixel circuits without the bias line Ibias may control the effect of threshold voltage mismatches, however, they may suffer from the mobility variations (FIG. 31) whereas the current-biased voltage-programmed (CBVP) driving scheme in the embodiments can control the effect of both mobility and threshold voltage variations (FIG. 32).


The present invention has been described with regard to one or more embodiments. However, it will be apparent to persons skilled in the art that a number of variations and modifications can be made without departing from the scope of the invention as defined in the claims.

Claims
  • 1. A display system comprising: a pixel array having a plurality of pixel circuits, each of the plurality of pixel circuits being configured to be operated in a programming cycle, during which each pixel circuit receives a programming voltage according to display data, and operated in a driving cycle different from the programming cycle, during which each pixel emits light according to the programming voltage, each pixel circuit comprising: a light emitting device;a capacitor having a first and a second terminal, the first terminal of the capacitor coupled to a signal line;a first switch transistor having a gate terminal, a first terminal, and a second terminal, the gate terminal of the first switch transistor coupled to a select line, the first terminal of the first switch transistor coupled to the second terminal of the capacitor, the second terminal of the first switch transistor coupled to the light emitting device;a second switch transistor having a gate terminal, a first terminal, and a second terminal, the gate terminal of the second switch transistor coupled to a select line, the first terminal of the second switch transistor coupled to the light-emitting device, the second terminal of the second switch transistor coupled to a bias line; anda driving transistor for driving the light emitting device, the driving transistor having a gate coupled to the second terminal of the capacitor; anddriver circuitry for programming the pixel circuit during the programming cycle and driving the pixel circuit during a driving cycle, the driver circuitry providing programming voltages on the signal line as a function of the display data for the pixel circuit, and providing a controllable bias current, independent of programming data for the pixel circuit, on the bias line to compensate for spatial and temporal non-uniformities of the pixel circuits.
  • 2. The display system according to claim 1, wherein for each pixel circuit, the gate terminal of the first switch transistor and the gate terminal of the second switch transistor are operated by a single select line.
  • 3. The display system according to claim 1, wherein for each pixel circuit, the second switch transistor includes a first terminal coupled to the bias line and a second terminal coupled to a connection node between the light emitting device and the driving transistor.
  • 4. The display system according to claim 1, wherein the display data includes a plurality of voltage signals for dividing current in different current levels for different grey scales.
  • 5. The display system according to claim 1, wherein each light emitting device includes an organic light emitting diode.
  • 6. The display system according to claim 1, wherein at least one of the transistors of each pixel circuit is a thin film transistor.
  • 7. The display system according to claim 1, wherein each transistor is implemented using poly silicon, nano/micro (crystalline) silicon, amorphous silicon, CMOS, organic semiconductor, metal organic technologies, or a combination thereof.
  • 8. The display system according to claim 1, wherein the pixel array includes an active matrix array.
  • 9. The display system according to claim 1, wherein the controllable bias current is a predetermined fixed current.
  • 10. The display system of claim 1, further comprising a controllable current source for providing said controllable bias current, wherein the controllable current source comprises a calibrated current mirror for operating on the bias line based on a reference current.
  • 11. The display system of claim 1, further comprising a controllable current source for providing said controllable bias current, wherein the controllable current source comprises a voltage to current converter for converting voltage to the bias current.
  • 12. The display system of claim 1, further comprising a controllable current source for providing said controllable bias current, wherein the controllable current source is calibrated via a data stored in a memory.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/466,084, filed Aug. 22, 2014, now allowed, which is a continuation of U.S. patent application Ser. No. 14/094,175, filed Dec. 2, 2013, which is a continuation of U.S. patent application Ser. No. 12/425,734, filed Apr. 17, 2009, now U.S. Pat. No. 8,614,652, which claims the benefit of priority to U.S. Provisional Patent Application No. 61/046,256, filed Apr. 18, 2008, all of which are hereby incorporated by reference in their entireties.

US Referenced Citations (362)
Number Name Date Kind
3506851 Polkinghorn et al. Apr 1970 A
3750987 Gobel Aug 1973 A
3774055 Bapat et al. Nov 1973 A
4090096 Nagami May 1978 A
4354162 Wright Oct 1982 A
4996523 Bell et al. Feb 1991 A
5134387 Smith et al. Jul 1992 A
5153420 Hack et al. Oct 1992 A
5170158 Shinya Dec 1992 A
5204661 Hack et al. Apr 1993 A
5266515 Robb et al. Nov 1993 A
5278542 Smith et al. Jan 1994 A
5408267 Main Apr 1995 A
5498880 Lee et al. Mar 1996 A
5572444 Lentz et al. Nov 1996 A
5589847 Lewis Dec 1996 A
5619033 Weisfield Apr 1997 A
5648276 Hara et al. Jul 1997 A
5670973 Bassetti et al. Sep 1997 A
5691783 Numao et al. Nov 1997 A
5701505 Yamashita et al. Dec 1997 A
5714968 Ikeda Feb 1998 A
5744824 Kousai et al. Apr 1998 A
5745660 Kolpatzik et al. Apr 1998 A
5748160 Shieh et al. May 1998 A
5758129 Gray et al. May 1998 A
5835376 Smith et al. Nov 1998 A
5870071 Kawahata Feb 1999 A
5874803 Garbuzov et al. Feb 1999 A
5880582 Sawada Mar 1999 A
5903248 Irwin May 1999 A
5917280 Burrows et al. Jun 1999 A
5949398 Kim Sep 1999 A
5952789 Stewart et al. Sep 1999 A
5990629 Yamada et al. Nov 1999 A
6023259 Howard et al. Feb 2000 A
6069365 Chow et al. May 2000 A
6091203 Kawashima et al. Jul 2000 A
6097360 Holloman Aug 2000 A
6100868 Lee et al. Aug 2000 A
6144222 Ho Nov 2000 A
6229506 Dawson et al. May 2001 B1
6229508 Kane May 2001 B1
6246180 Nishigaki Jun 2001 B1
6252248 Sano et al. Jun 2001 B1
6268841 Cairns et al. Jul 2001 B1
6288696 Holloman Sep 2001 B1
6307322 Dawson et al. Oct 2001 B1
6310962 Chung et al. Oct 2001 B1
6323631 Juang Nov 2001 B1
6333729 Ha Dec 2001 B1
6388653 Goto et al. May 2002 B1
6392617 Gleason May 2002 B1
6396469 Miwa et al. May 2002 B1
6414661 Shen et al. Jul 2002 B1
6417825 Stewart et al. Jul 2002 B1
6430496 Smith et al. Aug 2002 B1
6433488 Bu Aug 2002 B1
6473065 Fan Oct 2002 B1
6475845 Kimura Nov 2002 B2
6501098 Yamazaki Dec 2002 B2
6501466 Yamagashi et al. Dec 2002 B1
6522315 Ozawa et al. Feb 2003 B2
6535185 Kim et al. Mar 2003 B2
6542138 Shannon et al. Apr 2003 B1
6559839 Ueno et al. May 2003 B1
6580408 Bae et al. Jun 2003 B1
6583398 Harkin Jun 2003 B2
6618030 Kane et al. Sep 2003 B2
6639244 Yamazaki et al. Oct 2003 B1
6680580 Sung Jan 2004 B1
6686699 Yumoto Feb 2004 B2
6690000 Muramatsu et al. Feb 2004 B1
6693610 Shannon et al. Feb 2004 B2
6694248 Smith et al. Feb 2004 B2
6697057 Koyama et al. Feb 2004 B2
6724151 Yoo Apr 2004 B2
6734636 Sanford et al. May 2004 B2
6753655 Shih et al. Jun 2004 B2
6753834 Mikami et al. Jun 2004 B2
6756741 Li Jun 2004 B2
6777888 Kondo Aug 2004 B2
6781567 Kimura Aug 2004 B2
6788231 Hsueh Sep 2004 B1
6809706 Shimoda Oct 2004 B2
6828950 Koyama Dec 2004 B2
6858991 Miyazawa Feb 2005 B2
6859193 Yumoto Feb 2005 B1
6876346 Anzai et al. Apr 2005 B2
6900485 Lee May 2005 B2
6903734 Eu Jun 2005 B2
6911960 Yokoyama Jun 2005 B1
6911964 Lee et al. Jun 2005 B2
6914448 Jinno Jul 2005 B2
6919871 Kwon Jul 2005 B2
6924602 Komiya Aug 2005 B2
6937220 Kitaura et al. Aug 2005 B2
6940214 Komiya et al. Sep 2005 B1
6954194 Matsumoto et al. Oct 2005 B2
6970149 Chung et al. Nov 2005 B2
6975142 Azami et al. Dec 2005 B2
6975332 Arnold et al. Dec 2005 B2
6995519 Arnold et al. Feb 2006 B2
7027015 Booth, Jr. et al. Apr 2006 B2
7034793 Sekiya et al. Apr 2006 B2
7038392 Libsch et al. May 2006 B2
7057588 Asano et al. Jun 2006 B2
7061451 Kimura Jun 2006 B2
7071932 Libsch et al. Jul 2006 B2
7106285 Naugler Sep 2006 B2
7112820 Chang et al. Sep 2006 B2
7113864 Smith et al. Sep 2006 B2
7122835 Ikeda et al. Oct 2006 B1
7129914 Knapp et al. Oct 2006 B2
7164417 Cok Jan 2007 B2
7180486 Jeong Feb 2007 B2
7224332 Cok May 2007 B2
7236149 Yamashita et al. Jun 2007 B2
7248236 Nathan et al. Jul 2007 B2
7259737 Ono et al. Aug 2007 B2
7262753 Tanghe et al. Aug 2007 B2
7274363 Ishizuka et al. Sep 2007 B2
7310092 Imamura Dec 2007 B2
7315295 Kimura Jan 2008 B2
7317434 Lan et al. Jan 2008 B2
7321348 Cok et al. Jan 2008 B2
7327357 Jeong Feb 2008 B2
7333077 Koyama et al. Feb 2008 B2
7343243 Smith et al. Mar 2008 B2
7414600 Nathan et al. Aug 2008 B2
7466166 Date et al. Dec 2008 B2
7495501 Iwabuchi et al. Feb 2009 B2
7502000 Yuki et al. Mar 2009 B2
7515124 Yaguma et al. Apr 2009 B2
7535449 Miyazawa May 2009 B2
7554512 Steer Jun 2009 B2
7569849 Nathan et al. Aug 2009 B2
7595776 Hashimoto et al. Sep 2009 B2
7604718 Zhang et al. Oct 2009 B2
7609239 Chang Oct 2009 B2
7612745 Yumoto et al. Nov 2009 B2
7619594 Hu Nov 2009 B2
7619597 Nathan et al. Nov 2009 B2
7639211 Miyazawa Dec 2009 B2
7683899 Hirakata et al. Mar 2010 B2
7688289 Abe et al. Mar 2010 B2
7724218 Kim et al. May 2010 B2
7760162 Miyazawa Jul 2010 B2
7808008 Miyake Oct 2010 B2
7859520 Kimura Dec 2010 B2
7889159 Nathan et al. Feb 2011 B2
7903127 Kwon Mar 2011 B2
7920116 Woo et al. Apr 2011 B2
7944414 Shirasaki et al. May 2011 B2
7978170 Park et al. Jul 2011 B2
7989392 Crockett et al. Aug 2011 B2
7995008 Miwa Aug 2011 B2
8040297 Chung Oct 2011 B2
8063852 Kwak et al. Nov 2011 B2
8102343 Yatabe Jan 2012 B2
8144081 Miyazawa Mar 2012 B2
8159007 Bama et al. Apr 2012 B2
8242979 Anzai et al. Aug 2012 B2
8253665 Nathan et al. Aug 2012 B2
8319712 Nathan et al. Nov 2012 B2
8368619 Tsai Feb 2013 B2
8373696 Miyazawa Feb 2013 B2
8614652 Nathan et al. Dec 2013 B2
8749595 Nathan et al. Jun 2014 B2
9330598 Nathan May 2016 B2
9530349 Chaji Dec 2016 B2
20010002703 Koyama Jun 2001 A1
20010009283 Arao et al. Jul 2001 A1
20010026257 Kimura Oct 2001 A1
20010030323 Ikeda Oct 2001 A1
20010040541 Yoneda et al. Nov 2001 A1
20010043173 Troutman Nov 2001 A1
20010045929 Prache Nov 2001 A1
20010052940 Hagihara et al. Dec 2001 A1
20020000576 Inukai Jan 2002 A1
20020011796 Koyama Jan 2002 A1
20020011799 Kimura Jan 2002 A1
20020012057 Kimura Jan 2002 A1
20020030190 Ohtani et al. Mar 2002 A1
20020047565 Nara et al. Apr 2002 A1
20020052086 Maeda May 2002 A1
20020080108 Wang Jun 2002 A1
20020084463 Sanford et al. Jul 2002 A1
20020101172 Bu Aug 2002 A1
20020117722 Osada et al. Aug 2002 A1
20020140712 Ouchi et al. Oct 2002 A1
20020158587 Komiya Oct 2002 A1
20020158666 Azami et al. Oct 2002 A1
20020158823 Zavracky et al. Oct 2002 A1
20020171613 Goto et al. Nov 2002 A1
20020186214 Siwinski Dec 2002 A1
20020190971 Nakamura et al. Dec 2002 A1
20020195967 Kim et al. Dec 2002 A1
20020195968 Sanford et al. Dec 2002 A1
20030001828 Asano Jan 2003 A1
20030016190 Kondo Jan 2003 A1
20030020413 Oomura Jan 2003 A1
20030020705 Kondo Jan 2003 A1
20030030603 Shimoda Feb 2003 A1
20030062524 Kimura Apr 2003 A1
20030062844 Miyazawa Apr 2003 A1
20030076048 Rutherford Apr 2003 A1
20030090445 Chen et al. May 2003 A1
20030090447 Kimura May 2003 A1
20030090481 Kimura May 2003 A1
20030095087 Libsch May 2003 A1
20030098829 Chen et al. May 2003 A1
20030107560 Yumoto et al. Jun 2003 A1
20030107561 Uchino et al. Jun 2003 A1
20030111966 Mikami et al. Jun 2003 A1
20030112205 Yamada Jun 2003 A1
20030112208 Okabe et al. Jun 2003 A1
20030117348 Knapp et al. Jun 2003 A1
20030122474 Lee Jul 2003 A1
20030122747 Shannon et al. Jul 2003 A1
20030128199 Kimura Jul 2003 A1
20030151569 Lee et al. Aug 2003 A1
20030156104 Morita Aug 2003 A1
20030169241 LeChevalier Sep 2003 A1
20030169247 Kawabe et al. Sep 2003 A1
20030179626 Sanford et al. Sep 2003 A1
20030189535 Matsumoto et al. Oct 2003 A1
20030197663 Lee et al. Oct 2003 A1
20030214465 Kimura Nov 2003 A1
20030227262 Kwon Dec 2003 A1
20030230141 Gilmour et al. Dec 2003 A1
20030230980 Forrest et al. Dec 2003 A1
20040004589 Shih Jan 2004 A1
20040032382 Cok et al. Feb 2004 A1
20040041750 Abe Mar 2004 A1
20040066357 Kawasaki Apr 2004 A1
20040070557 Asano et al. Apr 2004 A1
20040100427 Miyazawa May 2004 A1
20040129933 Nathan et al. Jul 2004 A1
20040135749 Kondakov et al. Jul 2004 A1
20040145547 Oh Jul 2004 A1
20040160516 Ford Jul 2004 A1
20040150595 Kasai Aug 2004 A1
20040155841 Kasai Aug 2004 A1
20040174349 Libsch Sep 2004 A1
20040174354 Ono Sep 2004 A1
20040183759 Stevenson et al. Sep 2004 A1
20040189627 Shirasaki et al. Sep 2004 A1
20040196275 Hattori Oct 2004 A1
20040227697 Mori Nov 2004 A1
20040239696 Okabe Dec 2004 A1
20040251844 Hashido et al. Dec 2004 A1
20040252085 Miyagawa Dec 2004 A1
20040252089 Ono et al. Dec 2004 A1
20040256617 Yamada et al. Dec 2004 A1
20040257353 Imamura et al. Dec 2004 A1
20040257355 Naugler Dec 2004 A1
20040263437 Hattori Dec 2004 A1
20050007357 Yamashita et al. Jan 2005 A1
20050052379 Waterman Mar 2005 A1
20050057459 Miyazawa Mar 2005 A1
20050067970 Libsch et al. Mar 2005 A1
20050067971 Kane Mar 2005 A1
20050083270 Miyazawa Apr 2005 A1
20050110420 Arnold et al. May 2005 A1
20050110727 Shin May 2005 A1
20050123193 Lamberg et al. Jun 2005 A1
20050140600 Kim Jun 2005 A1
20050140610 Smith et al. Jun 2005 A1
20050145891 Abe Jul 2005 A1
20050156831 Yamazaki et al. Jul 2005 A1
20050168416 Hashimoto et al. Aug 2005 A1
20050206590 Sasaki et al. Sep 2005 A1
20050219188 Kawabe et al. Oct 2005 A1
20050243037 Eom et al. Nov 2005 A1
20050248515 Naugler et al. Nov 2005 A1
20050258867 Miyazawa Nov 2005 A1
20050285825 Eom et al. Dec 2005 A1
20060012311 Ogawa Jan 2006 A1
20060038750 Inoue et al. Feb 2006 A1
20060038758 Routley et al. Feb 2006 A1
20060038762 Chou Feb 2006 A1
20060066533 Sato et al. Mar 2006 A1
20060077077 Kwon Apr 2006 A1
20060077194 Jeong Apr 2006 A1
20060092185 Jo et al. May 2006 A1
20060125408 Nathan et al. Jun 2006 A1
20060139253 Choi et al. Jun 2006 A1
20060145964 Park et al. Jul 2006 A1
20060191178 Sempel et al. Aug 2006 A1
20060209012 Hagood, IV Sep 2006 A1
20060214888 Schneider et al. Sep 2006 A1
20060221009 Miwa Oct 2006 A1
20060227082 Ogata et al. Oct 2006 A1
20060232522 Roy et al. Oct 2006 A1
20060244388 Chung Nov 2006 A1
20060244391 Shishido et al. Nov 2006 A1
20060244695 Komiya Nov 2006 A1
20060244697 Lee et al. Nov 2006 A1
20060248420 Jeong Nov 2006 A1
20060261841 Fish Nov 2006 A1
20060267885 Kwak et al. Nov 2006 A1
20060290614 Nathan et al. Dec 2006 A1
20070001939 Hashimoto et al. Jan 2007 A1
20070001945 Yoshida et al. Jan 2007 A1
20070008251 Kohno et al. Jan 2007 A1
20070008297 Bassetti Jan 2007 A1
20070018078 Miyazawa Jan 2007 A1
20070035489 Lee Feb 2007 A1
20070035707 Margulis Feb 2007 A1
20070040773 Lee et al. Feb 2007 A1
20070040782 Woo et al. Feb 2007 A1
20070063932 Nathan et al. Mar 2007 A1
20070080908 Nathan et al. Apr 2007 A1
20070085801 Park et al. Apr 2007 A1
20070109232 Yamamoto et al. May 2007 A1
20070128583 Miyazawa Jun 2007 A1
20070164941 Park et al. Jul 2007 A1
20070182671 Nathan et al. Aug 2007 A1
20070236430 Fish Oct 2007 A1
20070241999 Lin Oct 2007 A1
20070242008 Cummings Oct 2007 A1
20080001544 Murakami et al. Jan 2008 A1
20080043044 Woo et al. Feb 2008 A1
20080048951 Naugler et al. Feb 2008 A1
20080055134 Li et al. Mar 2008 A1
20080074360 Lu et al. Mar 2008 A1
20080088549 Nathan et al. Apr 2008 A1
20080094426 Kimpe Apr 2008 A1
20080111837 Kim May 2008 A1
20080122819 Cho et al. May 2008 A1
20080129906 Lin et al. Jun 2008 A1
20080170008 Kim Jul 2008 A1
20080228562 Smith et al. Sep 2008 A1
20080231641 Miyashita Sep 2008 A1
20080265786 Koyama Oct 2008 A1
20080290805 Yamada et al. Nov 2008 A1
20090009459 Miyashita Jan 2009 A1
20090015532 Katayama et al. Jan 2009 A1
20090058789 Hung et al. Mar 2009 A1
20090121988 Amo et al. May 2009 A1
20090146926 Sung et al. Jun 2009 A1
20090153448 Tomida et al. Jun 2009 A1
20090153459 Han et al. Jun 2009 A9
20090174628 Wang et al. Jul 2009 A1
20090201230 Smith Aug 2009 A1
20090201281 Routley et al. Aug 2009 A1
20090219232 Choi Sep 2009 A1
20090251486 Sakakibara et al. Oct 2009 A1
20090278777 Wang et al. Nov 2009 A1
20090289964 Miyachi Nov 2009 A1
20100039451 Jung Feb 2010 A1
20100039453 Nathan et al. Feb 2010 A1
20100207920 Chaji et al. Aug 2010 A1
20100225634 Levey et al. Sep 2010 A1
20100251295 Amento et al. Sep 2010 A1
20100269889 Reinhold et al. Oct 2010 A1
20100277400 Jeong Nov 2010 A1
20100315319 Cok et al. Dec 2010 A1
20110050741 Jeong Mar 2011 A1
20110069089 Kopf et al. Mar 2011 A1
20120299976 Chen et al. Nov 2012 A1
Foreign Referenced Citations (93)
Number Date Country
729652 Jun 1997 AU
764896 Dec 2001 AU
1 294 034 Jan 1992 CA
2 249 592 Jul 1998 CA
2 303 302 Mar 1999 CA
2 368 386 Sep 1999 CA
2 242 720 Jan 2000 CA
2 354 018 Jun 2000 CA
2 432 530 Jul 2002 CA
2 436 451 Aug 2002 CA
2 507 276 Aug 2002 CA
2 463 653 Jan 2004 CA
2 498 136 Mar 2004 CA
2 522 396 Nov 2004 CA
2 438 363 Feb 2005 CA
2 443 206 Mar 2005 CA
2 519 097 Mar 2005 CA
2 472 671 Dec 2005 CA
2 523 841 Jan 2006 CA
2 567 076 Jan 2006 CA
2 495 726 Jul 2006 CA
2 557 713 Nov 2006 CA
2 526 782 Aug 2007 CA
2 651 893 Nov 2007 CA
2 672 590 Oct 2009 CA
1591105 Mar 2005 CN
1601594 Mar 2005 CN
1758308 Apr 2006 CN
1886774 Dec 2006 CN
101111880 Jan 2008 CN
202006007613 Sep 2006 DE
0 478 186 Apr 1992 EP
1 028 471 Aug 2000 EP
1 130 565 Sep 2001 EP
1 194 013 Apr 2002 EP
1 321 922 Jun 2003 EP
1 335 430 Aug 2003 EP
1 381 019 Jan 2004 EP
1 429 312 Jun 2004 EP
1 439 520 Jul 2004 EP
1 465 143 Oct 2004 EP
1 473 689 Nov 2004 EP
1 517 290 Mar 2005 EP
1 521 203 Apr 2005 EP
2 399 935 Sep 2004 GB
2 460 018 Nov 2009 GB
09 090405 Apr 1997 JP
10-254410 Sep 1998 JP
11 231805 Aug 1999 JP
2002-278513 Sep 2002 JP
2003-076331 Mar 2003 JP
2003-099000 Apr 2003 JP
2003-173165 Jun 2003 JP
2003-186439 Jul 2003 JP
2003-195809 Jul 2003 JP
2003-271095 Sep 2003 JP
2003-308046 Oct 2003 JP
2004-054188 Feb 2004 JP
2004-226960 Aug 2004 JP
2005-004147 Jan 2005 JP
2005-099715 Apr 2005 JP
2005-258326 Sep 2005 JP
2005-338819 Dec 2005 JP
2006-285116 Oct 2006 JP
2007-065539 Mar 2007 JP
569173 Jan 2004 TW
200526065 Aug 2005 TW
1239501 Sep 2005 TW
200717387 May 2007 TW
WO 199811554 Mar 1998 WO
WO 199948079 Sep 1999 WO
WO 200127910 Apr 2001 WO
WO 2002067327 Aug 2002 WO
WO 2003034389 Apr 2003 WO
WO 2003063124 Jul 2003 WO
WO 2003075256 Sep 2003 WO
WO 2004003877 Jan 2004 WO
WO 2004015668 Feb 2004 WO
WO 2004034364 Apr 2004 WO
WO 2005022498 Mar 2005 WO
WO 2005055185 Jun 2005 WO
WO 2005055186 Jun 2005 WO
WO 2005069267 Jul 2005 WO
WO 2005122121 Dec 2005 WO
WO 2006053424 May 2006 WO
WO 2006063448 Jun 2006 WO
WO 2006128069 Nov 2006 WO
WO 2008057369 May 2008 WO
WO 20080290805 Nov 2008 WO
WO 2009059028 May 2009 WO
WO 2009127065 Oct 2009 WO
WO 2010066030 Jun 2010 WO
WO 2010120733 Oct 2010 WO
Non-Patent Literature Citations (97)
Entry
Ahnood et al.: “Effect of threshold voltage instability on field effect mobility in thin film transistors deduced from constant current measurements”; dated Aug. 2009.
Alexander et al.: “Pixel circuits and drive schemes for glass and elastic AMOLED displays”; dated Jul. 2005 (9 pages).
Alexander et al.: “Unique Electrical Measurement Technology for Compensation Inspection and Process Diagnostics of AMOLED HDTV”; dated May 2010 (4 pages).
Ashtiani et al.: “AMOLED Pixel Circuit With Electronic Compensation of Luminance Degradation”; dated Mar. 2007 (4 pages).
Chaji et al.: “A Current-Mode Comparator for Digital Calibration of Amorphous Silicon AMOLED Displays”; dated Jul. 2008 (5 pages).
Chaji et al.: “A fast settling current driver based on the CCII for AMOLED displays”; dated Dec. 2009 (6 pages).
Chaji et al.: “A Low-Cost Stable Amorphous Silicon AMOLED Display with Full V˜T- and V˜O˜L˜E˜D Shift Compensation”; dated May 2007 (4 pages).
Chaji et al.: “A low-power driving scheme for a-Si:H active-matrix organic light-emitting diode displays”; dated Jun. 2005 (4 pages).
Chaji et al.: “A low-power high-performance digital circuit for deep submicron technologies”; dated Jun. 2005 (4 pages).
Chaji et al.: “A novel a-Si:H AMOLED pixel circuit based on short-term stress stability of a-Si:H TFTs”; dated Oct. 2005 (3 pages).
Chaji et al.: “A Novel Driving Scheme and Pixel Circuit for AMOLED Displays”; dated Jun. 2006 (4 pages).
Chaji et al.: “A novel driving scheme for high-resolution large-area a-Si:H AMOLED displays”; dated Aug. 2005 (4 pages).
Chaji et al.: “A Stable Voltage-Programmed Pixel Circuit for a-Si:H AMOLED Displays”; dated Dec. 2006 (12 pages).
Chaji et al.: “A Sub-μA fast-settling current-programmed pixel circuit for AMOLED displays”; dated Sep. 2007.
Chaji et al.: “An Enhanced and Simplified Optical Feedback Pixel Circuit for AMOLED Displays”; dated Oct. 2006.
Chaji et al.: “Compensation technique for DC and transient instability of thin film transistor circuits for large-area devices”; dated Aug. 2008.
Chaji et al.: “Driving scheme for stable operation of 2-TFT a-Si AMOLED pixel”; dated Apr. 2005 (2 pages).
Chaji et al.: “Dynamic-effect compensating technique for stable a-Si:H AMOLED displays”; dated Aug. 2005 (4 pages).
Chaji et al.: “Electrical Compensation of OLED Luminance Degradation”; dated Dec. 2007 (3 pages).
Chaji et al.: “eUTDSP: a design study of a new VLIW-based DSP architecture”; dated May 2003 (4 pages).
Chaji et al.: “Fast and Offset-Leakage Insensitive Current-Mode Line Driver for Active Matrix Displays and Sensors”; dated Feb. 2009 (8 pages).
Chaji et al.: “High Speed Low Power Adder Design With a New Logic Style: Pseudo Dynamic Logic (SDL)”; dated Oct. 2001 (4 pages).
Chaji et al.: “High-precision fast current source for large-area current-programmed a-Si flat panels”; dated Sep. 2006 (4 pages).
Chaji et al.: “Low-Cost AMOLED Television with IGNIS Compensating Technology”; dated May 2008 (4 pages).
Chaji et al.: “Low-Cost Stable a-Si:H AMOLED Display for Portable Applications”; dated Jun. 2006 (4 pages).
Chaji et al.: “Low-Power Low-Cost Voltage-Programmed a-Si:H AMOLED Display”; dated Jun. 2008 (5 pages).
Chaji et al.: “Merged phototransistor pixel with enhanced near infrared response and flicker noise reduction for biomolecular imaging”; dated Nov. 2008 (3 pages).
Chaji et al.: “Parallel Addressing Scheme for Voltage-Programmed Active-Matrix OLED Displays”; dated May 2007 (6 pages).
Chaji et al.: “Pseudo dynamic logic (SDL): a high-speed and low-power dynamic logic family”; dated 2002 (4 pages).
Chaji et al.: “Stable a-Si:H circuits based on short-term stress stability of amorphous silicon thin film transistors”; dated May 2006 (4 pages).
Chaji et al.: “Stable Pixel Circuit for Small-Area High-Resolution a-Si:H AMOLED Displays”; dated Oct. 2008 (6 pages).
Chaji et al.: “Stable RGBW AMOLED display with OLED degradation compensation using electrical feedback”; dated Feb. 2010 (2 pages).
Chaji et al.: “Thin-Film Transistor Integration for Biomedical Imaging and AMOLED Displays”; dated May 2008 (177 pages).
Chapter 3: Color Spaces“Keith Jack:” Video Demystified: “A Handbook for the Digital Engineer” 2001 Referex ORD-0000-00-00 USA EP040425529 ISBN: 1-878707-56-6 pp. 32-33.
Chapter 8: Alternative Flat Panel Display 1-25 Technologies; Willem den Boer: “Active Matrix Liquid Crystal Display: Fundamentals and Applications” 2005 Referex ORD-0000-00-00 U.K.; XP040426102 ISBN: 0-7506-7813-5 pp. 206-209 p. 208.
European Partial Search Report Application No. 12 15 6251.6 European Patent Office dated May 30, 2012 (7 pages).
European Patent Office Communication Application No. 05 82 1114 dated Jan. 11, 2013 (9 pages).
European Patent Office Communication with Supplemental European Search Report for EP Application No. 07 70 1644.2 , dated Aug. 18, 2009 (12 pages).
European Search Report Application No. 10 83 4294.0-1903, dated Apr. 8, 2013 (9 pages).
European Search Report Application No. EP 05 80 7905 dated Apr. 2, 2009 (5 pages).
European Search Report Application No. EP 05 82 1114 dated Mar. 27, 2009 (2 pages).
European Search Report Application No. EP 07 70 1644 dated Aug. 5, 2009.
European Search Report Application No. EP 10 17 5764 dated Oct. 18, 2010 (2 pages).
European Search Report Application No. EP 10 82 9593.2 European Patent Office dated May 17, 2013 (7 pages).
European Search Report Application No. EP 12 15 6251.6 European Patent Office dated Oct. 12, 2012 (18 pages).
European Search Report Application No. EP. 11 175 225.9 dated Nov. 4, 2011 (9 pages).
European Supplementary Search Report Application No. EP 09 80 2309 dated May 8, 2011 (14 pages).
European Supplementary Search Report Application No. EP 09 83 1339.8 dated Mar. 26, 2012 (11 pages).
Extended European Search Report Application No. EP 06 75 2777.0 dated Dec. 6, 2010 (21 pages).
Extended European Search Report Application No. EP 09 73 2338.0 dated May 24, 2011 (8 pages).
Extended European Search Report Application No. EP 11 17 5223., 4 dated Nov. 8, 2011 (8 pages).
Extended European Search Report Application No. EP 12 17 4465.0 European Patent Office dated Sep. 7, 2012 (9 pages).
Fan et al. “LTPS_TFT Pixel Circuit Compensation for TFT Threshold Voltage Shift and IR-Drop on the Power Line for Amolded Displays” 5 pages copyright 2012.
Goh et al. “A New a-Si:H Thin-Film Transistor Pixel Circuit for Active-Matrix Organic Light-Emitting Diodes” IEEE Electron Device Letters vol. 24 No. 9 Sep. 2003 pp. 583-585.
International Search Report Application No. PCT/CA2005/001844 dated Mar. 28, 2006 (2 pages).
International Search Report Application No. PCT/CA2006/000941 dated Oct. 3, 2006 (2 pages).
International Search Report Application No. PCT/CA2007/000013 dated May 7, 2007.
International Search Report Application No. PCT/CA2009/001049 dated Dec. 7, 2009 (4 pages).
International Search Report Application No. PCT/CA2009/001769 dated Apr. 8, 2010.
International Search Report Application No. PCT/IB2010/002898 Canadian Intellectual Property Office dated Jul. 28, 2009 (5 pages).
International Search Report Application No. PCT/IB2010/055481 dated Apr. 7, 2011 (3 pages).
International Search Report Application No. PCT/IB2011/051103 dated Jul. 8, 2011 3 pages.
International Search Report Application No. PCT/IB2012/052651 5 pages dated Sep. 11, 2012.
International Searching Authority Written Opinion Application No. PCT/IB2010/055481 dated Apr. 7, 2011 (6 pages).
International Searching Authority Written Opinion Application No. PCT/IB2012/052651 6 pages dated Sep. 11, 2012.
International Searching Authority Written Opinion Application No. PCT/IB2011/051103 dated Jul. 8, 2011 6 pages.
International Searching Authority Written Opinion Application No. PCT/IB2010/002898 Canadian Intellectual Property Office dated Mar. 30, 2011 (8 pages).
International Searching Authority Written Opinion Application No. PCT/CA2009/001769 dated Apr. 8, 2010 (8 pages).
Jafarabadiashtiani et al.: “A New Driving Method for a-Si AMOLED Displays Based on Voltage Feedback”; dated May 2005 (4 pages).
Lee et al.: “Ambipolar Thin-Film Transistors Fabricated by PECVD Nanocrystalline Silicon”; dated May 2006 (6 pages).
Ma e y et al: “Organic Light-Emitting Diode/Thin Film Transistor Integration for foldable Displays” Conference record of the 1997 International display research conference and international workshops on LCD technology and emissive technology. Toronto Sep. 15-19, 1997 (6 pages).
Matsueda y et al.: “35.1: 2.5-in. AMOLED with Integrated 6-bit Gamma Compensated Digital Data Driver”; dated May 2004 (4 pages).
Nathan et al. “Amorphous Silicon Thin Film Transistor Circuit Integration for Organic LED Displays on Glass and Plastic” IEEE Journal of Solid-State Circuits vol. 39 No. Sep. 9, 2004 pp. 1477-1486.
Nathan et al.: “Backplane Requirements for Active Matrix Organic Light Emitting Diode Displays”; dated Sep. 2006 (16 pages).
Nathan et al.: “Call for papers second international workshop on compact thin-film transistor (TFT) modeling for circuit simulation”; dated Sep. 2009 (1 page).
Nathan et al.: “Driving schemes for a-Si and LTPS AMOLED displays”; dated Dec. 2005 (11 pages).
Nathan et al.: “Invited Paper: a-Si for AMOLED—Meeting the Performance and Cost Demands of Display Applications (Cell Phone to HDTV)”; dated Jun. 2006 (4 pages).
Nathan et al.: “Thin film imaging technology on glass and plastic”; dated Oct. 31-Nov. 2, 2000 (4 pages).
Ono et al. “Shared Pixel Compensation Circuit for AM-OLED Displays” Proceedings of the 9th Asian Symposium on Information Display (ASID) pp. 462-465 New Delhi dated Oct. 8-12, 2006 (4 pages).
Philipp: “Charge transfer sensing” Sensor Review vol. 19 No. 2 Dec. 31, 1999 (Dec. 31, 1999) 10 pages.
Rafati et al.: “Comparison of a 17 b multiplier in Dual-rail domino and in Dual-rail D L (D L) logic styles”; dated 2002 (4 pages).
Safavaian et al.: “Three-TFT image sensor for real-time digital X-ray imaging”; dated Feb. 2, 2006 (2 pages).
Safavian et al.: “3-TFT active pixel sensor with correlated double sampling readout circuit for real-time medical x-ray imaging”; dated Jun. 2006 (4 pages).
Safavian et al.: “A novel current scaling active pixel sensor with correlated double sampling readout circuit for real time medical x-ray imaging”; dated May 2007 (7 pages).
Safavian et al.: “A novel hybrid active-passive pixel with correlated double sampling CMOS readout circuit for medical x-ray imaging”; dated May 2008 (4 pages).
Safavian et al.: “Self-compensated a-Si:H detector with current-mode readout circuit for digital X-ray fluoroscopy”; dated Aug. 2005 (4 pages).
Safavian et al.: “TFT active image sensor with current-mode readout circuit for digital x-ray fluoroscopy [5969D-82]”; dated Sep. 2005 (9 pages).
Smith, Lindsay I., “A tutorial on Principal Components Analysis,” dated Feb. 26, 2001 (27 pages).
Stewart M. et al. “Polysilicon TFT technology for active matrix OLED displays” IEEE transactions on electron devices vol. 48 No. 5 May 2001 (7 pages).
Vygranenko et al.: “Stability of indium-oxide thin-film transistors by reactive ion beam assisted deposition”; dated Feb. 2009.
Wang et al.: “Indium oxides by reactive ion beam assisted evaporation: From material study to device application,” dated Mar. 2009 (6 pages).
Yi He et al. “Current-Source a-Si:H Thin Film Transistor Circuit for Active-Matrix Organic Light-Emitting Displays” IEEE Electron Device Letters vol. 21 No. 12 Dec. 2000 pp. 590-592.
International Search Report Application No. PCT/IB2013/059074, dated Dec. 18, 2013 (5 pages).
International Searching Authority Written Opinion Application No. PCT/IB2013/059074, dated Dec. 18, 2013 (8 pages).
Office Action dated Apr. 5, 2013, in corresponding Japanese Patent Application No. 2011-504297, (w/English translation) (6 pages).
Second Office Action with Search Report, dated Jun. 9, 2013, in corresponding Chinese Patent Application No. 200980120671, (w/English translation) (12 pages).
Office Action dated Jun. 10, 2014, in corresponding Japanese Patent Application No. 2013-169044, (w/English translation) (5 pages).
Related Publications (1)
Number Date Country
20180084621 A1 Mar 2018 US
Provisional Applications (1)
Number Date Country
61046256 Apr 2008 US
Continuations (3)
Number Date Country
Parent 14466084 Aug 2014 US
Child 15827015 US
Parent 14094175 Dec 2013 US
Child 14466084 US
Parent 12425734 Apr 2009 US
Child 14094175 US