The present disclosure is directed towards an improved system and method for enabling a high turndown ratio for a bottom ash handling system. More specifically, the present disclosure is directed towards a structure for modulating the flow capacity between a hopper, a crusher and a conveyor to provide superior processing capability.
The present invention relates to a wet bottom ash processing system. As mined, coal used to provide an energy source for a steam boiler contains varying quantities of mineral matter which, when the coal is burned, results in creation of the combustible residue known as ash. As is known, two types of ash result from operation of solid fuel-fired boilers, namely, bottom ash and fly ash. Bottom ash is slag that builds up on the heat absorbing surfaces of a furnace and that eventually falls by its own weight or as a result of load changes or the blowing of soot.
In the prior art, systems used to remove bottom ash from beneath a solid fuel-fired boiler generally fall into two categories; namely, wet or dry. The wet category consists of devices that employ a water filled tank to cool the ash and allow removal either mechanically and/or with a hydraulic conveying system. An example system for removing wet bottom ash includes a hopper for collecting the ash, a crusher for grinding the ash; and a conveyor for removing and/or dewatering the ash. One challenge that exists with such systems is the comparative capacity for each subsystem varies greatly. That is, while an example hopper may have a potential throughput of 200 tons per hour, the crusher may only process 100 tons per hour, and the conveyance subsystem may only process 10 tons per hour. In such an example, the system needs to support a 20:1 turndown ratio of ash in order to avoid a bottleneck or clog in the system.
Other prior art approaches are known to exist to attempt to address the modulation of such process flow. For instance, U.S. Pat. No. 5,255,615 (Magaldi). discloses a system for discharging bottom ash from steam-producing boilers that includes an ash hopper with a bottom discharge controlled by a gate valve. Still another approach is disclosed and claimed in U.S. Pat. No. 10,124,968 B2 (Zotti et al.) which calls for a bottom gate for controlling the flow of ash from the hopper. However, these approaches in fact create problems stemming from the use of the bottom gate to control the flow of ash results in arching. Arching (also known as bridging) occurs when an obstruction in the shape of an arch or a bridge forms over the outlet as a result of the material's cohesive strength. When fly ash forms a stable arch above the outlet, discharge is prevented and a no-flow condition results.
Existing active flow control from such gate or valve mechanisms require undesirable frequent adjustments and/or clearance steps to compensate for buildup due to the partial opening or closing of such valves and gates. That is, the partial closing of such mechanisms increases the likelihood of larger particles which would otherwise pass from the hopper blocking the bottom gate, which increases the risk of arching. In arching, the material forms an arch (or a bridge) above the gate that prevents or limits further flow.
Such existing protocols for dealing with arching are unsatisfactory insofar as they necessitate a never ending cycle to adjust for limitations of the system. That is, in existing bottom ash feeders, the service protocol entails opening the bottom gate to the hopper to clear the existing arch. This step results in overfeeding, i.e., overloading the input to the conveyor system leading from the hopper. In response to overfeeding of the conveyor system, the bottom gate is closed to reduce overfeeding, which in turn generates further arching.
Thus, there is a need to provide a flow turndown mechanism that effectively controls ash independent without of any gate control so as to avoid flow control problems such as arching.
A further problem arises from the use of low capacity conveyors now used with the bottom ash control systems. Originally, bottom ash hoppers and related control mechanisms were designed to work as batch systems, which were acceptable so long as conveyance system from the hopper could handle the volume output of bottom ash. However, with the more recent installation and use of low capacity conveyors with such systems, the bottom ash processing equipment has to run continuous operations, and try to control feed to account for the volumetric “choke point” created by the low capacity conveyor. Such existing bottom ash processing systems were not designed to operate in such a manner.
Thus, there is a need to adjust the flow of ash to a conveyor to enable continuous operations in a comparatively low (relative to the hopper and crusher capacity) of a bottom ash processing system.
The following terms are used in the claims of the patent as filed and are intended to have their broadest plain and ordinary meaning consistent with the requirements of the law.
A “bottom gate” refers generally to an mechanism on the opening on the hopper leading to the crusher which closes the hopper when not operating (e.g., for cleaning or maintenance) but does not control the flow of bottom ash from the hopper when operating, thereby maintaining a constant fixed level of opening so as to avoid aggravation of potential arching problems.
Where alternative meanings are possible, the broadest meaning is intended. All words used in the claims set forth below are intended to be used in the normal, customary usage of grammar and the English language.
The present disclosure solves existing needs for improved turndown in bottom ash applications by providing a fixed mechanism for controlling bottom ash received from a hopper bottom gate. In a first embodiment of the disclosure, the system includes a variable speed side discharge crusher operating in conjunction with a offset duct for controlling the output of the bottom ash received from the hopper. Such a configuration would, in effect, turn the crusher into a pumping device to control bottom ash flow. Still another embodiment would entail an orifice plate between the bottom gate and the crusher so as to provide a fixed restriction decreasing the inlet of the crusher. Yet another embodiment would entail a fixed extended wear plate beneath the bottom gate and extending into the crusher section thus decreasing the inlet of the crusher.
Thus, it can be seen that one object of the present disclosure is to provide a mechanism and configuration for controlling the flow of ash received from a hopper for processing and conveyance.
Another object of the present disclosure is to provide a mechanism for enabling a turndown ratio for bottom ash being processed from a hopper.
Still another object of the present invention is to provide a fixed mechanism to reduce or eliminate arching problems in controlling ash flow from a hopper.
Yet another object of the present invention is to provide a flow turndown mechanism for receiving ash from a hopper to be crushed, wherein the flow control mechanism does not involve the bottom gate controlling flow of the ash.
It will be understood that not every claim will employ each and every object as set forth above in the operation of the present invention. However, these and other objects, advantages and features of the invention will be apparent from the following description of the preferred embodiments, considered along with the accompanying drawings.
Set forth below is a description of what is currently believed to be the preferred embodiment or best examples of the invention claimed. Future and present alternatives and modifications to this preferred embodiment are contemplated. Any alternatives or modifications which make insubstantial changes in function, in purpose, in structure or in result are intended to be covered by the claims in this patent.
As shown in
As shown in
The above description is not intended to limit the meaning of the words used in the following claims that define the invention. Rather, it is contemplated that future modifications in structure, function or result will exist that are not substantial changes and that all such insubstantial changes in what is claimed are intended to be covered by the claims.