Flexible pipe is useful in a myriad of environments, including in the oil and gas industry. Flexible pipe may be durable and operational in harsh operating conditions and can accommodate high pressures and temperatures. Flexible pipe may be bundled and arranged into one or more coils to facilitate transporting and using the pipe.
Coils of pipe may be positioned in an “eye to the side” or “eye to the sky” orientation. When the flexible pipe is coiled and is disposed with its interior channel facing upwards, such that the coil is in a horizontal orientation, then the coils of pipe are referred to as being in an “eye to the sky” orientation. If, instead, the flexible pipe is coiled and disposed such that the interior channel is not facing upwards, such that the coil is in an upright or vertical orientation, then the coils of pipe are referred to as being in an “eye to the side” orientation.
The flexible pipe may be transported as coils to various sites for deployment (also referred to as uncoiling or unspooling). Different types of devices and vehicles are currently used for loading and transporting coils of pipe, but usually extra equipment and human manual labor is also involved in the process of loading or unloading such coils for transportation and/or deployment. Such coils of pipe are often quite large and heavy. Accordingly, there exists a need for an improved method and apparatus for loading and unloading coils of pipe.
This summary is provided to introduce a selection of concepts that are further described below in the detailed description. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.
In one aspect, embodiments of the present disclosure relate to a flexible pipe containment sled that includes a platform and a first sled portion coupled to a bottom surface of the platform. The first sled portion is disposed at a first side of the platform. The sled also includes a second sled portion coupled to the bottom surface of the platform. The second sled portion is disposed at a second side of the platform opposite to the first side of the platform. The sled also includes a passage formed between the first and second sled portions. The passage is configured to allow a flexible pipe to pass through the passage while the flexible pipe containment sled is placed on a surface.
In another aspect, embodiments of the present disclosure relate to a method that includes placing the flexible pipe containment sled on a surface. The flexible pipe containment sled includes a platform and a first sled portion coupled to a bottom surface of the platform. The first sled portion is disposed at a first side of the platform. The sled also includes a second sled portion coupled to the bottom surface of the platform. The second sled portion is disposed at a second side of the platform opposite to the first side of the platform. The sled also includes a passage formed between the first and second sled portions. The method also includes passing a flexible pipe through the passage.
Other aspects and advantages of the claimed subject matter will be apparent from the following description and the appended claims.
Embodiments of the present disclosure relate generally to systems used for deploying coils of flexible pipe. The coils of pipe may be self-supported, for example, using bands to hold coils together, or the coils of pipe may be supported around a reel (which may be referred to as a reel of pipe). Deployment systems according to embodiments of the present disclosure may include a flexible pipe containment sled that includes a platform and a first sled portion coupled to a bottom surface of the platform. The first sled portion is disposed at a first side of the platform. The sled also includes a second sled portion coupled to the bottom surface of the platform. The second sled portion is disposed at a second side of the platform opposite to the first side of the platform. The sled also includes a passage formed between the first and second sled portions. The passage is configured to allow the flexible pipe to pass through the passage while the flexible pipe containment sled is placed on a surface.
Embodiments of the present disclosure will be described below with reference to the figures. In one aspect, embodiments disclosed herein relate to embodiments for containing deploying flexible pipe by passing the flexible pipe through the passage of the flexible pipe containment sled.
As used herein, the term “coupled” or “coupled to” may indicate establishing either a direct or indirect connection, and is not limited to either unless expressly referenced as such. The term “set” may refer to one or more items. Wherever possible, like or identical reference numerals are used in the figures to identify common or the same elements. The figures are not necessarily to scale and certain features and certain views of the figures may be shown exaggerated in scale for purposes of clarification.
Pipe, as understood by those of ordinary skill, may be a tube to convey or transfer any water, gas, oil, or any type of fluid known to those skilled in the art. The flexible pipe 26 may be made of any type of materials including without limitation plastics, metals, a combination thereof, composites (e.g., fiber reinforced composites), or other materials known in the art. The flexible pipe 26 is used frequently in many applications, including without limitation, both onshore and offshore oil and gas applications. Flexible pipe 26 may include Flexible Composite Pipe (FCP) or Reinforced Thermoplastic Pipe (RTP). A FCP/RTP pipe may itself be generally composed of several layers. In one or more embodiments, flexible pipe 26 may include a high-density polyethylene (“HDPE”) pipe having a reinforcement layer and an HDPE outer cover layer. Thus, flexible pipe 26 may include different layers that may be made of a variety of materials and also may be treated for corrosion resistance. For example, in one or more embodiments, pipe used to make up a coil of pipe may have a corrosion protection shield layer that is disposed over another layer of steel reinforcement. In this steel-reinforced layer, helically wound steel strips may be placed over a liner made of thermoplastic pipe. Flexible pipe 26 may be designed to handle a variety of pressures. Further, flexible pipe 26 may offer unique features and benefits versus steel/carbon steel pipe lines in the area of corrosion resistance, flexibility, installation speed and re-usability.
As with the platform 12, the first and second sled portions 14 and 18 may be made from various metals or metal alloys, such as carbon steel. As shown in
In addition, a height 64 of the first and second sled portions 14 and 18 may be selected to enable a variety of different diameters of flexible pipe 26 to pass through the passage 24. In other words, the height 64 may be larger than the largest expected diameter of flexible pipe 26. As shown in
In certain embodiments, sides of the first and second sled portions 14 and 18 opposite from the first and second inner surfaces 58 and 60 may be left open, as shown in
In certain embodiments, a weight 118 may be placed on an upper surface 120 of the platform 12. The weight 118 may be any heavy or dense object commonly available when deploying the flexible pipe 26, such as, but not limited to, sand bags, lumber, railroad ties, concrete, stones, metal objects, and so forth. Placing the weight 118 on the sled 10 instead of directly on the deploying flexible pipe 26 helps to prevent any possible damage to the external surface of the flexible pipe 26 caused by the weight 118. In addition, the weight 118 helps to provide additional force to the sled 10 to counteract any memory effect of the flexible pipe 26. In certain embodiments, the weight 118 or portions of the weight 118 may be placed in the open sides of the first and second sled portions 14 and 18.
As shown in
While the present disclosure has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments may be devised which do not depart from the scope of the disclosure as described herein. Accordingly, the scope of the disclosure should be limited only by the attached claims.
Number | Name | Date | Kind |
---|---|---|---|
2595655 | Hannay | May 1952 | A |
2738143 | Hannay | Mar 1956 | A |
3372461 | Tesson | Mar 1968 | A |
3563481 | Stahmer | Feb 1971 | A |
3712100 | Key et al. | Jan 1973 | A |
3739985 | Odom | Jun 1973 | A |
3849999 | Coffey | Nov 1974 | A |
3965713 | Horton | Jun 1976 | A |
3982402 | Lang et al. | Sep 1976 | A |
4148445 | Reynolds et al. | Apr 1979 | A |
4186881 | Long | Feb 1980 | A |
4228553 | Genuuit | Oct 1980 | A |
4266724 | Dipalma | May 1981 | A |
4838302 | Prange | Jun 1989 | A |
5012886 | Jonas | May 1991 | A |
5139751 | Mansfield et al. | Aug 1992 | A |
5437518 | Maloberti et al. | Aug 1995 | A |
5454431 | Ledwig | Oct 1995 | A |
5598866 | Nelson | Feb 1997 | A |
5606921 | Elder et al. | Mar 1997 | A |
6419424 | Null et al. | Jul 2002 | B1 |
7566024 | Krise et al. | Jul 2009 | B2 |
7661683 | Fernandez | Feb 2010 | B2 |
10190722 | Espinasse et al. | Jan 2019 | B2 |
10197198 | Glejbol | Feb 2019 | B2 |
10226823 | Karpachevskyy | Mar 2019 | B2 |
10226892 | Kremers | Mar 2019 | B2 |
10234068 | Varagnolo et al. | Mar 2019 | B2 |
10281065 | Secher et al. | May 2019 | B2 |
10285223 | Hatton et al. | May 2019 | B2 |
10288207 | Littlestar et al. | May 2019 | B2 |
10378682 | Cloos et al. | Aug 2019 | B2 |
10408795 | Nicolas et al. | Sep 2019 | B2 |
10415731 | Boche et al. | Sep 2019 | B2 |
10429267 | Grimsley | Oct 2019 | B2 |
10436667 | Littlestar et al. | Oct 2019 | B2 |
10442925 | Rong et al. | Oct 2019 | B2 |
10451206 | Espinasse et al. | Oct 2019 | B2 |
10471661 | Boczkowski et al. | Nov 2019 | B2 |
10480054 | Valdez et al. | Nov 2019 | B2 |
10487965 | Bouey et al. | Nov 2019 | B2 |
10494519 | Wilson et al. | Dec 2019 | B2 |
10513896 | Gudme et al. | Dec 2019 | B2 |
10526164 | Barnett et al. | Jan 2020 | B2 |
10527198 | Nicolson et al. | Jan 2020 | B2 |
10544889 | Bouey et al. | Jan 2020 | B2 |
10544892 | Holst | Jan 2020 | B2 |
10800634 | Barnett | Oct 2020 | B2 |
20080029645 | Gideon et al. | Feb 2008 | A1 |
20120061504 | Powell | Mar 2012 | A1 |
20140312156 | Minino et al. | Oct 2014 | A1 |
20190003921 | Nicholas | Jan 2019 | A1 |
20190024830 | Glejbol | Jan 2019 | A1 |
20190055106 | Barnett | Feb 2019 | A1 |
20190094101 | Spiegel et al. | Mar 2019 | A1 |
20190101233 | Hatton et al. | Apr 2019 | A1 |
20190126567 | Bornemann et al. | May 2019 | A1 |
20190154186 | Varagnolo et al. | May 2019 | A1 |
20190162334 | Westhoff et al. | May 2019 | A1 |
20190162335 | Yu et al. | May 2019 | A1 |
20190162336 | Andersen et al. | May 2019 | A1 |
20190186656 | Kozak et al. | Jun 2019 | A1 |
20190194440 | Rong et al. | Jun 2019 | A1 |
20190217337 | Gujare et al. | Jul 2019 | A1 |
20190219473 | Littlestar et al. | Jul 2019 | A1 |
20190242501 | Bereczkne et al. | Aug 2019 | A1 |
20190257448 | Chalmers et al. | Aug 2019 | A1 |
20190285199 | Nicolson et al. | Sep 2019 | A1 |
20190309582 | Procida | Oct 2019 | A1 |
20190338868 | Hjorth | Nov 2019 | A1 |
20190368967 | Grimsley | Dec 2019 | A1 |
20190391097 | Nicolas et al. | Dec 2019 | A1 |
20200011467 | Holst | Jan 2020 | A1 |
20200140229 | Barnett | May 2020 | A1 |
Number | Date | Country |
---|---|---|
2014299014 | Jan 2019 | AU |
2014363465 | Jan 2019 | AU |
2017302735 | Jan 2019 | AU |
2014310509 | Mar 2019 | AU |
2017319390 | Mar 2019 | AU |
2017347152 | May 2019 | AU |
2017365730 | Jun 2019 | AU |
2018211384 | Aug 2019 | AU |
2018222217 | Aug 2019 | AU |
2015335367 | Oct 2019 | AU |
2015345613 | Oct 2019 | AU |
2018288000 | Jan 2020 | AU |
2019279941 | Jan 2020 | AU |
112014017998 | Jan 2019 | BR |
112018013586 | Jan 2019 | BR |
PI0810573 | Jan 2019 | BR |
PI0819542 | Jan 2019 | BR |
112019001414 | Feb 2019 | BR |
112018075840 | Mar 2019 | BR |
112019004048 | Mar 2019 | BR |
PI0517181 | Mar 2019 | BR |
112019000076 | Apr 2019 | BR |
112019007789 | Apr 2019 | BR |
PI0914836 | Apr 2019 | BR |
112019003669 | May 2019 | BR |
112019005154 | Jun 2019 | BR |
112013032388 | Jul 2019 | BR |
112019013850 | Jul 2019 | BR |
PI0720487 | Aug 2019 | BR |
112012015257 | Sep 2019 | BR |
112013017957 | Sep 2019 | BR |
112015027495 | Sep 2019 | BR |
112016001932 | Sep 2019 | BR |
PI0909348 | Sep 2019 | BR |
112015002088 | Oct 2019 | BR |
112019020051 | Oct 2019 | BR |
112012020776 | Nov 2019 | BR |
112019012614 | Nov 2019 | BR |
PI0808956 | Nov 2019 | BR |
112013028806 | Dec 2019 | BR |
112013000428 | Jan 2020 | BR |
112019013850 | Jan 2020 | BR |
PI0924891 | Jan 2020 | BR |
2859433 | Mar 2019 | CA |
2823056 | Apr 2019 | CA |
2765294 | Jun 2019 | CA |
2854955 | Jun 2019 | CA |
2835008 | Aug 2019 | CA |
3012146 | Jan 2020 | CA |
1083193 | Mar 1994 | CN |
109153196 | Jan 2019 | CN |
109153229 | Jan 2019 | CN |
109958827 | Jul 2019 | CN |
110177969 | Aug 2019 | CN |
106985493 | Nov 2019 | CN |
108291686 | Nov 2019 | CN |
110461586 | Nov 2019 | CN |
110462273 | Nov 2019 | CN |
107250643 | Dec 2019 | CN |
108291670 | Jan 2020 | CN |
102018214615 | Jun 2019 | DE |
3224393 | Jan 2019 | DK |
2820083 | Feb 2019 | DK |
2959199 | Feb 2019 | DK |
3228639 | Feb 2019 | DK |
2780159 | Apr 2019 | DK |
3196523 | Apr 2019 | DK |
2516534 | Jul 2019 | DK |
2901062 | Aug 2019 | DK |
3286474 | Sep 2019 | DK |
2360406 | Jan 2019 | EP |
2780159 | Jan 2019 | EP |
3069063 | Jan 2019 | EP |
3433523 | Jan 2019 | EP |
3089846 | Feb 2019 | EP |
3334969 | Feb 2019 | EP |
3334970 | Feb 2019 | EP |
3439871 | Feb 2019 | EP |
2386894 | Mar 2019 | EP |
2516534 | Mar 2019 | EP |
2737238 | Mar 2019 | EP |
2859173 | Mar 2019 | EP |
3371502 | Mar 2019 | EP |
3455059 | Mar 2019 | EP |
3455536 | Mar 2019 | EP |
3458531 | Mar 2019 | EP |
2862700 | Apr 2019 | EP |
3105484 | Apr 2019 | EP |
3258155 | Apr 2019 | EP |
3334965 | Apr 2019 | EP |
3334967 | Apr 2019 | EP |
3463849 | Apr 2019 | EP |
3468725 | Apr 2019 | EP |
3314155 | May 2019 | EP |
3488135 | May 2019 | EP |
2519764 | Jun 2019 | EP |
2572134 | Jul 2019 | EP |
2661578 | Jul 2019 | EP |
3507535 | Jul 2019 | EP |
3513108 | Jul 2019 | EP |
2576333 | Aug 2019 | EP |
3014157 | Aug 2019 | EP |
3059481 | Aug 2019 | EP |
3526437 | Aug 2019 | EP |
2588787 | Sep 2019 | EP |
2870397 | Sep 2019 | EP |
3093546 | Oct 2019 | EP |
3548280 | Oct 2019 | EP |
3350498 | Dec 2019 | EP |
3482112 | Dec 2019 | EP |
3583344 | Dec 2019 | EP |
2556812 | Jun 1985 | FR |
3068104 | Jul 2019 | FR |
3077997 | Aug 2019 | FR |
3074251 | Dec 2019 | FR |
3076337 | Jan 2020 | FR |
1137473 | Dec 1968 | GB |
2471488 | Jan 2011 | GB |
2503880 | Mar 2019 | GB |
2562674 | Mar 2019 | GB |
2557571 | Sep 2019 | GB |
2572120 | Sep 2019 | GB |
2520756 | Oct 2019 | GB |
2535925 | Dec 2019 | GB |
2574296 | Dec 2019 | GB |
E045956 | Jan 2020 | HU |
330637 | Jan 2020 | IN |
S5247428 | Apr 1977 | JP |
20140137060 | Dec 2014 | KR |
2678216 | Feb 2019 | PL |
2379299 | May 2019 | PL |
2018113428 | Oct 2019 | RU |
458798 | May 1989 | SE |
2011001183 | Jan 2011 | WO |
2019016554 | Jan 2019 | WO |
2019016558 | Jan 2019 | WO |
2019028231 | Feb 2019 | WO |
2019073047 | Apr 2019 | WO |
2019022599 | May 2019 | WO |
2019099219 | May 2019 | WO |
2019105926 | Jun 2019 | WO |
2019112431 | Jun 2019 | WO |
2019120677 | Jun 2019 | WO |
2019141326 | Jul 2019 | WO |
2019165562 | Sep 2019 | WO |
2019197538 | Oct 2019 | WO |
2019207031 | Oct 2019 | WO |
2019238456 | Dec 2019 | WO |
2020016325 | Jan 2020 | WO |
Entry |
---|
Eurasian Patent Office; Office Action, issued in connection to patent application No. 202090464; dated Nov. 27, 2020; 4 pages; Russia. |
China National Intellectual Property Administration; First Office Action, issued in connection to application No. 2018800632718; dated Jan. 28, 2021; 21 pages; China. |
Eurasian Patent Office; Office Action, issued in connection to patent application No. 202090464; dated Jun. 28, 2021; 4 pages; Russia. |
European Patent Office; Extended European Search Report, issued in connection to application No. 18840655.7; dated Mar. 24, 2021; 8 pages; Europe. |
United States Patent and Trademark Office; PCT International Search Report and Written Opinion, issued in connection to PCT/US18/44969; dated Dec. 10, 2018; 12 pages; U.S. |
Intellectual Property Office of Singapore; Written Opinion, issued in connection to patent application No. 11202001977W; dated Jan. 13, 2022; 6 pages; Singapore. |
Number | Date | Country | |
---|---|---|---|
20210094791 A1 | Apr 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16736447 | Jan 2020 | US |
Child | 17068597 | US | |
Parent | 15681451 | Aug 2017 | US |
Child | 16736447 | US |