System and method for a cooperative conversational voice user interface

Information

  • Patent Grant
  • 11222626
  • Patent Number
    11,222,626
  • Date Filed
    Monday, May 20, 2019
    5 years ago
  • Date Issued
    Tuesday, January 11, 2022
    3 years ago
Abstract
A cooperative conversational voice user interface is provided. The cooperative conversational voice user interface may build upon short-term and long-term shared knowledge to generate one or more explicit and/or implicit hypotheses about an intent of a user utterance. The hypotheses may be ranked based on varying degrees of certainty, and an adaptive response may be generated for the user. Responses may be worded based on the degrees of certainty and to frame an appropriate domain for a subsequent utterance. In one implementation, misrecognitions may be tolerated, and conversational course may be corrected based on subsequent utterances and/or responses.
Description
FIELD OF THE INVENTION

The invention relates to a cooperative conversational model for a human to machine voice user interface.


BACKGROUND OF THE INVENTION

Advances in technology, particularly within the convergence space, have resulted in an increase in demand for voice recognition software that can exploit technology in ways that are intuitive to humans. While communication between human beings is most often “cooperative,” in that information and/or context is shared to advance mutual conversational goals, existing Human-to-Machine interfaces fail to provide the same level of intuitive interaction. For example, each human participant in a conversation can contribute to an exchange for the benefit of the exchange. This is done through shared assumptions and expectations regarding various aspects of the conversation, such as the topic, participant knowledge about the topic, expectations of the other participant's knowledge about the topic, appropriate word usage for the topic and/or participants, conversational development based on previous utterances, the participants' tone or inflection, the quality and quantity of contribution expected from each participant, and many other factors. Participating in conversations that continually build and draw upon shared information is a natural and intuitive way for humans to converse.


In contrast, complex Human-to-Machine interfaces do not allow users to exploit technology in an intuitive way, which inhibits mass-market adoption for various technologies. Incorporating a speech interface helps to alleviate this burden by making interaction easier and faster, but existing speech interfaces (when they actually work) still require significant learning on the part of the user. That is, existing speech interfaces are unable to bridge the gap between archaic Human-to-Machine interfaces and conversational speech that would make interaction with systems feel normal. Users should be able to directly request what they want from a system in a normal, conversational fashion, without having to memorize exact words or phrases. Alternatively, when users are uncertain of particular needs, they should be able to engage the system in a productive, cooperative dialogue to resolve their requests. Instead, existing speech interfaces force users to dumb down their requests to match simple sets of instructions in simple languages in order to communicate requests in ways that systems can understand. Using existing speech interfaces, there is virtually no option for dialogue between the user and the system to satisfy mutual goals.


Therefore, existing systems lack a conversational speech model that can provide users with the ability to interact with systems in ways that are inherently intuitive to human beings. Existing systems suffer from these and other problems.


SUMMARY OF THE INVENTION

According to various embodiments and aspects of the invention, a cooperative conversational voice user interface may understand free form human utterances, freeing users from being restricted to a fixed set of commands and/or requests. Rather, users can engage in cooperative conversations with a machine to complete a request or series of requests using a natural, intuitive, free form manner of expression.


According to an aspect of the invention, an exemplary system architecture for implementing a cooperative conversational voice user interface is provided. The system may receive an input, which may include a human utterance received by an input device, where the utterance may include one or more requests. As used herein, an “utterance” may be words, syllables, phonemes, or any other audible sound made by a human being. As used herein, a “request” may be a command, directive, or other instruction for a device, computer, or other machine to retrieve information, perform a task, or take some other action. In one implementation, the input may be a multi-modal input, where at least part of the multi-modal input is an utterance. The utterance component of the input may be processed by a speech recognition engine (which may alternatively be referred to as an Automatic Speech Recognizer or ASR) to generate one or more preliminary interpretations of the utterance. The one or more preliminary interpretations may then be provided to a conversational speech engine for further processing, where the conversational speech engine may communicate with one or more databases to generate an adaptive conversational response, which may be returned to the user as an output. In one implementation, the output may be a multi-modal output. For example, the utterance may include a request to perform an action, and the output may include a conversational response reporting success or failure, as well as an execution of the action.


According to another aspect of the invention, an exemplary conversational speech engine may generate an adaptive conversational response to a request or series of requests. The conversational speech engine may include a free form voice search module that may understand an utterance made using typical, day-to-day language (i.e., in free form), and may account for variations in how humans normally speak, the vocabulary they use, and the conditions in which they speak. To account for intangible variables of human speech, the free form search module may include models of casual human speech. For example, in one implementation, the free form search module may understand specialized jargon and/or slang, tolerate variations in word order, and tolerate verbalized pauses or stuttered speech. For example, formalized English requests, where a verb precedes a noun, may be treated in an equivalent manner to requests where the noun precedes the verb. In another implementation, compound requests and/or compound tasks with multiple variables may be identified in a single utterance. By identifying all relevant information for completing one or more tasks from a single utterance, advantages may be provided over existing voice user interfaces, such as Command and Control systems that use verbal menus to restrict information that a person can provide at a given point. In another implementation, inferring intended requests from incomplete or ambiguous requests may provide a conversational feel. By modeling what contextual signifiers, qualifiers, or other information may be required to perform a task in an identified context, an adaptive response may be generated, such as prompting a user for missing contextual signifiers, qualifiers, or other information. In one implementation, the response may ask for missing information in a way that most restricts possible interpretations, and the response may be framed to establish a domain for a subsequent user utterance. In another implementation, common alternatives for nouns and verbs may be recognized to reflect variations in usage patterns according to various criteria. Thus, variations in expression may be supported because word order is unimportant or unanticipated, and nouns and/or verbs may be represented in different ways to give simplistic, yet representative, examples. In another implementation, requests may be inferred from contradictory or otherwise inaccurate information, such as when an utterance includes starts and stops, restarts, stutters, run-on sentences, or other imperfect speech. For example, a user may sometimes change their mind, and thus alter the request in mid-utterance, and the imperfect speech feature may nonetheless be able to infer a request based on models of human speech. For example, various models may indicate that a last criterion is most likely to be correct, or intonation, emphasis, stress, use of the word “not,” or other models may indicate which criterion is most likely to be correct.


According to another aspect of the invention, the conversational speech engine may include a noise tolerance module that may discard words or noise which has no meaning in a given context to reduce a likelihood of confusion. Moreover, the noise tolerance module may filter out environmental and non-human noise to further reduce a likelihood of confusion. In one implementation, the noise tolerance module may cooperate with other modules and features to filter out words that do not fit into an identified context. For example, the noise tolerance module may filter other human conversations and/or utterances within a range of one or more microphones. For example, a single device may include multiple microphones, or multiple devices may each include one or more microphones, and the noise tolerance module may collate inputs and cooperatively filter out sound by comparing a speech signal from the various microphones. The noise tolerance module may also filter out non-human environmental noise within range of the microphones, out-of-vocabulary words caused by speaker ambiguity or malapropisms, or other noise that may be unrelated to a target request. Performance benchmarks for the noise tolerance module may be defined by noise models based on human criteria. For example, if a driver of a car is 92% likely to be understood by a passenger when traveling at 65 miles-per-hour with windows cracked, then performance benchmarks for the noise tolerance module may have a similar performance under such conditions.


According to another aspect of the invention, the conversational speech engine may include a context determination process that determines one or more contexts for a request to establish meaning within a conversation. The one or more contexts may be determined by having one or more context domain agents compete to determine a most appropriate domain for a given utterance. Once a given domain agent “wins” the competition, the winning domain agent may be responsible for establishing or inferring further contexts and updating short-term and long-term shared knowledge. If there is a deadlock between context domain agents, an adaptive conversational response may prompt the user to assist in disambiguating between the deadlocked agents. Moreover, the context determination process may infer intended operations and/or context based on previous utterances and/or requests, whereas existing systems consider each utterance independently, potentially making the same errors over and over again. For example, if a given interpretation turns out to be incorrect, the incorrect interpretation may be removed as a potential interpretation from one or more grammars associated with the speech recognition engine and/or from possible interpretations determined by the conversational speech engine, thereby assuring that a mistake will not be repeated for an identical utterance.


The context determination process may provide advantages over existing voice user interfaces by continually updating one or more models of an existing context and establishing context as a by-product of a conversation, which cannot be established a priori. Rather, the context determination process may track conversation topics and attempt to fit a current utterance into recent contexts, including switching between contexts as tasks are completed, partially completed, requested, etc. The context determination process may identify one or more context domains for an utterance by defining a collection of related functions that may be useful for users in various context domains. Moreover, each context domain may have relevant vocabularies and thought collections to model word groupings, which when evaluated together, may disambiguate one context domain from another. Thus, eliminating out-of-context words and noise words when searching for relevant combinations may enhance accuracy of inferences. This provides advantages over existing systems that attempt to assign meaning to every component of an utterance (i.e., including out-of-context words and noise words), which results in nearly infinite possible combinations and greater likelihood of confusion. The context determination process may also be self-aware, assigning degrees of certainty to one or more generated hypotheses, where a hypothesis may be developed to account for variations in environmental conditions, speaker ambiguity, accents, or other factors. By identifying a context, capabilities within the context, vocabularies within the context, what tasks are done most often historically in the context, what task was just completed, etc., the context determination process may establish intent from rather meager phonetic clues. Moreover, just as in human-to-human conversation, users may switch contexts at any time without confusion, enabling various context domains to be rapidly selected, without menu-driven dead ends, when an utterance is unambiguous.


According to another aspect of the invention, an exemplary cooperative conversational model may build upon free form voice search, noise tolerance, and context determination to implement a conversational Human-to-Machine interface that reflects human interaction and normal conversational behavior. That is, the cooperative conversational model enables humans and machines to participant in a conversation with an accepted purpose or direction, with each participant contributing to the conversation for the benefit of the conversation. By taking advantage of human presumptions about utterances that humans rely upon, both as speakers and listeners, a Human-to-Machine interface may be analogous to everyday human-to-human conversation. In one implementation, the exemplary cooperative conversation model may take incoming data (shared knowledge) to inform a decision (intelligent hypothesis building), and then may refine the decision and generate a response (adaptive response building).


According to another aspect of the invention, shared knowledge may include both short-term and long-term knowledge. Short-term knowledge may accumulate during a single conversation, where input received during a single conversation may be retained. The shared knowledge may include cross-modality awareness, where in addition to accumulating input relating to user utterances, requests, locations, etc., the shared knowledge may accumulate a current user interface state relating to other modal inputs to further build shared knowledge models. The shared knowledge may be used to build one or more intelligent hypotheses using current and relevant information, build long-term shared knowledge by identifying information with long-term significance, and generate adaptive responses with relevant state and word usage information. Moreover, because cooperative conversations model human conversations, short-term session data may be expired after a psychologically appropriate amount of time, thereby humanizing system behavior, reducing a likelihood of contextual confusion based on stale data, while also adding relevant information from an expired session context to long-term knowledge models. Long-term shared knowledge may generally be user-centric, rather than session-based, where inputs may be accumulated over time to build user, environmental, cognitive, historical, or other long-term knowledge models. Long-term and short-term shared knowledge may be used simultaneously anytime a user engages in a cooperative conversation. Long-term shared knowledge may include explicit and/or implicit user preferences, a history of recent contexts, requests, tasks, etc., user-specific jargon related to vocabularies and/or capabilities of a context, most often used word choices, or other information. The long-term shared knowledge may be used to build one or more intelligent hypotheses using current and relevant information, generate adaptive responses with appropriate word choices when unavailable via short-term shared knowledge, refine long-term shared knowledge models, identify a frequency of specific tasks, identify tasks a user frequently has difficulty with, or provide other information and/or analysis to generate more accurate conversational responses. Shared knowledge may also be used to adapt a level of unprompted support (e.g., for novices versus experienced users, users who are frequently misrecognized, etc.) Thus, shared knowledge may enable a user and a voice user interface to share assumptions and expectations such as topic knowledge, conversation history, word usage, jargon, tone, or other assumptions and/or expectations that facilitate a cooperative conversation between human users and a system.


According to another aspect of the invention, a conversation type may be identified for any given utterance. Categorizing and developing conceptual models for various types of exchanges may consistently align user expectations and domain capabilities. One or more intelligent hypotheses may be generated as to a conversation type by considering conversational goals, participant roles, and/or an allocation of information among the participants. Based on the conversational goals, participant roles, and allocation of information, the intelligent hypotheses may consider various factors to classify a conversation (or utterance) into general types of conversations that can interact with one another to form many more variations and permutations of conversation types (e.g., a conversation type may change dynamically as information is reallocated from one participant to another, or as conversational goals change based on the reallocation of information).


According to another aspect of the invention, the intelligent hypotheses may include one or more hypotheses of a user's intent in an utterance. In addition, the intelligent hypotheses may use short-term and/or long-term shared knowledge to proactively build and evaluate interaction with a user as a conversation progresses or over time. The hypotheses may model human-to-human interaction to include a varying degree of certainty for each hypothesis. That is, just as humans rely on knowledge shared by participants to examine how much and what kind of information was available, the intelligent hypotheses may leverage the identified conversation type and shared knowledge to generate a degree of certainty for each hypothesis.


According to another aspect of the invention, syntactically, grammatically, and contextually sensitive “intelligent responses” may be generated from the intelligent hypotheses that can be used to generate a conversational experience for a user, while also guiding the user to reply in a manner favorable for recognition. The intelligent responses may create a conversational feel by adapting to a user's manner of speaking, framing responses appropriately, and having natural variation and/or personality (e.g., by varying tone, pace, timing, inflection, word use, jargon, and other variables in a verbal or audible response).


According to another aspect of the invention, the intelligent responses may adapt to a user's manner of speaking by using contextual signifiers and grammatical rules to generate one or more sentences that may cooperate with the user. By taking advantage of shared knowledge about how a user utters a request, the responses may be modeled using similar techniques used to recognize requests. The intelligent responses may rate possible responses statistically and/or randomize responses, which creates an opportunity to build an exchange with natural variation and conversational feel. This provides advantages over existing voice user interfaces where input and output is incongruous, as the input is “conversational” and the output is “computerese.”


According to another aspect of the invention, the intelligent responses may frame responses to influence a user reply utterance for easy recognition. For example, the responses may be modeled to illicit utterances from the user that may be more likely to result in a completed request. Thus, the responses may conform to a cooperative nature of human dialog and a natural human tendency to “parrot” what was just heard as part of a next utterance. Moreover, knowledge of current context may enhance responses to generate more meaningful conversational responses. Framing the responses may also deal with misrecognitions according to human models. For example, humans frequently remember a number of recent utterances, especially when one or more previous utterances were misrecognized or unrecognized. Another participant in the conversation may limit correction to a part of the utterance that was misrecognized or unrecognized, or over subsequent utterances and/or other interactions, clues may be provided to indicate the initial interpretation was incorrect. Thus, by storing and analyzing multiple utterances, utterances from earlier in a conversation may be corrected as the conversation progresses.


According to another aspect of the invention, the intelligent responses may include multi-modal, or cross-modal, responses to a user. In one implementation, responses may be aware of and control one or more devices and/or interfaces, and users may respond by using whichever input method, or combination of input methods, is most convenient.


According to another aspect of the invention, the intelligent responses may correct a course of a conversation without interrupting conversational flow. That is, even though the intelligent responses may be reasonably “sure,” the intelligent responses may nonetheless sometimes be incorrect. While existing voice user interfaces tend to fail on average conversational missteps, normal human interactions may expect missteps and deal with them appropriately. Thus, responses after misrecognitions may be modeled after clarifications, rather than errors, and words may be chosen in subsequent responses to move conversation forward and establish an appropriate domain to be explored with the user.


Other objects and advantages of the invention will be apparent to those skilled in the art based on the following drawings and detailed description.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an exemplary block diagram of a system architecture according to one aspect of the invention.



FIG. 2 is an exemplary block diagram of a conversational speech engine according to one aspect of the invention.



FIG. 3 is an exemplary block diagram of a cooperative conversational model according to one aspect of the invention.





DETAILED DESCRIPTION

Referring to FIG. 1, an exemplary system architecture for implementing a cooperative conversational voice user interface is illustrated according to one aspect of the invention. The system may receive an input 105 from a user, where in one implementation, input 105 may be an utterance received by an input device (e.g., a microphone), where the utterance may include one or more requests. Input 105 may also be a multi-modal input, where at least part of the multi-modal input is an utterance. For example, the input device may include a combination of a microphone and a touch-screen device, and input 105 may include an utterance that includes a request relating to a portion of a display on the touch-screen device that the user is touching. For instance, the touch-screen device may be a navigation device, and input 105 may include an utterance of “Give me directions to here,” where the user may be requesting directions to a desired destination on the display of the navigation device.


The utterance component of input 105 may be processed by a speech recognition engine 110 (which may alternatively be referred to herein as Automatic Speech Recognizer 110, or as shown in FIG. 1, ASR 110) to generate one or more preliminary interpretations of the utterance. The speech recognition engine 110 may process the utterance using any suitable technique known in the art. For example, in one implementation, the speech recognition engine 110 may interpret the utterance using techniques of phonetic dictation to recognize a phoneme stream, as described in U.S. patent application Ser. No. 11/513,269, entitled “Dynamic Speech Sharpening,” filed Aug. 31, 2006, which issued as U.S. Pat. No. 7,634,409 on Dec. 15, 2009, and which is hereby incorporated by reference in its entirety. The one or more preliminary interpretations generated by the speech recognition engine 110 may then be provided to a conversational speech engine 115 for further processing. Conversational speech engine 115 may include a conversational language processor 120 and/or a voice search engine 125, described in greater detail in FIG. 2 below. Conversational speech engine 115 may communicate with one or more databases 130 to generate an adaptive conversational response, which may be returned to the user as an output 140. In one implementation, output 140 may be a multi-modal output and/or an interaction with one or more applications 145 to complete the request. For example, output 140 may include a combination of an audible response and a display of a route on a navigation device. For example, the utterance may include a request to perform an action, and output 140 may include a conversational response reporting success or failure, as well as an execution of the action. In addition, in various implementations, the speech recognition engine 110, conversational speech engine 115, and/or databases 130 may reside locally (e.g., on a user device), remotely (e.g., on a server), or a hybrid model of local and remote processing may be used (e.g., lightweight applications may be processed locally while computationally intensive applications may be processed remotely).


Referring to FIG. 2, an exemplary block diagram is provided illustrating a conversational speech engine 215 according to one aspect of the invention. Conversational speech engine 215 may include a conversational language processor 220 that generates an adaptive conversational response to a request or series of requests using a free form voice search module 245, a noise tolerance module 250, and/or a context determination process 255. According to one aspect of the invention, modules 245-255 may communicate with a voice search engine 225 that includes one or more context domain agents 230 and/or one or more vocabularies 235 to aid in interpreting utterances and generating responses, as described in “Enhancing the VUE™ (Voce-User-Experience) Through Conversational Speech,” by Tom Freeman and Larry Baldwin, which is herein incorporated by reference in its entirety. Conversational speech engine 215 may generate an adaptive conversational response to one or more requests, where the requests may depend on unspoken assumptions, incomplete information, context established by previous utterances, user profiles, historical profiles, environmental profiles, or other information. Moreover, conversational speech engine 215 may track which requests have been completed, which requests are being processed, and/or which requests cannot be processed due to incomplete or inaccurate information, and the response may be generated accordingly.


According to one aspect of the invention, free form voice search module 245 may understand an utterance made using typical, day-to-day language (i.e., in free form), and may account for variations in how humans normally speak, the vocabulary they use, and the conditions in which they speak. Because variables such as stress, distraction, and serendipity are always different and infinitely varied, free form search module 245 may be designed with a goal of understanding that no human will come to the same Human-to-Machine interface situation in the same way twice. Thus, free form search module 245 may implement one or more features that model casual human speech. In various implementations, free form search module 245 may include, among other things, a free form utterance feature, a one-step access feature, an inferencing intended operations feature, an alternative expression feature, and/or an imperfect speech feature.


The free form utterance feature may understand specialized jargon and/or slang, tolerate variations in word order (e.g., whether a subject of a request comes before or after a verb may be irrelevant), and tolerate verbalized pauses (e.g., “um,” “ah,” “eh,” and other utterances without meaning). For example, the free form utterance feature may treat formalized English verb-before-noun requests in an equivalent manner to free form requests where a noun may precede a verb. For example, user utterances of “Change it to the Squizz” and “You know, um, that Squizz channel, ah, switch it there” may be treated equivalently (where Squizz is a channel on XM Satellite Radio). In either case, the free form utterance feature is able to identify “Squizz” as a subject of the utterance and “Change it” or “switch it” as a verb or request for the utterance (e.g., by cooperating with context determination process 255, or other features, and identifying a relevant context domain agent 230 and/or vocabulary 235 to interpret the utterance).


The one-step access feature may understand utterances that include compound requests with multiple variables. For example, a user utterance may be “What is the forecast for Boston this weekend?” The one-step access feature may identify “weather” as a context (e.g., by cooperating with context determination process 255, or other features, and identifying “forecast” as a synonym of “weather”), and search for a city equal to “Boston” and a time equal to “weekend.” By identifying all relevant information for completing a task from a single utterance, the one-step access feature may overcome drawbacks of existing voice user interfaces, such as Command and Control systems that use verbal menus to restrict information that a person can provide at a given point (e.g., a Command and Control system for a phone directory service may say: “State please,” . . . “City please,” . . . “What listing,” etc.). Moreover, some utterances may include compound requests, and the one-step access feature may decompose the compound requests into sub-tasks. For example, a user utterance of “I need to be at a meeting tomorrow in San Francisco at 8:00 am” may be decomposed into a set of sub-tasks such as (1) checking availability and reserving a flight on an evening before the meeting, (2) checking availability and reserving a hotel, (3) checking availability and reserving a car, etc., where users may further designate preferences for various tasks (e.g., first check availability on an airline for which the user is a frequent flyer). Depending on a level of shared knowledge about a user's preferences and/or historical patterns, the one-step access feature may infer additional tasks from a request. For example, in the above example, the one-step access feature may also check a weather forecast, and if the weather is “nice” (as defined by the user preferences and/or as inferred from historical patterns), the one-step access feature may schedule a tee-time at a preferred golf course in San Francisco.


The inferencing intended operations feature may identify an intended request from incomplete or ambiguous requests. For example, when a user utters “Route <indecipherable> Chicago <indecipherable> here,” where the user intended to say “Route calculation to Chicago from here,” the inferencing intended operations feature may model what is required to calculate a route (an origination point and a destination point). Because the utterance includes the origination point and the destination point, a request to calculate a route from the user's present location to Chicago may be inferred. Similarly, when the inferencing intended operations feature does not have sufficient information to infer a complete request, an adaptive conversational response may be generated to prompt the user for missing information. For example, when an utterance includes a request for a stock quote but not a company name (e.g., “Get me the stock price for <indecipherable>”), the response may be “What company's stock quote do you want?” The user may then provide an utterance including the company name, and the request may be completed. In one implementation, the response may ask for missing information in a way that most restricts possible interpretations (e.g., in a request for a task that requires both a city and a state, the state may be asked for first because there are fewer states than cities). Moreover, the inferencing intended operations feature may model compound tasks and/or requests by maintaining context and identifying relevant and/or missing information at both a composite and sub-task level.


The alternative expression feature may recognize common alternatives for nouns and verbs to reflect variations in usage patterns according to various criteria. For example, users may vary expression based on age, socio-economics, ethnicity, user whims, or other factors. Thus, the alternative expression feature may support variations in expression where word order is unimportant or unanticipated. Alternatives in expression based on various criteria or demographics may be loaded into context domain agents 230 and/or vocabularies 235, and the alternative expression feature may update context domain agents 230 and/or vocabularies 235 based on inferred or newly discovered variations. In one implementation, conversational speech engine 215 may include a subscription interface to update changes to context domain agents 230 and/or vocabularies 235 (e.g., a repository may aggregate various user utterances and deploy updates system wide). In operation, the alternative expression feature may allow nouns and/or verbs to be represented in different ways to give simplistic, yet representative, examples. For example, a user interested in a weather forecast for Washington, D.C. may provide any of the following utterances, each of which are interpreted equivalently: “What's the weather like in DC,” “Is it raining inside the Beltway,” Gimme the forecast for the capital,” etc. Similarly, utterances of “Go to my home,” “Go home,” “Show route to home,” and “I would like to know my way home” may all be interpreted equivalently, where a user profile may include the user's home address and a navigation route to the home address may be calculated.


The imperfect speech feature may be able to infer requests from contradictory or otherwise inaccurate information, such as when an utterance includes starts and stops, restarts, stutters, run-on sentences, or other imperfect speech. For example, a user may sometimes change their mind, and thus alter the request in mid-utterance, and the imperfect speech feature may nonetheless be able to infer a request based on models of human speech. For example, for an utterance of “Well, I wanna . . . Mexi . . . no, steak restaurant please, I'm hungry,” existing voice user interfaces make no assumptions regarding models of human speech and would be unable to infer whether the user wanted a Mexican or steak restaurant. The imperfect speech feature overcomes these drawbacks by using various models of human understanding that may indicate that a last criterion is most likely to be correct, or intonation, emphasis, stress, use of the word “not,” or other models may indicate which criterion is most likely to be correct. Thus, in the above example, the imperfect speech feature may infer that the user wants a steak restaurant.


According to one aspect of the invention, noise tolerance module 250 may be closely related to the imperfect speech feature, and may operate to discard words or noise that has no meaning in a given context so as not to create confusion. Moreover, noise tolerance module 250 may filter out environmental and non-human noise to further reduce a likelihood of confusion. In one implementation, noise tolerance module 250 may cooperate with other modules and features to filter out words that do not fit into a context. For example, one or more contexts may be identified, and words that have no meaning with respect to system capabilities, random human utterances without meaning and other noise may be filtered out. Thus, noise tolerance module 250 may model real-world conditions to identify meaningful requests. For example, noise tolerance module 250 may filter other human conversations and/or utterances within a range of one or more microphones, For example, a single device may include multiple microphones, or multiple devices may each include one or more microphones, and the noise tolerance module may collate inputs and cooperatively filter out sound by comparing a speech signal from the various microphones. Noise tolerance module 250 may also filter out non-human environmental noise within the range of the microphones, out-of-vocabulary words, which could be a result of speaker ambiguity or malapropisms, or other noise that may be unrelated to a target request. Noise models in noise tolerance module 250 may define performance benchmarks based on human criteria. For example, if a driver of a car, traveling at 65 miles-per-hour, with windows cracked is 92% likely to be understood by a passenger, then noise tolerance module 250 may have a similar performance under those conditions.


According to one aspect of the invention, conversational speech engine 215 may include a context determination process 255 that determines one or more contexts for a request to establish meaning within a conversation. The one or more contexts may be determined by having one or more context domain agents compete to determine a most appropriate domain for a given utterance, as described in U.S. patent application Ser. No. 11/197,504, entitled “Systems and Methods for Responding to Natural Language Speech Utterance,” filed Aug. 5, 2005, which issued as U.S. Pat. No. 7,640,160 on Dec. 29, 2009 and U.S. patent application Ser. No. 11/212,693, entitled “Mobile Systems and Methods of Supporting Natural Language Human-Machine Interactions,” filed Aug. 29, 2005, which issued as U.S. Pat. No. 7,949,529 on May 24, 2011, both of which are hereby incorporated by reference in their entirety. Once a given context domain agent “wins” the competition, the winning agent may be responsible for establishing or inferring further contexts and updating short-term and long-term shared knowledge. If there is a deadlock between context domain agents, an adaptive conversational response may prompt the user to assist in disambiguating between the deadlocked agents. For example, a user utterance of “What about traffic?” may have a distinct meaning in various contexts. That is, “traffic” may have a first meaning when the user is querying a system's media player (i.e., “traffic” would be a Rock and Roll band led by singer/songwriter Steve Winwood), a second meaning when the user is querying a search interface regarding Michael Douglas films (i.e., “traffic” would be a film directed by Steven Soderbergh), a third meaning when the user is querying a navigation device for directions to an airport (i.e., “traffic” would be related to conditions on roads along a route to the airport).


Moreover, context determination process 255 may infer intended operations and/or context based on previous utterances and/or requests, whereas existing systems consider each utterance independently, potentially making the same errors over and over again. For example, if a given interpretation turns out to be incorrect, the incorrect interpretation may be removed as a potential interpretation from one or more grammars associated with the speech recognition engine and/or from possible subsequent interpretations determined by context determination process 255, thereby assuring that a mistake will not be repeated for an identical utterance.


Context determination process 255 may overcome drawbacks of existing systems by continually updating one or more models of an existing context, where establishing context may be a by-product of a conversation, which cannot be established a priori. Context determination process 255 may establish a first context domain, change to a second context domain, change back to the first context domain, and so on, as tasks are completed, partially completed, requested, etc., and a context stack may track conversation topics and attempt to fit a current utterance into a most-recent context, next-most-recent topic, etc., traversing the context stack until a most likely intent can be established. For example, a user may utter “What's the traffic report,” and context determination process 255 may establish Traffic as a context, and return an output including a traffic report, which does not happen to mention traffic on Interstate-5. The user may then utter “What about I-5?” and context determination process 255 may know that the current context is Traffic, a traffic report including information about Interstate-5 may be searched for, and the traffic report indicating that Interstate-5 is crowded may be returned as an output. The user may then utter “Is there a faster way?” and context determination module 255 may know that the current context is still Traffic, and may search for routes to a specified destination with light traffic and avoiding Interstate-5. Moreover, context determination process 255 may build context based on user profiles, environmental profiles, historical profiles, or other information to further refine the context. For example, the profiles may indicate that Interstate-5 is a typical route taken Monday through Friday.


The profiles may be particularly meaningful when attempting to disambiguate between contexts where a word has different meanings in different contexts. For example, a user may utter “What's the weather in Seattle?” and context determination process 255 may establish Weather as a context, as well as establishing Seattle as an environmental context. The user may then utter “and Portland?” and context determination process 255 may return a weather report for Portland, Oreg. based on the Weather and an environmental proximity between Portland, Oreg. and Seattle, Wash. The user may then ask “What time does the game start?” and a search for sports events with teams from Seattle and/or Portland may occur, with results presented conversationally according to methods described in greater detail below in FIG. 3. Correlatively, had user originally uttered “What's the weather in Portsmouth, N.H.,” in the second utterance, context determination process 255 may instead retrieve a weather report for Portland, Me. based on an environmental proximity to New Hampshire. Moreover, when environmental profiles, contextual shared knowledge, and/or other short-term and/or long-term shared knowledge does not provide enough information to disambiguate between possibilities, responses may prompt the user with a request for further information (e.g., “Did you mean Portland, Me., or Portland, Oreg.?”).


Context determination process 255 may cooperate with context domain agents 230, where each context domain agent 230 may define a collection of related functions that may be useful for users. Moreover, each context domain agent 230 may include a relevant vocabulary 235 and thought collections that model word groupings, which when evaluated together, may disambiguate one context domain from another (e.g., a Music context domain agent 230 may include a vocabulary 235 for songs, artists, albums, etc., whereas a Stock context domain agent 230 may include a vocabulary 235 for company names, ticker symbols, financial metrics, etc.). Thus, accuracy in identifying meaning may be enhanced by eliminating out-of-context words and noise words when searching for relevant combinations. In contrast, existing systems attempt to assign meaning to every component of an utterance (e.g., including out-of-context words and noise words), which results in nearly infinite possible combinations and greater likelihood of confusion. Moreover, context domain agents 230 may include metadata for each criteria to further assist in interpreting utterances, inferring intent, completing incomplete requests, etc. (e.g., a Space Needle vocabulary word may include metadata for Seattle, landmark, tourism, Sky City restaurant, etc.). Given a disambiguated criterion, context determination process 255 may thus be able to automatically determine other information needed to complete a request, discard importance of word order, and perform other enhancements for conversational speech.


Context domain agents 230 may also be self-aware, assigning degrees of certainty to one or more generated hypotheses, where a hypothesis may be developed to account for variations in environmental conditions, speaker ambiguity, accents, or other factors. Conceptually, context domain agents 230 may be designed to model utterances as a hard-of-hearing person would at a noisy party. By identifying a context, capabilities within the context, vocabularies within the context, what tasks are done most often historically in the context, what task was just completed, etc., a context domain agent 230 may establish intent from rather meager phonetic clues. Moreover, the context stack may be one of a plurality of components for establishing context, and thus not a constraint upon the user. All context domains may be accessible, allowing the user to switch contexts at any time without confusion. Thus, just as in human-to-human conversation, context domains may be rapidly selected, without menu-driven dead ends, when an utterance is unambiguous. For example, a user may utter, “Please call Rich Kennewick on his cell phone,” and a system response of “Do you wish me to call Rich Kennewick on his cell?” may be generated. The user may decide at that point to call Rich Kennewick later, and instead, listen to some music. Thus, the user may then utter, “No, play the Louis Armstrong version of Body and Soul from my iPod,” and a system response of “Playing Body and Soul by Louis Armstrong” may be generated as Body and Soul is played through a media player. In this example, the later utterance has no contextual connection to the first utterance, yet because request criteria in the utterances are unambiguous, contexts can be switched easily without relying on the context stack.


Referring to FIG. 3, an exemplary cooperative conversational model 300 is illustrated according to an aspect of the invention. Cooperative conversational model 300 may build upon free form voice search 245, noise tolerance 250, and context determination 255 to implement a conversational Human-to-Machine interface that reflects how humans interact with each other and their normal behavior in conversation. Simply put, cooperative conversational model 300 enables humans and machines to participate in a conversation with an accepted purpose or direction, with each participant contributing to the conversation for the benefit of the conversation. That is, cooperative conversational model 300 incorporates technology and process-flow that takes advantage of human presumptions about utterances that humans rely upon, both as speakers and listeners, thereby creating a Human-to-Machine interface that is analogous to everyday human-to-human conversation. In one implementation, a cooperative conversation may take incoming data (shared knowledge) 305 to inform a decision (intelligent hypothesis building) 310, and then may refine the decision and generate a response (adaptive response building) 315.


According to one aspect of the invention, shared knowledge 305 includes both short-term and long-term knowledge about incoming data. Short-term knowledge may accumulate during a single conversation, while long-term knowledge may accumulate over time to build user profiles, environmental profiles, historical profiles, cognitive profiles, etc.


Input received during a single conversation may be retained in a Session Input Accumulator. The Session Input Accumulator may include cross-modality awareness, where in addition to accumulating input relating to user utterances, requests, locations, etc., the Session Input Accumulator may accumulate a current user interface state relating to other modal inputs to further build shared knowledge models and more accurate adaptive responses (e.g., when a user utters a request relating to a portion of a touch-screen device, as described above). For example, the Session Input Accumulator may accumulate inputs including recognition text for each utterance, a recorded speech file for each utterance, a list-item selection history, a graphical user interface manipulation history, or other input data. Thus, the Session Input Accumulator may populate Intelligent Hypothesis Builder 310 with current and relevant information, build long-term shared knowledge by identifying information with long-term significance, provide Adaptive Response Builder 315 with relevant state and word usage information, retain recent contexts for use with Intelligent Hypothesis Builder 310, and/or retain utterances for reprocessing during multi-pass evaluations. Moreover, because cooperative conversations 300 model human conversations, short-term session data may be expired after a psychologically appropriate amount of time, thereby humanizing system behavior. For example, a human is unlikely to recall a context of a conversation from two years ago, but because the context would be identifiable by a machine, session context is expired after a predetermined amount of time to reduce a likelihood of contextual confusion based on stale data. However, relevant information from an expired session context may nonetheless be added to user, historical, environmental, cognitive, or other long-term knowledge models.


Long-term shared knowledge may generally be user-centric, rather than session-based. That is, inputs may be accumulated over time to build user, environmental, cognitive, historical, or other long-term knowledge models. Long-term and short-term shared knowledge (collectively, shared knowledge 305) may be used simultaneously anytime a user engages in a cooperative conversation 300. Long-term shared knowledge may include explicit and/or implicit user preferences, a history of most recently used agents, contexts, requests, tasks, etc., user-specific jargon related to vocabularies and/or capabilities of an agent and/or context, most often used word choices, or other information. The long-term shared knowledge may be used to populate Intelligent Hypothesis Builder 310 with current and relevant information, provide Adaptive Response Builder 315 with appropriate word choices when the appropriate word choices are unavailable via the Session Input Accumulator, refine long-term shared knowledge models, identify a frequency of specific tasks, identify tasks a user frequently has difficulty with, or provide other information and/or analysis to generate more accurate conversational responses.


As described above, shared knowledge 305 may be used to populate Intelligent Hypothesis Builder 310, such that a user and a voice user interface may share assumptions and expectations such as topic knowledge, conversation history, word usage, jargon, tone (e.g., formal, humorous, terse, etc.), or other assumptions and/or expectations that facilitate interaction at a Human-to-Machine interface.


According to an aspect of the invention, one component of a successful cooperative conversation may be identifying a type of conversation from an utterance. By categorizing and developing conceptual models for various types of exchanges, user expectations and domain capabilities may be consistently aligned. Intelligent Hypothesis Builder 310 may generate a hypothesis as to a conversation type by considering conversational goals, participant roles, and/or an allocation of information among the participants. Conversational goals may broadly include: (1) getting a discrete piece of information or performing a discrete task, (2) gathering related pieces of information to make a decision, and/or (3) disseminating or gathering large amounts of information to build expertise. Participant roles may broadly include: (1) a leader that controls a conversation, (2) a supporter that follows the leader and provides input as requested, and/or (3) a consumer that uses information. Information may be held by one or more of the participants at the outset of a conversation, where a participant may hold most (or all) of the information, little (or none) of the information, or the information may be allocated roughly equally amongst the participants. Based on the conversational goals, participant roles, and allocation of information, Intelligent Hypothesis Builder 310 may consider various factors to classify a conversation (or utterance) into general types of conversations that can interact with one another to form many more variations and permutations of conversation types (e.g., a conversation type may change dynamically as information is reallocated from one participant to another, or as conversational goals change based on the reallocation of information).


For example, in one implementation, a query conversation may include a conversational goal of getting a discrete piece of information or performing a particular task, where a leader of the query conversation may have a specific goal in mind and may lead the conversation toward achieving the goal. The other participant may hold the information and may support the leader by providing the information. In a didactic conversation, a leader of the conversation may control information desired by a supporter of the conversation. The supporter's role may be limited to regulating an overall progression of the conversation and interjecting queries for clarification. In an exploratory conversation, both participants share leader and supporter roles, and the conversation may have no specific goal, or the goal may be improvised as the conversation progresses. Based on this model, Intelligent Hypothesis Builder 310 may broadly categorize a conversation (or utterance) according to the following diagram:












QUERY










Participant A
Participant B



User
Voice User Interface













GOAL
Get information/action
Provide information/action


ROLE
Leader/Consumer
Supporter/Dispenser


INFORMATION
Less
More


ALLOCATION



















DIDACTIC










Participant A
Participant B



User
Voice User Interface















GOAL
Get information
Provide information



ROLE
Follower/Consumer
Leader/Dispenser



INFORMATION
Less
More



ALLOCATION




















EXPLORATORY










Participant A
Participant B



User
Voice User Interface













GOAL
Gather/share information
Gather/share information


ROLE
Follower/Consumer and
Follower/Consumer and



Leader/Dispenser
Leader/Dispenser


INFORMATION
Equal or alternating
Equal or alternating


ALLOCATION









Intelligent Hypothesis Builder 310 may use an identified conversation type to assist in generating a set of hypotheses as to a user's intent in an utterance. In addition, Intelligent Hypothesis Builder 310 may use short-term shared knowledge from the Session Input Accumulator to proactively build and evaluate interaction with a user as a conversation progresses, as well as long-term shared knowledge to proactively build and evaluate interaction with the user over time. Intelligent Hypothesis Builder 310 may thus adaptively arrive at a set of N-best hypotheses about user intent, and the N-best hypotheses may be provided to an Adaptive Response Builder 315. In addition, Intelligent Hypothesis Builder 310 may model human-to-human interaction by calculating a degree of certainty for each of the hypotheses. That is, just as humans rely on knowledge shared by participants to examine how much and what kind of information was available, Intelligent Hypothesis Builder 310 may leverage the identified conversation type and short-term and long-term shared knowledge to generate a degree of certainty for each hypothesis.


According to another aspect of the invention, Intelligent Hypothesis Builder 310 may generate one or more explicit hypotheses of a user's intent when an utterance contains all information (including qualifiers) needed to complete a request or task. Each hypothesis may have a corresponding degree of certainty, which may be used to determine a level of unprompted support to provide in a response. For example, a response may include a confirmation to ensure the utterance was not misunderstood or the response may adaptively prompt a user to provide missing information.


According to another aspect of the invention, Intelligent Hypothesis Builder 310 may use short-term knowledge to generate one or more implicit hypotheses of a user's intent when an utterance may be missing required qualifiers or other information needed to complete a request or task. Each hypothesis may have a corresponding degree of certainty. For instance, when a conversation begins, short-term knowledge stored in the Session Input Accumulator may be empty, and as the conversation progresses, the Session Input Accumulator may build a history of the conversation. Intelligent Hypothesis Builder 310 may use data in the Session Input Accumulator to supplement or infer additional information about a current utterance. For example, Intelligent Hypothesis Builder 310 may evaluate a degree of certainty based on a number of previous requests relevant to the current utterance. In another example, when the current utterance contains insufficient information to complete a request or task, data in the Session Input Accumulator may be used to infer missing information so that a hypothesis can be generated. In still another example, Intelligent Hypothesis Builder 310 may identify syntax and/or grammar to be used by Adaptive Response Builder 315 to formulate personalized and conversational response. In yet another example, when the current utterance contains a threshold amount of information needed to complete a request or task, data in the Session Input Accumulator may be relied upon to tune a degree of certainty.


According to another aspect of the invention, Intelligent Hypothesis Builder 310 may use long-term shared knowledge to generate one or more implicit hypotheses of a user's intent when an utterance is missing qualifiers or other information needed to complete a request or task. Each hypothesis may have a corresponding degree of certainty. Using long-term knowledge may be substantially similar to using short-term shared knowledge, except that information may be unconstrained by a current session, and an input mechanism may include information from additional sources other than conversational sessions. For example, Intelligent Hypothesis Builder 310 may use information from long-term shared knowledge at any time, even when a new conversation is initiated, whereas short-term shared knowledge may be limited to an existing conversation (where no short-term shared knowledge would be available when a new conversation is initiated). Long-term shared knowledge may come from several sources, including user preferences or a plug-in data source (e.g., a subscription interface to a remote database), expertise of a user (e.g., based on a frequency of errors, types of tasks requested, etc., the user may be identified as a novice, intermediate, experienced, or other type of user), agent-specific information and/or language that may also apply to other agents (e.g., by decoupling information from an agent to incorporate the information into other agents), frequently used topics passed in from the Session Input Accumulator, frequently used verbs, nouns, or other parts of speech, and/or other syntax information passed in from the Session Input Accumulator, or other sources of long-term shared knowledge may be used.


According to another aspect of the invention, knowledge-enabled utterances, as generated by Intelligent Hypothesis Builder 310, may include one or more explicit (supplied by a user), and one or more implicit (supplied by Intelligent Hypothesis Builder 310) contextual signifiers, qualifiers, criteria, and other information that can be used to identify and evaluate relevant tasks. At that point, Intelligent Hypothesis Builder 310 may provide an input to Adaptive Response Builder 315. The input received by Adaptive Response Builder 315 may include at least a ranked list of hypotheses, including explicit and/or implicit hypotheses, each of which may have a corresponding degree of certainty. A hypothesis may be assigned one of four degrees of certainty: (1) “sure,” where contextual signifiers and qualifiers relate to one task, context and qualifiers relate to one task, and a confidence level associated with a preliminary interpretation generated at the speech recognition engine exceeds a predetermined threshold; (2) “pretty sure,” where contextual signifiers and qualifiers relate to more than one task (select top-ranked task) and criteria relates to one request, and/or the confidence level associated with the preliminary interpretation generated at the speech recognition engine is below the predetermined threshold; (3) “not sure,” where additional contextual signifiers or qualifiers are needed to indicate or rank a task; and (4) “no hypothesis,” where little or no information can be deciphered. Each degree of certainty may further be classified as explicit or implicit, which may be used to adjust a response. The input received by Adaptive Response Builder 310 may also include a context, user syntax and/or grammar, context domain agent specific information and/or preferences (e.g., a travel context domain agent may know a user frequently requests information about France, which may be shared with a movie context domain agent so that responses may occasionally include French movies).


According to another aspect of the invention, Adaptive Response Builder 315 may build syntactically, grammatically, and contextually sensitive “intelligent responses” that can be used with one or more agents to generate a conversational experience for a user, while also guiding the user to reply in a manner favorable for recognition. In one implementation, the intelligent responses may include a verbal or audible reply played through an output device (e.g., a speaker), and/or an action performed by a device, computer, or machine (e.g., downloading a web page, showing a list, executing an application, etc.). In one implementation, an appropriate response may not require conversational adaptation, and default replies and/or randomly selected response sets for a given task may be used.


According to another aspect of the invention, Adaptive Response Builder 310 may draw on information maintained by Intelligence Hypothesis Builder 310 to generate responses that may be sensitive to context, task recognition of a current utterance, what a user already knows about a topic, what an application already knows about the topic, shared knowledge regarding user preferences and/or related topics, appropriate contextual word usage (e.g., jargon), words uttered by the user in recent utterances, conversational development and/or course correction, conversational tone, type of conversation, natural variation in wording of responses, or other information. As a result, Adaptive Response Builder 315 may generate intelligent responses that create conversational feel, adapt to information that accumulates over a duration of a conversation, maintain cross-modal awareness, and keep the conversation on course.


According to another aspect of the invention, Adaptive Response Builder 315 may create a conversational feel by adapting to a user's manner of speaking, framing responses appropriately, and having natural variation and/or personality (e.g., by varying tone, pace, timing, inflection, word use, jargon, and other variables in a verbal or audible response). Adapting to a user's manner of speaking may include using contextual signifiers and grammatical rules to generate one or more sentences for use as response sets that may cooperate with the user. By taking advantage of short-term (from the Session Input Accumulator) and long-term (from one or more profiles) shared knowledge about how a user utters a request, the responses may be modeled using techniques used to recognize requests. Adaptive Response Builder 315 may rate possible responses statistically and/or randomize responses, which creates an opportunity to build an exchange with natural variation and conversational feel. This may be a significant advantage over existing voice user interfaces with incongruous input and output, where the input is “conversational” and the output is “computerese.” The following examples may demonstrate how a response may adapt to a user's input word choices and manner of speaking:















User
Do you know [mumbled words] Seattle [more mumbled



words]?


Voice
Did you want Seattle sports scores, weather, traffic, or news?


User


Interface






















User
Find me [mumbled words] Seattle [more mumbled words]?


Voice User
I found Seattle, did you want sports scores, weather,


Interface
traffic, or news?






















User
Get me [mumbled words] Seattle [more mumbled words]?


Voice User
I've got Seattle, did you want me to get sports scores,


Interface
weather, traffic, or news?









According to another aspect of the invention, Adaptive Response Builder 315 may frame responses to influence a user to reply with an utterance that may be easily recognized. For example, a user may utter, “Get me the news” and a voice user interface response may be “Which of these categories? Top news stories, international news, political news, or sports news?” The response may be likely to illicit utterances from the user, such as “Top news stories” or “International news,” which are more likely to result in a completed request. Thus, the responses may conform to a cooperative nature of human dialog, and a natural human tendency to “parrot” what was just heard as part of a next utterance. Moreover, knowledge of current context may enhance responses to generate more meaningful conversational responses, such as in the following exchange:















User
What's the weather like in Dallas?


Voice User Interface
In Dallas, it's sunny and 90 degrees.


User
What theaters are showing the movie “The Fantastic



Four” there?


Voice User Interface
10 theaters in Dallas are showing “The Fantastic



Four.” Do you want show times for a particular



theater?









Framing the responses may also deal with misrecognitions according to human models. For example, humans frequently remember a number of recent utterances, especially when one or more previous utterances were misrecognized or unrecognized. Another participant in the conversation may limit correction to a part of the utterance that was misrecognized or unrecognized, or over subsequent utterances and/or other interactions, clues may be provided to indicate the initial interpretation was incorrect. Thus, by storing and analyzing multiple utterances, utterances from earlier in a conversation may be corrected as the conversation progresses.


According to another aspect of the invention, Adaptive Response Builder 315 may generate multi-modal, or cross-modal, responses to a user. In one implementation, responses may be aware of and control one or more devices and/or interfaces, and users may respond by using whichever input method, or combination of input methods, is most convenient. For example, a response asking the user to direct an utterance with a “Yes” or “No” in a multi-modal environment may also display alternatives visually.


According to another aspect of the invention, Adaptive Response Builder 315 may correct a course of a conversation without interrupting conversational flow. Adaptive Response Builder 315 may generate intelligent responses based on the ranked list of hypotheses and corresponding degrees of certainty, which may be used to correct a course of a conversation without interrupting conversational flow. That is, even though the intelligent responses may be reasonably “sure,” the intelligent responses may nonetheless sometimes be incorrect. While existing voice user interfaces tend to fail on average conversational missteps, normal human interactions may expect missteps and deal with them appropriately. Thus, responses after a misrecognition may be modeled after clarifications, rather than errors, and words may be chosen in subsequent responses that move conversation forward and establish an appropriate domain to be explored with the user. For example, course correction may result in the following exchange:















User
Can you get [mumbled words here] Mariners [more



mumbled words]?


Voice User Interface
I've got the score for the Mariners game?



4-2 Mariners.


User
No, the start time for tomorrow's game.


Voice User Interface
Oh, 7:05.









The above disclosure has been described in terms of specific exemplary aspects, implementations, and embodiments of the invention. However, those skilled in the art will recognize various changes and modifications that may be made without departing from the scope and spirit of the invention. Therefore, the specification and drawings are to be regarded as exemplary only, and the scope of the invention is to be determined solely by the appended claims.

Claims
  • 1. A computer-implemented method of facilitating natural language system responses utilizing a context stack generated based on multiple prior natural language utterances received, the method being implemented by a computer system that includes one or more physical processors executing one or more computer program instructions which, when executed, perform the method, the method comprising: tracking, by the computer system, a series of contexts respectively identified for a series of natural language utterances received by the computer system during a current conversation, the series of contexts comprising at least a first context identified for a first utterance at a first time and a second context identified for a second utterance at a second time after the first time;generating, by the computer system, a context stack based on the tracked contexts comprising the series of contexts in reverse chronological order of a time of identification by the computer system, wherein the second context is listed before the first context;receiving, at the computer system and as part of the current conversation, a third natural language utterance from an input device at a third time after the second time;determining, by the computer system, whether the third natural language utterance corresponds to one or more of the series of contexts in the generated context stack by comparing the third natural language utterance to one or more of the series of contexts in the order the series of contexts are listed in the generated context stack; andresponsive to a determination that the third natural language utterance corresponds to one or more of the series of contexts in the generated context stack, interpreting, by the computer system, the third natural language utterance using the corresponding one or more contexts.
  • 2. The method of claim 1, the method further comprising: generating, by the computer system, a response to the third natural language utterance based on the interpretation.
  • 3. The method of claim 1, wherein determining whether the third natural language utterance corresponds to one or more of the series of contexts in the generated context stack comprises: identifying, by the computer system, one or more of the series of contexts in the generated context stack based on one or more recognized words of the third natural language utterance.
  • 4. The method of claim 1, wherein determining whether the third natural language utterance corresponds to one or more of the series of contexts in the generated context stack comprises: determining, by the computer system, whether the third natural language utterance corresponds to a most recent context of the series of contexts in the generated context stack; andresponsive to a determination that the third natural language utterance does not correspond to the most recent context, determining, by the computer system, whether the third natural language utterance corresponds to a second most recent context of the series of contexts in the generated context stack.
  • 5. The method of claim 1, the method further comprising: responsive to a determination that the third natural language utterance does not correspond to one or more of the series of contexts in the generated context stack, determining, by the computer system, a third context for the third natural language utterance based on one or more recognized words of the third natural language utterance;updating, by the computer system, the generated context stack based on the third context by placing the third context first;receiving, at the computer system, a fourth natural language utterance;responsive to a determination that the fourth natural language utterance corresponds to one or more of the series of contexts in the updated context stack, interpreting, by the computer system, the fourth natural language utterance using the corresponding one or more contexts in the updated context stack; andgenerating, by the computer system, a response to the fourth natural language utterance based on the interpretation of the fourth natural language utterance.
  • 6. The method of claim 1, the method further comprising: accumulating, by the computer system, short-term knowledge, wherein the short-term knowledge is accumulated based on one or more of the series of natural language utterances received by the computer system during a predetermined time period.
  • 7. The method of claim 6, wherein the determination that the third natural language utterance corresponds to one or more of the series of contexts in the generated context stack is based on the short-term knowledge.
  • 8. The method of claim 6, the method further comprising: responsive to a determination that the third natural language utterance does not correspond to one or more of the series of contexts in the generated context stack, determining, by the computer system, a third context for the third natural language utterance based on the short-term knowledge;interpreting, by the computer system, based on the third context, the third natural language utterance; andgenerating, by the computer system, a response to the third natural language utterance based on the interpretation of the third natural language utterance based on the third context.
  • 9. The method of claim 1, wherein: the series of contexts further comprises a fourth context identified for a fourth utterance at a fourth time after the second time and before the third time; and, in the generated context stack, the fourth context is listed before the second context.
  • 10. A system for facilitating natural language system responses utilizing a context stack generated based on multiple prior natural language utterances received, the system comprising: one or more physical processors programmed with one or more computer program instructions which, when executed, configure the one or more physical processors to: track a series of contexts respectively identified for a series of natural language utterances received by the system during a current conversation, the series of contexts comprising at least a first context identified for a first utterance at a first time and a second context identified for a second utterance at a second time after the first time;generate a context stack based on the tracked contexts comprising the series of contexts in reverse chronological order of a time of identification by the computer system, wherein the second context is listed before the first context;receive a third natural language utterance from an input device as part of the current conversation at a third time after the second time;determine whether the third natural language utterance corresponds to one or more of the series of contexts in the generated context stack by comparing the third natural language utterance to one or more of the series of contexts in the order the series of contexts are listed in the generated context stack; andresponsive to a determination that the third natural language utterance corresponds to one or more of the series of contexts in the generated context stack, interpret the third natural language utterance using the corresponding one or more contexts.
  • 11. The system of claim 10, wherein the one or more physical processors are further configured to: generate a response to the third natural language utterance based on the interpretation.
  • 12. The system of claim 10, wherein to determine whether the third natural language utterance corresponds to one or more of the series of contexts in the generated context stack, the one or more physical processors are configured to: identify one or more of the series of contexts in the generated context stack based on one or more recognized words of the third natural language utterance.
  • 13. The system of claim 10, wherein to determine whether the third natural language utterance corresponds to one or more of the series of contexts in the generated context stack, the one or more physical processors are configured to: determine whether the third natural language utterance corresponds to a most recent context of the series of contexts in the generated context stack; andresponsive to a determination that the third natural language utterance does not correspond to the most recent context, determine whether the third natural language utterance corresponds to a second most recent context of the series of contexts in the generated context stack.
  • 14. The system of claim 10, wherein the one or more physical processors are further configured to: responsive to a determination that the third natural language utterance does not correspond to one or more of the series of contexts in the generated context stack, determine a third context for the third natural language utterance based on one or more recognized words of the third natural language utterance;update the generated context stack based on the third context by placing the third context first;receive a fourth natural language utterance;responsive to a determination that the fourth natural language utterance corresponds to one or more of the series of contexts in the updated context stack, interpret the fourth natural language utterance using the corresponding one or more contexts in the updated context stack; andgenerate a response to the fourth natural language utterance based on the interpretation of the fourth natural language utterance.
  • 15. The system of claim 10, wherein the one or more physical processors are further configured to: accumulate short-term knowledge, wherein the short-term knowledge is accumulated based on one or more of the series of natural language utterances received by the system during a predetermined time period.
  • 16. The system of claim 15, wherein the determination that the third natural language utterance corresponds to one or more of the series of contexts in the generated context stack is based on the short-term knowledge.
  • 17. The system of claim 15, wherein the one or more physical processors are further configured to: responsive to a determination that the third natural language utterance does not correspond to one or more of the series of contexts in the generated context stack, determine a third context for the third natural language utterance based on the short-term knowledge;interpret the third natural language utterance based on the third context; andgenerate a response to the third natural language utterance based on the interpretation of the third natural language utterance based on the third context.
  • 18. The system of claim 10, wherein: the series of contexts further comprises a fourth context identified for a fourth utterance at a fourth time after the second time and before the third time; and, in the generated context stack, the fourth context is listed before the second context.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. patent application Ser. No. 14/691,445, entitled “SYSTEM AND METHOD FOR A COOPERATIVE CONVERSATIONAL VOICE USER INTERFACE,” filed Apr. 20, 2015, which is a continuation of U.S. patent application Ser. No. 13/987,645, entitled “SYSTEM AND METHOD FOR A COOPERATIVE CONVERSATIONAL VOICE USER INTERFACE,” filed Aug. 19, 2013 (which issued as U.S. Pat. No. 9,015,049 on Apr. 21, 2015), which is a divisional of U.S. patent application Ser. No. 13/251,712, entitled “SYSTEM AND METHOD FOR A COOPERATIVE CONVERSATIONAL VOICE USER INTERFACE,” filed Oct. 3, 2011 (which issued as U.S. Pat. No. 8,515,765 on Aug. 20, 2013), which is a continuation of U.S. patent application Ser. No. 11/580,926, entitled “SYSTEM AND METHOD FOR A COOPERATIVE CONVERSATIONAL VOICE USER INTERFACE,” filed Oct. 16, 2006 (which issued as U.S. Pat. No. 8,073,681 on Dec. 6, 2011), each of which are hereby incorporated by reference in its entirety.

US Referenced Citations (969)
Number Name Date Kind
4430669 Cheung Feb 1984 A
4821027 Mallory Apr 1989 A
4829423 Tennant May 1989 A
4887212 Zamora Dec 1989 A
4910784 Doddington Mar 1990 A
5027406 Roberts Jun 1991 A
5155743 Jacobs Oct 1992 A
5164904 Sumner Nov 1992 A
5208748 Flores May 1993 A
5265065 Turtle Nov 1993 A
5274560 LaRue Dec 1993 A
5331554 Graham Jul 1994 A
5357596 Takebayashi Oct 1994 A
5369575 Lamberti Nov 1994 A
5377350 Skinner Dec 1994 A
5386556 Hedin Jan 1995 A
5424947 Nagao Jun 1995 A
5471318 Ahuja Nov 1995 A
5475733 Eisdorfer Dec 1995 A
5479563 Yamaguchi Dec 1995 A
5488652 Bielby Jan 1996 A
5499289 Bruno Mar 1996 A
5500920 Kupiec Mar 1996 A
5517560 Greenspan May 1996 A
5533108 Harris Jul 1996 A
5537436 Bottoms Jul 1996 A
5539744 Chu Jul 1996 A
5557667 Bruno Sep 1996 A
5559864 Kennedy, Jr. Sep 1996 A
5563937 Bruno Oct 1996 A
5577165 Takebayashi Nov 1996 A
5590039 Ikeda Dec 1996 A
5608635 Tamai Mar 1997 A
5615296 Stanford Mar 1997 A
5617407 Bareis Apr 1997 A
5633922 August May 1997 A
5634086 Rtischev May 1997 A
5652570 Lepkofker Jul 1997 A
5675629 Raffel Oct 1997 A
5696965 Dedrick Dec 1997 A
5708422 Blonder Jan 1998 A
5721938 Stuckey Feb 1998 A
5722084 Chakrin Feb 1998 A
5729659 Potter Mar 1998 A
5740256 CastelloDaCosta Apr 1998 A
5742763 Jones Apr 1998 A
5748841 Morin May 1998 A
5748974 Johnson May 1998 A
5752052 Richardson May 1998 A
5754784 Garland May 1998 A
5761631 Nasukawa Jun 1998 A
5774841 Salazar Jun 1998 A
5774859 Houser Jun 1998 A
5794050 Dahlgren Aug 1998 A
5794196 Yegnanarayanan Aug 1998 A
5797112 Komatsu Aug 1998 A
5799276 Komissarchik Aug 1998 A
5802510 Jones Sep 1998 A
5829000 Huang Oct 1998 A
5832221 Jones Nov 1998 A
5839107 Gupta Nov 1998 A
5848396 Gerace Dec 1998 A
5855000 Waibel Dec 1998 A
5860059 Aust Jan 1999 A
5867817 Catallo Feb 1999 A
5878385 Bralich Mar 1999 A
5878386 Coughlin Mar 1999 A
5892813 Morin Apr 1999 A
5892900 Ginter Apr 1999 A
5895464 Bhandari Apr 1999 A
5895466 Goldberg Apr 1999 A
5897613 Chan Apr 1999 A
5898760 Smets Apr 1999 A
5899991 Karch May 1999 A
5902347 Backman May 1999 A
5911120 Jarett Jun 1999 A
5918222 Fukui Jun 1999 A
5926784 Richardson Jul 1999 A
5933822 Braden-Harder Aug 1999 A
5950167 Yaker Sep 1999 A
5953393 Culbreth Sep 1999 A
5960384 Brash Sep 1999 A
5960397 Rahim Sep 1999 A
5960399 Barclay Sep 1999 A
5960447 Holt Sep 1999 A
5963894 Richardson Oct 1999 A
5963940 Liddy Oct 1999 A
5982906 Ono Nov 1999 A
5983190 Trowerll Nov 1999 A
5987404 DellaPietra Nov 1999 A
5991721 Asano Nov 1999 A
5995119 Cosatto Nov 1999 A
5995928 Nguyen Nov 1999 A
5995943 Bull Nov 1999 A
6009382 Martino Dec 1999 A
6014559 Amin Jan 2000 A
6018708 Dahan Jan 2000 A
6021384 Gorin Feb 2000 A
6028514 Lemelson Feb 2000 A
6035267 Watanabe Mar 2000 A
6044347 Abella Mar 2000 A
6049602 Foladare Apr 2000 A
6049607 Marash Apr 2000 A
6058187 Chen May 2000 A
6067513 Ishimitsu May 2000 A
6073098 Buchsbaum Jun 2000 A
6076057 Narayanan Jun 2000 A
6076059 Glickman Jun 2000 A
6078886 Dragosh Jun 2000 A
6081774 deHita Jun 2000 A
6081779 Stefan Jun 2000 A
6085186 Christianson Jul 2000 A
6101241 Boyce Aug 2000 A
6108631 Ruhl Aug 2000 A
6119087 Kuhn Sep 2000 A
6119101 Peckover Sep 2000 A
6122613 Baker Sep 2000 A
6134235 Goldman Oct 2000 A
6144667 Doshi Nov 2000 A
6144938 Surace Nov 2000 A
6154526 Dahlke Nov 2000 A
6160883 Jackson Dec 2000 A
6167377 Gillick Dec 2000 A
6173250 Jong Jan 2001 B1
6173266 Marx Jan 2001 B1
6173279 Levin Jan 2001 B1
6175858 Bulfer Jan 2001 B1
6185535 Hedin Feb 2001 B1
6188982 Chiang Feb 2001 B1
6192110 Abella Feb 2001 B1
6192338 Haszto Feb 2001 B1
6195634 Dudemaine Feb 2001 B1
6195651 Handel Feb 2001 B1
6199043 Happ Mar 2001 B1
6208964 Sabourin Mar 2001 B1
6208972 Grant Mar 2001 B1
6219346 Maxemchuk Apr 2001 B1
6219643 Cohen Apr 2001 B1
6219645 Byers Apr 2001 B1
6226612 Srenger May 2001 B1
6233556 Teunen May 2001 B1
6233559 Balakrishnan May 2001 B1
6233561 Junqua May 2001 B1
6236968 Kanevsky May 2001 B1
6243679 Mohri Jun 2001 B1
6246981 Papineni Jun 2001 B1
6246990 Happ Jun 2001 B1
6266636 Kosaka Jul 2001 B1
6269336 Ladd Jul 2001 B1
6272455 Hoshen Aug 2001 B1
6272461 Meredith Aug 2001 B1
6275231 Obradovich Aug 2001 B1
6278377 DeLine Aug 2001 B1
6278968 Franz Aug 2001 B1
6286002 Axaopoulos Sep 2001 B1
6288319 Catona Sep 2001 B1
6292767 Jackson Sep 2001 B1
6301560 Masters Oct 2001 B1
6308151 Smith Oct 2001 B1
6311159 VanTichelen Oct 2001 B1
6314402 Monaco Nov 2001 B1
6321196 Franceschi Nov 2001 B1
6356869 Chapados Mar 2002 B1
6362748 Huang Mar 2002 B1
6366882 Bijl Apr 2002 B1
6366886 Dragosh Apr 2002 B1
6374214 Friedland Apr 2002 B1
6374226 Hunt Apr 2002 B1
6377913 Coffman Apr 2002 B1
6377919 Burnett Apr 2002 B1
6381535 Durocher Apr 2002 B1
6385596 Wiser May 2002 B1
6385646 Brown May 2002 B1
6389398 Lustgarten May 2002 B1
6393403 Majaniemi May 2002 B1
6393428 Miller May 2002 B1
6393460 Gruen May 2002 B1
6397181 Li May 2002 B1
6404878 Jackson Jun 2002 B1
6405170 Phillips Jun 2002 B1
6408272 White Jun 2002 B1
6411810 Maxemchuk Jun 2002 B1
6411893 Ruhl Jun 2002 B2
6415257 Junqua Jul 2002 B1
6418210 Sayko Jul 2002 B1
6420975 DeLine Jul 2002 B1
6429813 Feigen Aug 2002 B2
6430285 Bauer Aug 2002 B1
6430531 Polish Aug 2002 B1
6434523 Monaco Aug 2002 B1
6434524 Weber Aug 2002 B1
6434529 Walker Aug 2002 B1
6442522 Carberry Aug 2002 B1
6446114 Bulfer Sep 2002 B1
6453153 Bowker Sep 2002 B1
6453292 Ramaswamy Sep 2002 B2
6456711 Cheung Sep 2002 B1
6456974 Baker Sep 2002 B1
6466654 Cooper Oct 2002 B1
6466899 Yano Oct 2002 B1
6470315 Netsch Oct 2002 B1
6487494 Odinak Nov 2002 B2
6487495 Gale Nov 2002 B1
6498797 Anerousis Dec 2002 B1
6499013 Weber Dec 2002 B1
6501833 Phillips Dec 2002 B2
6501834 Milewski Dec 2002 B1
6505155 Vanbuskirk Jan 2003 B1
6510417 Woods Jan 2003 B1
6513006 Howard Jan 2003 B2
6522746 Marchok Feb 2003 B1
6523061 Halverson Feb 2003 B1
6526335 Treyz Feb 2003 B1
6532444 Weber Mar 2003 B1
6539348 Bond Mar 2003 B1
6549629 Finn Apr 2003 B2
6553372 Brassell Apr 2003 B1
6556970 Sasaki Apr 2003 B1
6556973 Lewin Apr 2003 B1
6560576 Cohen May 2003 B1
6560590 Shwe May 2003 B1
6567778 ChaoChang May 2003 B1
6567797 Schuetze May 2003 B1
6567805 Johnson May 2003 B1
6570555 Prevost May 2003 B1
6570964 Murveit May 2003 B1
6571279 Herz May 2003 B1
6574597 Mohri Jun 2003 B1
6574624 Johnson Jun 2003 B1
6578022 Foulger Jun 2003 B1
6581103 Dengler Jun 2003 B1
6584439 Geilhufe Jun 2003 B1
6587858 Strazza Jul 2003 B1
6591185 Polidi Jul 2003 B1
6591239 McCall Jul 2003 B1
6594257 Doshi Jul 2003 B1
6594367 Marash Jul 2003 B1
6598018 Junqua Jul 2003 B1
6601026 Appelt Jul 2003 B2
6601029 Pickering Jul 2003 B1
6604075 Brown Aug 2003 B1
6604077 Dragosh Aug 2003 B2
6606598 Holthouse Aug 2003 B1
6611692 Raffel Aug 2003 B2
6614773 Maxemchuk Sep 2003 B1
6615172 Bennett Sep 2003 B1
6622119 Ramaswamy Sep 2003 B1
6629066 Jackson Sep 2003 B1
6631346 Karaorman Oct 2003 B1
6631351 Ramachandran Oct 2003 B1
6633846 Bennett Oct 2003 B1
6636790 Lightner Oct 2003 B1
6643620 Contolini Nov 2003 B1
6647363 Claassen Nov 2003 B2
6650747 Bala Nov 2003 B1
6658388 Kleindienst Dec 2003 B1
6678680 Woo Jan 2004 B1
6681206 Gorin Jan 2004 B1
6691151 Cheyer Feb 2004 B1
6701294 Ball Mar 2004 B1
6704396 Parolkar Mar 2004 B2
6704576 Brachman Mar 2004 B1
6704708 Pickering Mar 2004 B1
6707421 Drury Mar 2004 B1
6708150 Hirayama Mar 2004 B1
6721001 Berstis Apr 2004 B1
6721633 Funk Apr 2004 B2
6721706 Strubbe Apr 2004 B1
6726636 DerGhazarian Apr 2004 B2
6732088 Glance May 2004 B1
6735592 Neumann May 2004 B1
6739556 Langston May 2004 B1
6741931 Kohut May 2004 B1
6742021 Halverson May 2004 B1
6745161 Arnold Jun 2004 B1
6751591 Gorin Jun 2004 B1
6751612 Schuetze Jun 2004 B1
6754485 Obradovich Jun 2004 B1
6754627 Woodward Jun 2004 B2
6754647 Tackett Jun 2004 B1
6757362 Cooper Jun 2004 B1
6757544 Rangarajan Jun 2004 B2
6757718 Halverson Jun 2004 B1
6785651 Wang Aug 2004 B1
6795808 Strubbe Sep 2004 B1
6801604 Maes Oct 2004 B2
6801893 Backfried Oct 2004 B1
6804330 Jones Oct 2004 B1
6810375 Ejerhed Oct 2004 B1
6813341 Mahoney Nov 2004 B1
6816830 Kempe Nov 2004 B1
6823308 Alexander Nov 2004 B2
6829603 Chai Dec 2004 B1
6832230 Zilliacus Dec 2004 B1
6833848 Wolff Dec 2004 B1
6839896 Coffman Jan 2005 B2
6850603 Eberle Feb 2005 B1
6856990 Barile Feb 2005 B2
6859776 Cohen Feb 2005 B1
6865481 Kawazoe Mar 2005 B2
6868380 Kroeker Mar 2005 B2
6868385 Gerson Mar 2005 B1
6871179 Kist Mar 2005 B1
6873837 Yoshioka Mar 2005 B1
6877001 Wolf Apr 2005 B2
6877134 Fuller Apr 2005 B1
6882970 Garner Apr 2005 B1
6901366 Kuhn May 2005 B1
6910003 Arnold Jun 2005 B1
6912498 Stevens Jun 2005 B2
6915126 Mazzara, Jr. Jul 2005 B2
6928614 Everhart Aug 2005 B1
6934756 Maes Aug 2005 B2
6937977 Gerson Aug 2005 B2
6937982 Kitaoka Aug 2005 B2
6941266 Gorin Sep 2005 B1
6944594 Busayapongchai Sep 2005 B2
6950821 Faybishenko Sep 2005 B2
6954755 Reisman Oct 2005 B2
6959276 Droppo Oct 2005 B2
6961700 Mitchell Nov 2005 B2
6963759 Gerson Nov 2005 B1
6964023 Maes Nov 2005 B2
6968311 Knockeart Nov 2005 B2
6973387 Masclet Dec 2005 B2
6975983 Fortescue Dec 2005 B1
6975993 Keiller Dec 2005 B1
6980092 Turnbull Dec 2005 B2
6983055 Luo Jan 2006 B2
6990513 Belfiore Jan 2006 B2
6996531 Korall Feb 2006 B2
7003463 Maes Feb 2006 B1
7016849 Arnold Mar 2006 B2
7020609 Thrift Mar 2006 B2
7024364 Guerra Apr 2006 B2
7027586 Bushey Apr 2006 B2
7027974 Busch Apr 2006 B1
7027975 Pazandak Apr 2006 B1
7031908 Huang Apr 2006 B1
7035415 Belt Apr 2006 B2
7036128 Julia Apr 2006 B1
7043425 Pao May 2006 B2
7054817 Shao May 2006 B2
7058890 George Jun 2006 B2
7062488 Reisman Jun 2006 B1
7069220 Coffman Jun 2006 B2
7072834 Zhou Jul 2006 B2
7072888 Perkins Jul 2006 B1
7076362 Ohtsuji Jul 2006 B2
7082469 Gold Jul 2006 B2
7085708 Manson Aug 2006 B2
7092928 Elad Aug 2006 B1
7107210 Deng Sep 2006 B2
7107218 Preston Sep 2006 B1
7110951 Lemelson Sep 2006 B1
7127395 Gorin Oct 2006 B1
7127400 Koch Oct 2006 B2
7130390 Abburi Oct 2006 B2
7136875 Anderson Nov 2006 B2
7137126 Coffman Nov 2006 B1
7143037 Chestnut Nov 2006 B1
7143039 Stifelman Nov 2006 B1
7146315 Balan Dec 2006 B2
7146319 Hunt Dec 2006 B2
7149696 Shimizu Dec 2006 B2
7165028 Gong Jan 2007 B2
7170993 Anderson Jan 2007 B2
7171291 Obradovich Jan 2007 B2
7174300 Bush Feb 2007 B2
7177798 Hsu Feb 2007 B2
7184957 Brookes Feb 2007 B2
7190770 Ando Mar 2007 B2
7197069 Agazzi Mar 2007 B2
7197460 Gupta Mar 2007 B1
7203644 Anderson Apr 2007 B2
7206418 Yang Apr 2007 B2
7207011 Mulvey Apr 2007 B2
7215941 Beckmann May 2007 B2
7228276 Omote Jun 2007 B2
7231343 Treadgold Jun 2007 B1
7236923 Gupta Jun 2007 B1
7254482 Kawasaki Aug 2007 B2
7272212 Eberle Sep 2007 B2
7277854 Bennett Oct 2007 B2
7283829 Christenson Oct 2007 B2
7283951 Marchisio Oct 2007 B2
7289606 Sibal Oct 2007 B2
7299186 Kuzunuki Nov 2007 B2
7301093 Sater Nov 2007 B2
7305381 Poppink Dec 2007 B1
7321850 Wakita Jan 2008 B2
7328155 Endo Feb 2008 B2
7337116 Charlesworth Feb 2008 B2
7340040 Saylor Mar 2008 B1
7366285 Parolkar Apr 2008 B2
7366669 Nishitani Apr 2008 B2
7376586 Partovi May 2008 B1
7376645 Bernard May 2008 B2
7380250 Schechter May 2008 B2
7386443 Parthasarathy Jun 2008 B1
7398209 Kennewick Jul 2008 B2
7406421 Odinak Jul 2008 B2
7415100 Cooper Aug 2008 B2
7415414 Azara Aug 2008 B2
7421393 DiFabbrizio Sep 2008 B1
7424431 Greene Sep 2008 B2
7430510 De Fabbrizio Sep 2008 B1
7447635 Konopka Nov 2008 B1
7451088 Ehlen Nov 2008 B1
7454368 Stillman Nov 2008 B2
7454608 Gopalakrishnan Nov 2008 B2
7461059 Richardson Dec 2008 B2
7472020 Brulle-Drews Dec 2008 B2
7472060 Gorin Dec 2008 B1
7472075 Odinak Dec 2008 B2
7477909 Roth Jan 2009 B2
7478036 Shen Jan 2009 B2
7487088 Gorin Feb 2009 B1
7487110 Bennett Feb 2009 B2
7493259 Jones Feb 2009 B2
7493559 Wolff Feb 2009 B1
7502672 Kolls Mar 2009 B1
7502730 Wang Mar 2009 B2
7502738 Kennewick Mar 2009 B2
7512906 Baier Mar 2009 B1
7516076 Walker Apr 2009 B2
7529675 Maes May 2009 B2
7536297 Byrd May 2009 B2
7536374 Au May 2009 B2
7542894 Murata Jun 2009 B2
7546382 Healey Jun 2009 B2
7548491 Macfarlane Jun 2009 B2
7552054 Stifelman Jun 2009 B1
7558730 Davis Jul 2009 B2
7574362 Walker Aug 2009 B2
7577244 Taschereau Aug 2009 B2
7606708 Hwang Oct 2009 B2
7606712 Smith Oct 2009 B1
7620549 DiCristo Nov 2009 B2
7634409 Kennewick Dec 2009 B2
7640006 Portman Dec 2009 B2
7640160 DiCristo Dec 2009 B2
7640272 Mahajan Dec 2009 B2
7672931 Hurst-Hiller Mar 2010 B2
7676365 Hwang Mar 2010 B2
7676369 Fujimoto Mar 2010 B2
7684977 Morikawa Mar 2010 B2
7693720 Kennewick Apr 2010 B2
7697673 Chiu Apr 2010 B2
7706616 Kristensson Apr 2010 B2
7729913 Lee Jun 2010 B1
7729916 Coffman Jun 2010 B2
7729918 Walker Jun 2010 B2
7729920 Chaar Jun 2010 B2
7734287 Ying Jun 2010 B2
7748021 Obradovich Jun 2010 B2
7774333 Colledge Aug 2010 B2
7788084 Brun Aug 2010 B2
7792257 Vanier Sep 2010 B1
7801731 Odinak Sep 2010 B2
7809570 Kennewick Oct 2010 B2
7818176 Freeman Oct 2010 B2
7831426 Bennett Nov 2010 B2
7831433 Belvin Nov 2010 B1
7856358 Ho Dec 2010 B2
7873519 Bennett Jan 2011 B2
7873523 Potter Jan 2011 B2
7873654 Bernard Jan 2011 B2
7881936 Longe Feb 2011 B2
7890324 Bangalore Feb 2011 B2
7894849 Kass Feb 2011 B2
7902969 Obradovich Mar 2011 B2
7917367 DiCristo Mar 2011 B2
7920682 Byrne Apr 2011 B2
7949529 Weider May 2011 B2
7949537 Walker May 2011 B2
7953732 Frank May 2011 B2
7974875 Quilici Jul 2011 B1
7983917 Kennewick Jul 2011 B2
7984287 Gopalakrishnan Jul 2011 B2
8005683 Tessel Aug 2011 B2
8015006 Kennewick Sep 2011 B2
8024186 De Bonet Sep 2011 B1
8027965 Takehara Sep 2011 B2
8032383 Bhardwaj Oct 2011 B1
8060367 Keaveney Nov 2011 B2
8069046 Kennewick Nov 2011 B2
8073681 Baldwin Dec 2011 B2
8077975 Ma Dec 2011 B2
8078502 Hao Dec 2011 B2
8082153 Coffman Dec 2011 B2
8086463 Ativanichayaphong Dec 2011 B2
8103510 Sato Jan 2012 B2
8112275 Kennewick Feb 2012 B2
8140327 Kennewick Mar 2012 B2
8140335 Kennewick Mar 2012 B2
8145489 Freeman Mar 2012 B2
8150694 Kennewick Apr 2012 B2
8155962 Kennewick Apr 2012 B2
8170867 Germain May 2012 B2
8180037 Delker May 2012 B1
8190436 Bangalore May 2012 B2
8195468 Weider Jun 2012 B2
8200485 Lee Jun 2012 B1
8204751 Di Fabbrizio Jun 2012 B1
8219399 Lutz Jul 2012 B2
8219599 Tunstall-Pedoe Jul 2012 B2
8224652 Wang Jul 2012 B2
8255224 Singleton Aug 2012 B2
8326599 Tomeh Dec 2012 B2
8326627 Kennewick Dec 2012 B2
8326634 DiCristo Dec 2012 B2
8326637 Baldwin Dec 2012 B2
8332224 DiCristo Dec 2012 B2
8340975 Rosenberger Dec 2012 B1
8346563 Hjelm Jan 2013 B1
8370147 Kennewick Feb 2013 B2
8447607 Weider May 2013 B2
8447651 Scholl May 2013 B1
8452598 Kennewick May 2013 B2
8503995 Ramer Aug 2013 B2
8509403 Chiu Aug 2013 B2
8515765 Baldwin Aug 2013 B2
8527274 Freeman Sep 2013 B2
8577671 Barve Nov 2013 B1
8589161 Kennewick Nov 2013 B2
8612205 Hanneman Dec 2013 B2
8612206 Chalabi Dec 2013 B2
8620659 DiCristo Dec 2013 B2
8719005 Lee May 2014 B1
8719009 Baldwin May 2014 B2
8719026 Kennewick May 2014 B2
8731929 Kennewick May 2014 B2
8738380 Baldwin May 2014 B2
8849652 Weider Sep 2014 B2
8849670 DiCristo Sep 2014 B2
8849696 Pansari Sep 2014 B2
8849791 Hertschuh Sep 2014 B1
8886536 Freeman Nov 2014 B2
8972243 Strom Mar 2015 B1
8972354 Telang Mar 2015 B1
8983839 Kennewick Mar 2015 B2
9009046 Stewart Apr 2015 B1
9015049 Baldwin Apr 2015 B2
9037455 Faaborg May 2015 B1
9070366 Mathias Jun 2015 B1
9070367 Hoffmeister Jun 2015 B1
9105266 Baldwin Aug 2015 B2
9171541 Kennewick Oct 2015 B2
9269097 Freeman Feb 2016 B2
9305548 Kennewick Apr 2016 B2
9308445 Merzenich Apr 2016 B1
9318108 Gruber Apr 2016 B2
9406078 Freeman Aug 2016 B2
9443514 Taubman Sep 2016 B1
9502025 Kennewick Nov 2016 B2
9626703 Kennewick, Sr. Apr 2017 B2
9711143 Kennewick Jul 2017 B2
10089984 Kennewick Oct 2018 B2
20010011336 Sitka Aug 2001 A1
20010014857 Wang Aug 2001 A1
20010021905 Burnett Sep 2001 A1
20010039492 Nemoto Nov 2001 A1
20010041977 Aoyagi Nov 2001 A1
20010041980 Howard Nov 2001 A1
20010047261 Kassan Nov 2001 A1
20010049601 Kroeker Dec 2001 A1
20010054087 Flom Dec 2001 A1
20020002548 Roundtree Jan 2002 A1
20020007267 Batchilo Jan 2002 A1
20020010584 Schultz Jan 2002 A1
20020015500 Belt Feb 2002 A1
20020022927 Lemelson Feb 2002 A1
20020022956 Ukrainczyk Feb 2002 A1
20020029186 Roth Mar 2002 A1
20020029261 Shibata Mar 2002 A1
20020032752 Gold Mar 2002 A1
20020035501 Handel Mar 2002 A1
20020040297 Tsiao Apr 2002 A1
20020049535 Rigo Apr 2002 A1
20020049805 Yamada Apr 2002 A1
20020059068 Rose May 2002 A1
20020065568 Silfvast May 2002 A1
20020067839 Heinrich Jun 2002 A1
20020069059 Smith Jun 2002 A1
20020069071 Knockeart Jun 2002 A1
20020073176 Ikeda Jun 2002 A1
20020082911 Dunn Jun 2002 A1
20020087312 Lee Jul 2002 A1
20020087326 Lee Jul 2002 A1
20020087525 Abbott Jul 2002 A1
20020107694 Lerg Aug 2002 A1
20020120609 Lang Aug 2002 A1
20020124050 Middeljans Sep 2002 A1
20020133347 Schoneburg Sep 2002 A1
20020133354 Ross Sep 2002 A1
20020133402 Faber Sep 2002 A1
20020135618 Maes Sep 2002 A1
20020138248 Corston-Oliver Sep 2002 A1
20020143532 McLean Oct 2002 A1
20020143535 Kist Oct 2002 A1
20020152260 Chen Oct 2002 A1
20020161646 Gailey Oct 2002 A1
20020161647 Gailey Oct 2002 A1
20020169597 Fain Nov 2002 A1
20020173333 Buchholz Nov 2002 A1
20020173961 Guerra Nov 2002 A1
20020178003 Gehrke Nov 2002 A1
20020184373 Maes Dec 2002 A1
20020188455 Shioda Dec 2002 A1
20020188602 Stubler Dec 2002 A1
20020198714 Zhou Dec 2002 A1
20030005033 Mohan Jan 2003 A1
20030014261 Kageyama Jan 2003 A1
20030016835 Elko Jan 2003 A1
20030036903 Konopka Feb 2003 A1
20030046071 Wyman Mar 2003 A1
20030046281 Son Mar 2003 A1
20030046346 Mumick Mar 2003 A1
20030064709 Gailey Apr 2003 A1
20030065427 Funk Apr 2003 A1
20030069734 Everhart Apr 2003 A1
20030069880 Harrison Apr 2003 A1
20030088421 Maes May 2003 A1
20030093419 Bangalore May 2003 A1
20030097249 Walker May 2003 A1
20030110037 Walker Jun 2003 A1
20030112267 Belrose Jun 2003 A1
20030115062 Walker Jun 2003 A1
20030120493 Gupta Jun 2003 A1
20030135488 Amir Jul 2003 A1
20030144846 Denenberg Jul 2003 A1
20030154082 Toguri Aug 2003 A1
20030158731 Falcon Aug 2003 A1
20030161448 Parolkar Aug 2003 A1
20030167167 Gong Sep 2003 A1
20030174155 Weng Sep 2003 A1
20030182123 Mitsuyoshi Sep 2003 A1
20030182132 Niemoeller Sep 2003 A1
20030187643 VanThong Oct 2003 A1
20030204492 Wolf Oct 2003 A1
20030206640 Malvar Nov 2003 A1
20030212550 Ubale Nov 2003 A1
20030212558 Matula Nov 2003 A1
20030212562 Patel Nov 2003 A1
20030216919 Roushar Nov 2003 A1
20030225825 Healey Dec 2003 A1
20030233230 Ammicht Dec 2003 A1
20030236664 Sharma Dec 2003 A1
20040006475 Ehlen Jan 2004 A1
20040010358 Oesterling Jan 2004 A1
20040025115 Sienel Feb 2004 A1
20040030741 Wolton Feb 2004 A1
20040036601 Obradovich Feb 2004 A1
20040044516 Kennewick Mar 2004 A1
20040093567 Schabes May 2004 A1
20040098245 Walker May 2004 A1
20040102977 Metzler May 2004 A1
20040117179 Balasuriya Jun 2004 A1
20040117804 Scahill Jun 2004 A1
20040122673 Park Jun 2004 A1
20040122674 Bangalore Jun 2004 A1
20040128514 Rhoads Jul 2004 A1
20040133793 Ginter Jul 2004 A1
20040140989 Papageorge Jul 2004 A1
20040143440 Prasad Jul 2004 A1
20040148154 Acero Jul 2004 A1
20040148170 Acero Jul 2004 A1
20040158555 Seedman Aug 2004 A1
20040166832 Portman Aug 2004 A1
20040167771 Duan Aug 2004 A1
20040172247 Yoon Sep 2004 A1
20040172258 Dominach Sep 2004 A1
20040189697 Fukuoka Sep 2004 A1
20040193408 Hunt Sep 2004 A1
20040193420 Kennewick Sep 2004 A1
20040199375 Ehsani Oct 2004 A1
20040199387 Wang Oct 2004 A1
20040199389 Geiger Oct 2004 A1
20040201607 Mulvey Oct 2004 A1
20040204939 Daben Oct 2004 A1
20040205671 Sukehiro Oct 2004 A1
20040220800 Kong Nov 2004 A1
20040243393 Wang Dec 2004 A1
20040243417 Pitts Dec 2004 A9
20040247092 Timmins Dec 2004 A1
20040249636 Applebaum Dec 2004 A1
20050015256 Kargman Jan 2005 A1
20050021331 Huang Jan 2005 A1
20050021334 Iwahashi Jan 2005 A1
20050021470 Martin Jan 2005 A1
20050021826 Kumar Jan 2005 A1
20050033574 Kim Feb 2005 A1
20050033582 Gadd Feb 2005 A1
20050043940 Elder Feb 2005 A1
20050043956 Aoyama Feb 2005 A1
20050060142 Visser Mar 2005 A1
20050080632 Endo Apr 2005 A1
20050080821 Breil Apr 2005 A1
20050102282 Linden May 2005 A1
20050114116 Fiedler May 2005 A1
20050114781 Brownholtz May 2005 A1
20050125232 Gadd Jun 2005 A1
20050131673 Koizumi Jun 2005 A1
20050137850 Odell Jun 2005 A1
20050137877 Oesterling Jun 2005 A1
20050138168 Hoffman Jun 2005 A1
20050143994 Mori Jun 2005 A1
20050144013 Fujimoto Jun 2005 A1
20050144187 Che Jun 2005 A1
20050149319 Honda Jul 2005 A1
20050169441 Yacoub Aug 2005 A1
20050216254 Gupta Sep 2005 A1
20050222763 Uyeki Oct 2005 A1
20050234637 Obradovich Oct 2005 A1
20050234727 Chiu Oct 2005 A1
20050240412 Fujita Oct 2005 A1
20050246174 DeGolia Nov 2005 A1
20050283364 Longe Dec 2005 A1
20050283532 Kim Dec 2005 A1
20050283752 Fruchter Dec 2005 A1
20060041431 Maes Feb 2006 A1
20060046740 Johnson Mar 2006 A1
20060047362 Aoyama Mar 2006 A1
20060047509 Ding Mar 2006 A1
20060072738 Louis Apr 2006 A1
20060074670 Weng Apr 2006 A1
20060074671 Farmaner Apr 2006 A1
20060080098 Campbell Apr 2006 A1
20060100851 Schonebeck May 2006 A1
20060106769 Gibbs May 2006 A1
20060129409 Mizutani Jun 2006 A1
20060130002 Hirayama Jun 2006 A1
20060149633 Voisin Jul 2006 A1
20060182085 Sweeney Aug 2006 A1
20060206310 Ravikumar Sep 2006 A1
20060217133 Christenson Sep 2006 A1
20060236343 Chang Oct 2006 A1
20060242017 Libes Oct 2006 A1
20060247919 Specht Nov 2006 A1
20060253247 de Silva Nov 2006 A1
20060253281 Letzt Nov 2006 A1
20060285662 Yin Dec 2006 A1
20070011159 Hillis Jan 2007 A1
20070033005 Di Cristo Feb 2007 A1
20070033020 Francois Feb 2007 A1
20070033526 Thompson Feb 2007 A1
20070038436 Cristo Feb 2007 A1
20070038445 Helbing Feb 2007 A1
20070043569 Potter Feb 2007 A1
20070043574 Coffman Feb 2007 A1
20070043868 Kumar Feb 2007 A1
20070050191 Weider Mar 2007 A1
20070050279 Huang Mar 2007 A1
20070055525 Kennewick Mar 2007 A1
20070060114 Ramer Mar 2007 A1
20070061067 Zeinstra Mar 2007 A1
20070061735 Hoffberg Mar 2007 A1
20070067310 Gupta Mar 2007 A1
20070073544 Millett Mar 2007 A1
20070078708 Yu Apr 2007 A1
20070078709 Rajaram Apr 2007 A1
20070078814 Flowers Apr 2007 A1
20070094003 Huang Apr 2007 A1
20070100797 Thun May 2007 A1
20070106499 Dahlgren May 2007 A1
20070112555 Lavi May 2007 A1
20070112630 Lau May 2007 A1
20070118357 Kasravi May 2007 A1
20070124057 Prieto May 2007 A1
20070135101 Ramati Jun 2007 A1
20070146833 Satomi Jun 2007 A1
20070162296 Altberg Jul 2007 A1
20070174258 Jones Jul 2007 A1
20070179778 Gong Aug 2007 A1
20070185859 Flowers Aug 2007 A1
20070186165 Maislos Aug 2007 A1
20070192309 Fischer Aug 2007 A1
20070198267 Jones Aug 2007 A1
20070203699 Nagashima Aug 2007 A1
20070203736 Ashton Aug 2007 A1
20070208732 Flowers Sep 2007 A1
20070214182 Rosenberg Sep 2007 A1
20070250901 McIntire Oct 2007 A1
20070265850 Kennewick Nov 2007 A1
20070266257 Camaisa Nov 2007 A1
20070276651 Bliss Nov 2007 A1
20070294615 Sathe Dec 2007 A1
20070299824 Pan Dec 2007 A1
20080010135 Schrock Jan 2008 A1
20080014908 Vasant Jan 2008 A1
20080032622 Kopra Feb 2008 A1
20080034032 Healey Feb 2008 A1
20080046311 Shahine Feb 2008 A1
20080059188 Konopka Mar 2008 A1
20080065386 Cross Mar 2008 A1
20080065389 Cross Mar 2008 A1
20080065390 Ativanichayaphong Mar 2008 A1
20080086455 Meisels Apr 2008 A1
20080091406 Baldwin Apr 2008 A1
20080103761 Printz May 2008 A1
20080103781 Wasson May 2008 A1
20080104071 Pragada May 2008 A1
20080109285 Reuther May 2008 A1
20080115163 Gilboa May 2008 A1
20080126091 Clark May 2008 A1
20080126284 Forbes May 2008 A1
20080133215 Sarukkai Jun 2008 A1
20080140385 Mahajan Jun 2008 A1
20080147396 Wang Jun 2008 A1
20080147410 Odinak Jun 2008 A1
20080147637 Li Jun 2008 A1
20080154604 Sathish Jun 2008 A1
20080162471 Bernard Jul 2008 A1
20080177530 Cross Jul 2008 A1
20080184164 Di Fabbrizio Jul 2008 A1
20080189110 Freeman Aug 2008 A1
20080189187 Hao Aug 2008 A1
20080228496 Yu Sep 2008 A1
20080235023 Kennewick Sep 2008 A1
20080235027 Cross Sep 2008 A1
20080269958 Filev Oct 2008 A1
20080270135 Goel Oct 2008 A1
20080270224 Portman Oct 2008 A1
20080294437 Nakano Nov 2008 A1
20080294994 Kruger Nov 2008 A1
20080306743 Di Fabbrizio Dec 2008 A1
20080319751 Kennewick Dec 2008 A1
20090006077 Keaveney Jan 2009 A1
20090006194 Sridharan Jan 2009 A1
20090018829 Kuperstein Jan 2009 A1
20090024476 Baar Jan 2009 A1
20090030686 Weng Jan 2009 A1
20090052635 Jones Feb 2009 A1
20090055176 Hu Feb 2009 A1
20090067599 Agarwal Mar 2009 A1
20090076827 Bulitta Mar 2009 A1
20090106029 DeLine Apr 2009 A1
20090117885 Roth May 2009 A1
20090144131 Chiu Jun 2009 A1
20090144271 Richardson Jun 2009 A1
20090150156 Kennewick Jun 2009 A1
20090157382 Bar Jun 2009 A1
20090164216 Chengalvarayan Jun 2009 A1
20090171664 Kennewick Jul 2009 A1
20090171912 Nash Jul 2009 A1
20090197582 Lewis Aug 2009 A1
20090216540 Tessel Aug 2009 A1
20090248565 Chuang Oct 2009 A1
20090248605 Mitchell Oct 2009 A1
20090259561 Boys Oct 2009 A1
20090259646 Fujita Oct 2009 A1
20090265163 Li Oct 2009 A1
20090271194 Davis Oct 2009 A1
20090273563 Pryor Nov 2009 A1
20090276700 Anderson Nov 2009 A1
20090287680 Paek Nov 2009 A1
20090299745 Kennewick Dec 2009 A1
20090299857 Brubaker Dec 2009 A1
20090304161 Pettyjohn Dec 2009 A1
20090307031 Winkler Dec 2009 A1
20090313026 Coffman Dec 2009 A1
20090319517 Guha Dec 2009 A1
20100023320 Cristo Jan 2010 A1
20100023331 Duta Jan 2010 A1
20100029261 Mikkelsen Feb 2010 A1
20100036967 Caine Feb 2010 A1
20100049501 Kennewick Feb 2010 A1
20100049514 Kennewick Feb 2010 A1
20100057443 Cristo Mar 2010 A1
20100063880 Atsmon Mar 2010 A1
20100064025 Nelimarkka Mar 2010 A1
20100076778 Kondrk Mar 2010 A1
20100094707 Freer Apr 2010 A1
20100138300 Wallis Jun 2010 A1
20100145700 Kennewick Jun 2010 A1
20100185512 Borger Jul 2010 A1
20100191856 Gupta Jul 2010 A1
20100204986 Kennewick Aug 2010 A1
20100204994 Kennewick Aug 2010 A1
20100217604 Baldwin Aug 2010 A1
20100268536 Suendermann Oct 2010 A1
20100286985 Kennewick Nov 2010 A1
20100299142 Freeman Nov 2010 A1
20100312547 Van Os Dec 2010 A1
20100312566 Odinak Dec 2010 A1
20100318357 Istvan Dec 2010 A1
20100331064 Michelstein Dec 2010 A1
20110022393 Waller Jan 2011 A1
20110106527 Chiu May 2011 A1
20110112827 Kennewick May 2011 A1
20110112921 Kennewick May 2011 A1
20110119049 Ylonen May 2011 A1
20110131036 DiCristo Jun 2011 A1
20110131045 Cristo Jun 2011 A1
20110231182 Weider Sep 2011 A1
20110231188 Kennewick Sep 2011 A1
20110238409 Larcheveque Sep 2011 A1
20110307167 Taschereau Dec 2011 A1
20120022857 Baldwin Jan 2012 A1
20120041753 Dymetman Feb 2012 A1
20120046935 Nagao Feb 2012 A1
20120101809 Kennewick Apr 2012 A1
20120101810 Kennewick Apr 2012 A1
20120109753 Kennewick May 2012 A1
20120150620 Mandyam Jun 2012 A1
20120150636 Freeman Jun 2012 A1
20120239498 Ramer Sep 2012 A1
20120240060 Pennington Sep 2012 A1
20120265528 Gruber Oct 2012 A1
20120278073 Weider Nov 2012 A1
20130006734 Ocko Jan 2013 A1
20130054228 Baldwin Feb 2013 A1
20130060625 Davis Mar 2013 A1
20130080177 Chen Mar 2013 A1
20130211710 Kennewick Aug 2013 A1
20130253929 Weider Sep 2013 A1
20130254314 Chow Sep 2013 A1
20130297293 Cristo Nov 2013 A1
20130304473 Baldwin Nov 2013 A1
20130311324 Stoll Nov 2013 A1
20130332454 Stuhec Dec 2013 A1
20130339022 Baldwin Dec 2013 A1
20140006951 Hunter Jan 2014 A1
20140012577 Freeman Jan 2014 A1
20140025371 Min Jan 2014 A1
20140108013 Cristo Apr 2014 A1
20140136187 Wolverton May 2014 A1
20140136259 Kinsey, II May 2014 A1
20140156278 Kennewick Jun 2014 A1
20140195238 Terao Jul 2014 A1
20140236575 Tur Aug 2014 A1
20140249821 Kennewick Sep 2014 A1
20140249822 Baldwin Sep 2014 A1
20140278413 Pitschel Sep 2014 A1
20140278416 Schuster Sep 2014 A1
20140288934 Kennewick Sep 2014 A1
20140330552 Bangalore Nov 2014 A1
20140337007 Waibel Nov 2014 A1
20140365222 Weider Dec 2014 A1
20150019211 Simard Jan 2015 A1
20150019217 Cristo Jan 2015 A1
20150019227 Anandarajah Jan 2015 A1
20150066479 Pasupalak Mar 2015 A1
20150066627 Freeman Mar 2015 A1
20150073910 Kennewick Mar 2015 A1
20150095159 Kennewick Apr 2015 A1
20150142447 Kennewick May 2015 A1
20150170641 Kennewick Jun 2015 A1
20150193379 Mehta Jul 2015 A1
20150199339 Mirkin Jul 2015 A1
20150228276 Baldwin Aug 2015 A1
20150293917 Bute Oct 2015 A1
20150348544 Baldwin Dec 2015 A1
20150348551 Gruber Dec 2015 A1
20150364133 Freeman Dec 2015 A1
20160049152 Kennewick Feb 2016 A1
20160078482 Kennewick Mar 2016 A1
20160078491 Kennewick Mar 2016 A1
20160078504 Kennewick Mar 2016 A1
20160078773 Carter Mar 2016 A1
20160110347 Kennewick Apr 2016 A1
20160148610 Kennewick May 2016 A1
20160148612 Guo May 2016 A1
20160188292 Carter Jun 2016 A1
20160188573 Tang Jun 2016 A1
20160217785 Kennewick Jul 2016 A1
20160335676 Freeman Nov 2016 A1
20170004588 Isaacson Jan 2017 A1
Foreign Referenced Citations (41)
Number Date Country
1433554 Jul 2003 CN
1860496 Nov 2006 CN
101236635 Aug 2008 CN
103229206 Jul 2013 CN
1320043 Jun 2003 EP
1646037 Apr 2006 EP
2867583 Sep 2005 FR
H08263258 Oct 1996 JP
H11249773 Sep 1999 JP
2001071289 Mar 2001 JP
2002297626 Oct 2002 JP
2006146881 Jun 2006 JP
2008027454 Feb 2008 JP
2008058465 Mar 2008 JP
2008139928 Jun 2008 JP
2011504304 Feb 2011 JP
2012518847 Aug 2012 JP
9946763 Sep 1999 WO
0021232 Apr 2000 WO
0046792 Aug 2000 WO
0129742 Apr 2001 WO
0129742 Apr 2001 WO
0171609 Sep 2001 WO
0178065 Oct 2001 WO
2004072954 Aug 2004 WO
2005010702 Feb 2005 WO
2007019318 Jan 2007 WO
2007021587 Jan 2007 WO
2007027546 Jan 2007 WO
2007027989 Jan 2007 WO
2008098039 Jan 2008 WO
2008118195 Jan 2008 WO
2009075912 Jan 2009 WO
2009145796 Jan 2009 WO
2009111721 Sep 2009 WO
2010096752 Jan 2010 WO
2016044290 Mar 2016 WO
2016044316 Mar 2016 WO
2016044319 Mar 2016 WO
2016044321 Mar 2016 WO
2016061309 Apr 2016 WO
Non-Patent Literature Citations (36)
Entry
“Statement in Accordance with the Notice from the European Patent Office” dated Oct. 1, 2007 Concerning Business Methods (OJ EPO Nov. 2007, 592-593), XP002456252.
Arrington, Michael, “Google Redefines GPS Navigation Landscape: Google Maps Navigation for Android 2.0”, TechCrunch, printed from the Internet <http://www.techcrunch.com/2009/10/28/google-redefines-car-gps-navigation-google-maps-navigation-android/>, Oct. 28, 2009, 4 pages.
Bazzi, Issam et al., “Heterogeneous Lexical Units for Automatic Speech Recognition: Preliminary Investigations”, Processing of the IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 3, Jun. 5-9, 2000, XP010507574, pp. 1257-1260.
Belvin, Robert, et al., “Development of the HRL Route Navigation Dialogue System”, Proceedings of the First International Conference on Human Language Technology Research, San Diego, 2001, pp. 1-5.
Chai et al., “MIND: A Semantics-Based Multimodal Interpretation Framework for Conversational System”, Proceedings of the International CLASS Workshop on Natural, Intelligent and Effective Interaction in Multimodal Dialogue Systems, Jun. 2002, pp. 37-46.
Cheyer et al., “Multimodal Maps: An Agent-Based Approach”, International Conference on Cooperative Multimodal Communication (CMC/95), May 24-26, 1995, pp. 111-121.
Davis, Z., et al., A Personal Handheld Multi-Modal Shopping Assistant, IEEE, 2006, 9 pages.
El Meliani et al., “A Syllabic-Filler-Based Continuous Speech Recognizer for Unlimited Vocabulary”, Canadian Conference on Electrical and Computer Engineering, vol. 2, Sep. 5-8, 1995, pp. 1007-1010.
Elio et al., “On Abstract Task Models and Conversation Policies” in Workshop on Specifying and Implementing Conversation Policies, Autonomous Agents '99, Seattle, 1999, 10 pages.
Kirchhoff, Katrin, “Syllable-Level Desynchronisation of Phonetic Features for Speech Recognition”, Proceedings of the Fourth International Conference on Spoken Language, 1996, ICSLP 96, vol. 4, IEEE, 1996, 3 pages.
Kuhn, Thomas, et al., “Hybrid In-Car Speech Recognition for Mobile Multimedia Applications”, Vehicular Technology Conference, IEEE, Jul. 1999, pp. 2009-2013.
Lin, Bor-shen, et al., “A Distributed Architecture for Cooperative Spoken Dialogue Agents with Coherent Dialogue State and History”, ASRU'99, 1999, 4 pages.
Lind, R., et al., “The Network Vehicle—A Glimpse into the Future of Mobile Multi-Media”, IEEE Aerosp. Electron. Systems Magazine, vol. 14, No. 9, Sep. 1999, pp. 27-32.
Miao, Mark Z., “Automatic Training Set Segmentation for Multi-Pass Speech Recognition”, Department of Electrical Engineering, Stanford University, CA, copyright 2005, IEEE, pp. I-685 to I-688.
O'Shaughnessy, Douglas, “Interacting with Computers by Voice: Automatic Speech Recognition and Synthesis”, Proceedings of the IEEE, vol. 91, No. 9, Sep. 1, 2003, XP011100665, pp. 1272-1305.
Reuters, “IBM to Enable Honda Drivers to Talk to Cars”, Charles Schwab & Co., Inc., Jul. 28, 2002, 1 page.
Turunen, “Adaptive Interaction Methods in Speech User Interfaces”, Conference on Human Factors in Computing Systems, Seattle, Washington, 2001, pp. 91-92.
Vanhoucke, Vincent, “Confidence Scoring and Rejection Using Multi-Pass Speech Recognition”, Nuance Communications, Menlo Park, CA, 2005, 4 pages.
Weng, Fuliang, et al., “Efficient Lattice Representation and Generation”, Speech Technology and Research Laboratory, SRI International, Menlo Park, CA, 1998, 4 pages.
Wu, Su-Lin, et al., “Incorporating Information from Syllable-Length Time Scales into Automatic Speech Recognition”, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, 1998, vol. 2, IEEE, 1998, 4 pages.
Wu, Su-Lin, et al., “Integrating Syllable Boundary Information into Speech Recognition”, IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP-97, 1997, vol. 2, IEEE, 1997, 4 pages.
Zhao, Yilin, “Telematics: Safe and Fun Driving”, IEEE Intelligent Systems, vol. 17, Issue 1, 2002, pp. 10-14.
Office Action issued in Chinese Patent Application No. 201580060519.1 dated Mar. 13, 2020, with its English translation, 40 pages.
Amazon.com, Inc., Amazon.com LLC, Amazon Web Services, Inc., A2Z Development Center, Inc. d/b/a/ Lab126, Rawles LLC, Amzn Mobile LLC, Amzn Mobile 2 LLC, Amazon.com Services, Inc. f/k/a Amazon Fulfillment Services, Inc., and Amazon.com Services LLC (formerly Amazon Digital Services LLC) v. VB Assets, LLC, IPR2020-01346, Decision Granting Institution of Inter Partes Review of U.S. Pat. No. 9,015,049 B2, entered Feb. 4, 2021, 24 pages.
Amazon.com, Inc., Amazon.com LLC, Amazon Web Services, Inc., A2Z Development Center, Inc. d/b/a/ Lab126, Rawles LLC, Amzn Mobile LLC, Amzn Mobile 2 LLC, Amazon.com Services, Inc. f/k/a Amazon Fulfillment Services, Inc., and Amazon.com Services LLC (formerly Amazon Digital Services LLC) v. VB Assets, LLC, IPR2020-01367, Decision Granting Institution of Inter Partes Review of U.S. Pat. No. 8,073,681 B2, entered Mar. 11, 2021, 22 pages.
Amazon.com, Inc., Amazon.com LLC, Amazon Web Services, Inc., A2Z Development Center, Inc. d/b/a/ Lab126, Rawles LLC, Amzn Mobile LLC, Amzn Mobile 2 LLC, Amazon.com Services, Inc. f/k/a Amazon Fulfillment Services, Inc., and Amazon.com Services LLC (formerly Amazon Digital Services LLC) v. VB Assets, LLC, IPR2020-01374, Decision Denying Institution of Inter Partes Review of U.S. Pat. No. 8,886,536 B2, entered Feb. 4, 2021, 37 pages.
Amazon.com, Inc., Amazon.com LLC, Amazon Web Services, Inc., A2Z Development Center, Inc. d/b/a/ Lab126, Rawles LLC, Amzn Mobile LLC, Amzn Mobile 2 LLC, Amazon.com Services, Inc. f/k/a Amazon Fulfillment Services, Inc., and Amazon.com Services LLC (formerly Amazon Digital Services LLC) v. VB Assets, LLC, IPR2020-01377, Decision Denying Institution of Inter Partes Review of U.S. Pat. No. 8,886,536 B2, entered Feb. 4, 2021, 29 pages.
Amazon.com, Inc., Amazon.com LLC, Amazon Web Services, Inc., A2Z Development Center, Inc. d/b/a/ Lab126, Rawles LLC, Amzn Mobile LLC, Amzn Mobile 2 LLC, Amazon.com Services, Inc. f/k/a Amazon Fulfillment Services, Inc., and Amazon.com Services LLC (formerly Amazon Digital Services LLC) v. VB Assets, LLC, IPR2020-01380, Decision Denying Institution of Inter Partes Review of U.S. Pat. No. 9,626,703 B2, entered Feb. 4, 2021, 28 pages.
Amazon.com, Inc., Amazon.com LLC, Amazon Web Services, Inc., A2Z Development Center, Inc. d/b/a/ Lab126, Rawles LLC, Amzn Mobile LLC, Amzn Mobile 2 LLC, Amazon.com Services, Inc. f/k/a Amazon Fulfillment Services, Inc., and Amazon.com Services LLC (formerly Amazon Digital Services LLC) v. VB Assets, LLC, IPR2020-01381, Decision Denying Institution of Inter Partes Review of U.S. Pat. No. 9,626,703 B2, entered Feb. 4, 2021, 29 pages.
Amazon.vom, Inc., Amazon.com LLC, Amazon Web Services, Inc., A2Z Development Center, Inc. d/b/a/ Lab126, Rawles LLC, Amzn Mobile LLC, Amzn Mobile 2 LLC, Amazon.com Services, Inc. f/k/a Amazon Fulfillment Services, Inc., and Amazon.com Services LLC (formerly Amazon Digital Services LLC) v. VB Assets, LLC, IPR2020-01388, Decision Denying Institution of Inter Partes Review of U.S. Pat. No. 9,269,097 B2, entered Feb. 24, 2021, 25 pages.
Amazon.com, Inc., Amazon.com LLC, Amazon Web Services, Inc., A2Z Development Center, Inc. d/b/a/ Lab126, Rawles LLC, Amzn Mobile LLC, Amzn Mobile 2 LLC, Amazon.com Services, Inc. f/k/a Amazon Fulfillment Services, Inc., and Amazon.com Services LLC (formerly Amazon Digital Services LLC) v. VB Assets, LLC, IPR2020-01390, Decision Denying Institution of Inter Partes Review of U.S. Pat. No. 7,818,176, entered Mar. 11, 2021, 27 pages.
Asthana, A., et al., “A Small Domain Communications System for Personalized Shopping Assistance”, Proceedings of 1994 International Conference on Personal Wireless Communications, IEEE Press, Aug. 1994, pp. 199-203.
Huang et al., “Spoken Language Processing: A Guide to Theory, Algorithm, and System Development”, Prentice Hall, 2001, 1010 pages.
IEEE 100 The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition, Standards Information Network, IEEE Press, Print ISBN 0-7381-2601-2, Published Dec. 2000, 3 pages.
Lucente, Mark, “Conversational Interfaces for E-Commerce Applications”, Communications of the ACM, vol. 43, No. 9, Sep. 2000, pp. 59-61.
Seneff, Stephanie, et al., “Hypothesis Selection and Resolution in the Mercury Flight Reservation System”, Spoken Language Systems Group, MIT, 2001, 8 pages.
Related Publications (1)
Number Date Country
20190272821 A1 Sep 2019 US
Divisions (2)
Number Date Country
Parent 14691445 Apr 2015 US
Child 16416884 US
Parent 13251712 Oct 2011 US
Child 13987645 US
Continuations (2)
Number Date Country
Parent 13987645 Aug 2013 US
Child 14691445 US
Parent 11580926 Oct 2006 US
Child 13251712 US