System and method for a flexible pipe containment sled

Information

  • Patent Grant
  • 11453568
  • Patent Number
    11,453,568
  • Date Filed
    Monday, October 12, 2020
    3 years ago
  • Date Issued
    Tuesday, September 27, 2022
    a year ago
Abstract
A flexible pipe containment sled includes a platform and a first sled portion coupled to a bottom surface of the platform. The first sled portion is disposed at a first side of the platform. The sled also includes a second sled portion coupled to the bottom surface of the platform. The second sled portion is disposed at a second side of the platform opposite to the first side of the platform. The sled also includes a passage formed between the first and second sled portions. The passage is configured to allow a flexible pipe to pass through the passage while the flexible pipe containment sled is placed on a surface.
Description
BACKGROUND

Flexible pipe is useful in a myriad of environments, including in the oil and gas industry. Flexible pipe may be durable and operational in harsh operating conditions and can accommodate high pressures and temperatures. Flexible pipe may be bundled and arranged into one or more coils to facilitate transporting and using the pipe.


Coils of pipe may be positioned in an “eye to the side” or “eye to the sky” orientation. When the flexible pipe is coiled and is disposed with its interior channel facing upwards, such that the coil is in a horizontal orientation, then the coils of pipe are referred to as being in an “eye to the sky” orientation. If, instead, the flexible pipe is coiled and disposed such that the interior channel is not facing upwards, such that the coil is in an upright or vertical orientation, then the coils of pipe are referred to as being in an “eye to the side” orientation.


The flexible pipe may be transported as coils to various sites for deployment (also referred to as uncoiling or unspooling). Different types of devices and vehicles are currently used for loading and transporting coils of pipe, but usually extra equipment and human manual labor is also involved in the process of loading or unloading such coils for transportation and/or deployment. Such coils of pipe are often quite large and heavy. Accordingly, there exists a need for an improved method and apparatus for loading and unloading coils of pipe.


SUMMARY

This summary is provided to introduce a selection of concepts that are further described below in the detailed description. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.


In one aspect, embodiments of the present disclosure relate to a flexible pipe containment sled that includes a platform and a first sled portion coupled to a bottom surface of the platform. The first sled portion is disposed at a first side of the platform. The sled also includes a second sled portion coupled to the bottom surface of the platform. The second sled portion is disposed at a second side of the platform opposite to the first side of the platform. The sled also includes a passage formed between the first and second sled portions. The passage is configured to allow a flexible pipe to pass through the passage while the flexible pipe containment sled is placed on a surface.


In another aspect, embodiments of the present disclosure relate to a method that includes placing the flexible pipe containment sled on a surface. The flexible pipe containment sled includes a platform and a first sled portion coupled to a bottom surface of the platform. The first sled portion is disposed at a first side of the platform. The sled also includes a second sled portion coupled to the bottom surface of the platform. The second sled portion is disposed at a second side of the platform opposite to the first side of the platform. The sled also includes a passage formed between the first and second sled portions. The method also includes passing a flexible pipe through the passage.


Other aspects and advantages of the claimed subject matter will be apparent from the following description and the appended claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a bottom view of a flexible pipe containment sled according to embodiments of the present disclosure.



FIG. 2 is a bottom perspective view of a flexible pipe containment sled according to embodiments of the present disclosure.



FIG. 3 is an exploded view of a flexible pipe containment sled according to embodiments of the present disclosure.



FIG. 4 is a perspective view of a flexible pipe containment sled coupled to a trailer via straps according to embodiments of the present disclosure.



FIG. 5 is a perspective view of a flexible pipe containment sled coupled directly to a trailer according to embodiments of the present disclosure.



FIG. 6 is a perspective view of a flexible pipe containment sled coupled to a coil frame according to embodiments of the present disclosure.



FIG. 7 is a perspective view of a platform of a flexible pipe containment sled with a retaining wall according to embodiments of the present disclosure.



FIG. 8 is a perspective view of a platform of a flexible pipe containment sled with a concave surface according to embodiments of the present disclosure.



FIG. 9 is a perspective view of a platform of a flexible pipe containment sled with a stacking guide according to embodiments of the present disclosure.



FIG. 10 is bottom perspective view of a flexible pipe containment sled with wheels according to embodiments of the present disclosure.



FIG. 11 is a side view of a flexible pipe containment sled according to embodiments of the present disclosure.





DETAILED DESCRIPTION

Embodiments of the present disclosure relate generally to systems used for deploying coils of flexible pipe. The coils of pipe may be self-supported, for example, using bands to hold coils together, or the coils of pipe may be supported around a reel (which may be referred to as a reel of pipe). Deployment systems according to embodiments of the present disclosure may include a flexible pipe containment sled that includes a platform and a first sled portion coupled to a bottom surface of the platform. The first sled portion is disposed at a first side of the platform. The sled also includes a second sled portion coupled to the bottom surface of the platform. The second sled portion is disposed at a second side of the platform opposite to the first side of the platform. The sled also includes a passage formed between the first and second sled portions. The passage is configured to allow the flexible pipe to pass through the passage while the flexible pipe containment sled is placed on a surface.


Embodiments of the present disclosure will be described below with reference to the figures. In one aspect, embodiments disclosed herein relate to embodiments for containing deploying flexible pipe by passing the flexible pipe through the passage of the flexible pipe containment sled.


As used herein, the term “coupled” or “coupled to” may indicate establishing either a direct or indirect connection, and is not limited to either unless expressly referenced as such. The term “set” may refer to one or more items. Wherever possible, like or identical reference numerals are used in the figures to identify common or the same elements. The figures are not necessarily to scale and certain features and certain views of the figures may be shown exaggerated in scale for purposes of clarification.



FIG. 1 illustrates a bottom view of an embodiment of a flexible pipe containment sled 10. As described in detail below, the sled 10 includes a platform 12. A first sled portion 14 may be coupled to a bottom surface 16 of the platform 12 and a second sled portion 18 may be coupled to the bottom surface 16 of the platform 12. As shown in FIG. 1, the first sled portion 14 may be disposed at a first side 20 of the platform 12 and the second sled portion 18 may be disposed at a second side 22 of the platform 12. A passage 24 may be formed between the first sled portion 14 and the second sled portion 18. As shown in FIG. 1, the passage 24 is configured to enable a flexible pipe 26 to pass through the passage 24 while the sled 10 is placed on a surface, as described in more detail below. The flexible pipe 26 may enter an inlet 28 of the passage 24 and exit an outlet 30 of the passage 24 in the direction of arrow 32. Various features of the sled 10 may be described with respect to an longitudinal axis or direction 34 and a perpendicular axis or direction 36. For example, the flexible pipe 26 may generally move through the passage 24 parallel to the longitudinal direction 34. In addition, embodiments of the sled 10 may be symmetric about the perpendicular axis 36, which may simplify use and handling of the sled 10. In other words, the sled 10 may be used with the flexible pipe 26 entering either the inlet 28 or the outlet 30.


Pipe, as understood by those of ordinary skill, may be a tube to convey or transfer any water, gas, oil, or any type of fluid known to those skilled in the art. The flexible pipe 26 may be made of any type of materials including without limitation plastics, metals, a combination thereof, composites (e.g., fiber reinforced composites), or other materials known in the art. The flexible pipe 26 is used frequently in many applications, including without limitation, both onshore and offshore oil and gas applications. Flexible pipe 26 may include Flexible Composite Pipe (FCP) or Reinforced Thermoplastic Pipe (RTP). A FCP/RTP pipe may itself be generally composed of several layers. In one or more embodiments, flexible pipe 26 may include a high-density polyethylene (“HDPE”) pipe having a reinforcement layer and an HDPE outer cover layer. Thus, flexible pipe 26 may include different layers that may be made of a variety of materials and also may be treated for corrosion resistance. For example, in one or more embodiments, pipe used to make up a coil of pipe may have a corrosion protection shield layer that is disposed over another layer of steel reinforcement. In this steel-reinforced layer, helically wound steel strips may be placed over a liner made of thermoplastic pipe. Flexible pipe 26 may be designed to handle a variety of pressures. Further, flexible pipe 26 may offer unique features and benefits versus steel/carbon steel pipe lines in the area of corrosion resistance, flexibility, installation speed and re-usability.



FIG. 2 illustrates a bottom perspective view of an embodiment of the flexible pipe containment sled 10. As shown in FIG. 2, the platform 12 may have a generally square shape and be made from various metals or metal alloys, such as carbon steel. In other embodiments, the platform 12 may have other shapes, such as, but not limited to, rectangular, circular, oval, triangular, or polygonal shapes. A thickness of the platform 12 may be selected to enable the platform 12 to carry objects or weights as described in more detail below. Although shown with corners 50 with right angles, the platform 12 may have rounded corners in other embodiments. In FIG. 2 the platform 12 includes a third side 52 between the first and second sides 20 and 22. As shown, the third side 52 may include an edge 54 with a curved profile. For example, the edge 54 may be formed or finished with the curved profile. In the illustrated embodiment, a rod or similarly-shaped object, such as a pipe or tube, may be attached to the platform 12 to form the edge 54 with the curved profile. The edge 54 may help to provide a smoother surface for the flexible pipe 26 to contact, thereby reducing the potential for damage to the external surface of the flexible pipe 26. In certain embodiments, the platform 12 includes a fourth side 56 that also includes the edge 54.


As with the platform 12, the first and second sled portions 14 and 18 may be made from various metals or metal alloys, such as carbon steel. As shown in FIG. 2, the first sled portion 14 includes a first inner surface 58 facing the passage 24 and the second sled portion 18 includes a second inner surface 60 facing the passage 24. Both the first and second inner surfaces 58 and 60 have curved shapes. For example, the first and second inner surfaces 58 and 60 may be curved completely from the inlet 28 to the outlet 30, or only a portion of the first and second inner surfaces 58 and 60 may be curved. For example, two curved portions may be coupled to a straight portion. The curved shape of the first and second inner surfaces 58 and 60 may help to provide a smoother surface for the flexible pipe 26 to contact, thereby reducing the potential for damage to the external surface of the flexible pipe 26. Moreover, a radius of curvature 62 of the first and second inner surfaces 58 and 60 may be selected to substantially equal a largest expected bend radius of the flexible pipe 26 to reduce the potential for damage to the flexible pipe 26 when the sled 10 turns a corner in operation. Thus, the flexible pipe 26 may bend along the first inner surface 58 or second inner surface 60 when deploying the flexible pipe 26 through the sled 10.


In addition, a height 64 of the first and second sled portions 14 and 18 may be selected to enable a variety of different diameters of flexible pipe 26 to pass through the passage 24. In other words, the height 64 may be larger than the largest expected diameter of flexible pipe 26. As shown in FIG. 2, the first sled portion 14 may include a first bottom sled surface 66 and the second sled portion 18 may include a second bottom sled surface 68. In certain embodiments, the first and second bottom sled surfaces 66 and 68 may have curved shapes. For example, the first and second bottom sled surfaces 66 and 68 may be curved completely from the inlet 28 to the outlet 30 as described in more detail below, or only a portion of the first and second bottom sled surfaces 66 and 68 may be curved as shown in FIG. 2. For example, the first and second bottom sled surfaces 66 and 68 may include first 70, second 72, and third portions 74 that are each generally flat, but together give the first and second bottom sled surfaces 66 and 68 a generally curved shape. The curved shape of the first and second bottom sled surfaces 66 and 68 may improve the ability of the sled 10 to move over different surfaces, such as bare ground, gravel, grass, dirt, vegetation, or any combination thereof. In particular, the curved shape of the first and second bottom sled surfaces 66 and 68 may help prevent the sled 10 from getting caught on any environmental obstructions. In certain embodiments, the first and second bottom sled surfaces 66 and 68 may be completely flat.


In certain embodiments, sides of the first and second sled portions 14 and 18 opposite from the first and second inner surfaces 58 and 60 may be left open, as shown in FIG. 2, or may be closed. One or more structural members 76 may be used to provide support and stability for the first and second sled portions 14 and 18. In addition, one or more attachment points 78 may be coupled to sled 10. As shown in FIG. 2, the attachment points 78 may be b-rings coupled to the first and second sled portions 14 and 18. In further embodiments, other types of attachment points 78 may be used, such as, but not limited to, rings, shackles, bolts, screws, holes, openings, and so forth. In addition, the attachment points 78 may be coupled to other parts of the sled 10, such as the platform 12. Use of the attachment points 78 is described in more detail below.



FIG. 3 illustrates an exploded view of an embodiment of the flexible pipe containment sled 10. Specifically, the platform 12 may be detachably coupled to the first and second sled portions 14 and 18, which may simplify handling and transportation of the sled 10. For example, the sled 10 may take up less space when disassembled. In addition, each of the individual components of the sled 10 (i.e., the platform 12 and the first and second sled portions 14 and 18) may weigh less than the assembled sled 10, thereby making it easier for a person to handle the components individually. Further, individual components of the sled 10 may be selectively replaced or repaired as needed. In certain embodiments, the platform 12 may include a plurality of legs 90 coupled to the lower surface 16. For example, each of the legs 90 may be a portion of square bar stock. The first and second sled portions 14 and 18 may include a plurality of supports 92 to interface with each of the plurality of legs 90. For example, each of the supports 92 may be a portion of hollow square bar stock with interior dimensions greater than the outer dimensions of the legs 90. Thus, the sled 10 may be assembled by placing the first and second sled portions 14 and 18 on a surface appropriately spaced apart from one another, and then lowering the platform 12 onto the first and second sled portions 14 and 18 such that the legs 90 fit within the supports 92. The sled 10 may be disassembled by reversing these steps. In certain embodiments, the legs 90 may be detachably coupled to the supports 92 via fasteners 94, such as, but not limited to, pins, screws, bolts, cotter pins, and so forth. In further embodiments, the platform 12 may be detachably coupled to the first and second sled portions 14 and 18 via other techniques. In some embodiments, the platform 12 may be permanently coupled to the first and second sled portions 14 and 18, such as by welding, brazing, or other techniques. Alternatively, the platform 12 and first and second sled portions 14 and 18 may be formed from one sheet of metal or via additive manufacturing.



FIG. 4 illustrates a perspective view of the flexible pipe containment sled 10 coupled to a trailer 110 via straps 112. For example, the straps 112 may be coupled to the attachment points 78 of the sled 10 and trailer attachment points 114. The straps 112 may be made from a variety of materials, such as, but not limited to, fabric, polymer, rope, cables, metal chain, metal links, metal tape, and so forth. The trailer attachment points 114 may be similar to the attachment points 78. In addition, a plurality of sleds 10 may be coupled together via the attachments 78 located on the third and fourth sides 52 and 56 of the sleds 10 (e.g., daisy-chained), which may extend the containment effect of the sleds 10 over a longer longitudinal 34 distance. Various embodiments of trailers 110 may be used with the sled 10 and the particular type and style of trailer 110 shown in FIG. 4 is not meant to be limiting. Detachably coupling the sled 10 to the trailer 110 enables the sled 10 to be used with a variety of trailers 110 and also when desired. The flexible pipe 26 may be wound on a spool or reel, or the flexible pipe 26 may be handled as coils without spools or reels, as shown in FIG. 4. Such reels or coils of flexible pipe 26 may reduce the amount of space taken up by pipe during manufacturing, shipping, transportation, and deployment compared to rigid pipe that is not capable of being bent into a coil. In certain embodiments, the flexible pipe 26 may be resistant to unspooling, especially in cold weather. In other words, the flexible pipe 26 may exhibit a memory effect such that the flexible pipe 26 resists being uncoiled. By deploying the flexible pipe 26 through the passage 24 of the sled 10, the weight of the sled 10 may counteract the memory effect such that the sled 10 blocks the flexible pipe 26 from bending or moving upward away from a surface 116. In certain embodiments, the sled 10 may weigh greater than approximately 750 pounds. In other words, the sled 10 helps to maintain the deploying flexible pipe 26 close to the surface 116 by containing the flexible pipe 26 within the passage 24. In addition, the sled 10 may provide an easier, faster, and less expensive technique for addressing the memory effect than other alternatives, such as heating the flexible pipe 26. Although use of the sled 10 may be especially beneficial in cold weather deployment of the flexible pipe 26, embodiments of the sled 10 may be used in all types of climates and temperatures to facilitate deployment.


In certain embodiments, a weight 118 may be placed on an upper surface 120 of the platform 12. The weight 118 may be any heavy or dense object commonly available when deploying the flexible pipe 26, such as, but not limited to, sand bags, lumber, railroad ties, concrete, stones, metal objects, and so forth. Placing the weight 118 on the sled 10 instead of directly on the deploying flexible pipe 26 helps to prevent any possible damage to the external surface of the flexible pipe 26 caused by the weight 118. In addition, the weight 118 helps to provide additional force to the sled 10 to counteract any memory effect of the flexible pipe 26. In certain embodiments, the weight 118 or portions of the weight 118 may be placed in the open sides of the first and second sled portions 14 and 18.


As shown in FIG. 4, the sled 10 may be coupled to a rear side 122 of the trailer 110. In certain embodiments, the trailer 110 may remain stationary and an end of the flexible pipe 26 pulled from the trailer while passing through the sled 10 (e.g., pull-off deployment). In other embodiments, a front side 124 of the trailer 110 may be coupled to a vehicle (e.g., backhoe) used to pull the trailer 110 and sled 10 as the flexible pipe 26 deploys through the sled 10 (e.g., drive-off deployment). In drive-off deployment, the first and second bottom sled surfaces 66 and 68 move over the surface 116. In further embodiments, the trailer 110 may be powered such that the trailer 110 is capable of movement without the use of a separate vehicle. In addition, a length 126 of the straps 112 may be minimized to reduce the amount of flexible pipe 26 that comes off the reel or coil before entering the sled 10.



FIG. 5 illustrates a perspective view of the flexible pipe containment sled 10 coupled directly to the trailer 110. As shown in FIG. 5, a hinge 140 is configured to couple the sled 10 to the trailer 110 to enable the sled 10 to tilt with respect to the trailer 110. In other words, the sled 10 may be tilted in an upper position as shown in FIG. 5 when the sled is not being used and the sled 10 may be tilted in a lower position for deployment of the flexible pipe 26. In such embodiments, the attachment points 78 described above may be omitted. In addition, the platform 14 may not be detachably coupled to the first and second sled portions 14 and 18. Coupling the sled 10 to the trailer 110 also reduces the amount of flexible pipe 26 that comes off the reel or coil before entering the sled 10.



FIG. 6 illustrates a perspective view of the flexible pipe containment sled 10 coupled to a coil frame 150 via straps 112. For example, the straps 112 may be coupled to the attachment points 78 of the sled 10 and coil frame attachment points 152, which may be similar to the attachment points 78. Various embodiments of coil frames 150 may be used with the sled 10 and the particular type and style of coil frame 150 shown in FIG. 6 is not meant to be limiting. Detachably coupling the sled 10 to the coil frame 150 enables the sled 10 to be used with a variety of coil frames 150 and also when desired. The coil frame 150 may typically remain stationary during deployment of the flexible pipe 26. In other respects, the sled 10 may be used in a similar manner with the coil frame 150 as with the trailer 110 described above.



FIG. 7 illustrates a perspective view of the platform 12 of the flexible pipe containment sled 10 with a retaining wall 170. As shown in FIG. 7, the retaining wall 170 is disposed on the upper surface 120. For example, two retaining walls 170 may be disposed at the first and second sides 20 and 22. In certain embodiments, the retaining walls 170 may be made from rectangular bar stock or similar materials, and be made from various metals or metal alloys, such as carbon steel. A height 172 of the retaining walls 170 may be selected to help block the weight 118 from falling off or being dislodged from the first and second sides 20 and 22. Although shown at the edges of the platform 12 in FIG. 7, the retaining walls 170 may be located away from the edges in other embodiments. In addition, certain embodiments of the platform 12 may include retaining walls 170 disposed at the third side 52, the fourth side 56, or both to help block the weight 118 from falling off or being dislodged from those sides. In such embodiments, the edge 54 with the curved profile may be omitted or incorporated into the retaining walls 170.



FIG. 8 illustrates a perspective view of the platform 12 of the flexible pipe containment sled 10 with a concave surface. As shown in FIG. 8, the upper surface 120 may include a lower portion 190 disposed below an upper portion 192 to provide the concave surface. Thus, the upper portion 192 may act like the retaining walls 170 shown in FIG. 7 to help block the weight 118 from falling off or being dislodged from the first, second, third, and fourth sides 20, 22, 52, and 56. In addition, the arrangement of the lower and upper portions 190 and 192 may help guide the flexible pipe 26 vertically into the passage 24. For example, the upper portions 192 at the third and/or fourth sides 52 and 56 may be angled with respect to the lower portion 190 to form an overall angled profile of the platform 12, which may act in a similar manner to the edge 54 to reduce potential for damage to the external surface of the flexible pipe 26. In such embodiments, the upper portions 192 at the first and second sides 20 and 22 may be omitted. As shown in FIG. 8, the platform 12 may be made from separate components or pieces attached to one another to form the lower and upper portions 190 and 192. Alternatively, the platform 12 may be formed or shaped to provide the lower and upper portions 190 and 192, such as via hammering or working metal to provide the concave surface.



FIG. 9 illustrates a perspective view of the platform 12 of the flexible pipe containment sled 10 with a stacking guide 210. As shown in FIG. 9, the stacking guide 210 is configured to enable a second sled to be stacked on the upper surface 120 of the platform 12. For example, four stacking guides 210 may be disposed at each of the corners 50 of the platform 12. The stacking guides 210 may be made from metal angle stock or metal alloy angle stock. When the second sled is stacked on the upper surface 120, the stacking guides 210 may block the first and second sled portions 14 and 18 of the second sled from moving or sliding off the upper surface 120. In certain embodiments, the stacking guides 210 may be incorporated into the retaining walls 170 shown in FIG. 7 or alternatively, the retaining walls 170 may incorporate the stacking guides 210.



FIG. 10 illustrates a bottom view of the flexible pipe containment sled 10 with wheels 220. As shown in FIG. 10, the first and second bottom sled surfaces 66 and 68 may have openings 222 through which the wheels 220 protrude. As described above, the sled 10 may move over many types of terrain. As such, the wheels 220 may reduce the resistance or friction of the sled 10 as the sled 10 moves over the terrain. In addition, the wheels 220 may reduce the potential for damage or impact to the first and second bottom sled surfaces 66 and 68 because the surfaces 66 and 68 are raised a distance 224 above the terrain. Examples of wheels 220 include, but are not limited to, solid wheels, solid tires, pneumatic tires, or continuous tracks. The wheels 220 may be made from various materials including, but not limited to, rubber, plastics, metals, metal alloys, and so forth. When the sled is provided with the wheels 220, the first and second bottom sled surfaces 66 and 68 may have curved shapes or may be flat.



FIG. 11 illustrates a side view of the flexible pipe containment sled 10 with the first and second bottom sled surfaces 66 and 68 having a generally continuous curved shape. Such embodiments of the sled 10 may have reduced resistance or friction when moved across certain terrain because less surface area of the first and second bottom sled surfaces 66 and 68 is exposed to the terrain compared to first and second bottom sled surfaces 66 and 68 having one or more flat portions. In certain embodiments, the generally continuous curved shape of the first and second bottom sled surfaces 66 and 68 shown in FIG. 11 may include one or more flat portions.


While the present disclosure has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments may be devised which do not depart from the scope of the disclosure as described herein. Accordingly, the scope of the disclosure should be limited only by the attached claims.

Claims
  • 1. A flexible pipe containment sled, comprising: a platform configured to be substantially parallel with a surface;a first sled portion fixedly coupled to a bottom surface of the platform, wherein the first sled portion is disposed at a first side of the platform;a second sled portion fixedly coupled to the bottom surface of the platform, wherein the second sled portion is disposed at a second side of the platform opposite to the first side of the platform;a passage formed between the first and second sled portions, wherein the passage is configured to allow a flexible pipe to pass through the passage in a direction substantially parallel to the surface while a first bottom sled surface of the first sled portion and a second bottom sled surface of the second sled portion are placed on the surface;a first set of structural members fixedly connected to and disposed between the platform and the first bottom sled surface; anda second set of structural members fixedly connected to and disposed between the platform and the second bottom sled surface.
  • 2. The flexible pipe containment sled of claim 1, wherein the first and second bottom sled surfaces comprise a first portion, a second portion and a third portion, wherein the second portion is substantially flat and disposed between the first and third portions, and wherein the first and third portions extend at an angle outwardly from the second portion.
  • 3. The flexible pipe containment sled of claim 1, wherein the first sled portion comprises an inner surface and an outer surface, wherein the second sled portion comprises an inner surface and an outer surface, wherein the first set of structural members extends between the first side of the platform and the outer surface of the first sled portion, and wherein the second set of structural members extends between the second side of the platform and the outer surface of the second sled portion.
  • 4. The flexible pipe containment sled of claim 3, wherein the first and second sides of the platform are open, and wherein the first and second sets of structural members define a height of the first and second sides of the platform.
  • 5. The flexible pipe containment sled of claim 1, wherein the passage formed between the first and second sled portions is configured to be larger than a diameter of a flexible pipe passing through the passage.
  • 6. The flexible pipe containment sled of claim 1, further comprising a third side disposed between the first and second sides of the platform, wherein the third side includes an edge with a curved profile.
  • 7. The flexible pipe containment sled of claim 6, further comprising a fourth side opposing the third side and disposed between the first and second sides of the platform.
  • 8. The flexible pipe containment sled of claim 1, wherein the first and second sled portions include an inner surface, wherein the inner surfaces each include a first substantially curved portion with a first radius of curvature, a second substantially curved portion extending from the first substantially curved portion and including a second radius of curvature, and a substantially straight portion extending from the second substantially curved portion.
  • 9. The flexible pipe containment sled of claim 1, wherein the first and second bottom sled surfaces are substantially flat.
  • 10. The flexible pipe containment sled of claim 1, wherein at least a portion of the first and second bottom sled surfaces includes a radius of curvature.
  • 11. The flexible pipe containment sled of claim 1, wherein the platform includes a set of legs, wherein the first and second sled portions each includes a set of supports that are configured to engage the set of legs when the platform is fixedly attached to the first and second sled portions.
  • 12. The flexible pipe containment sled of claim 1, wherein the platform comprises a plurality of sides, anda plurality of retaining walls extending from the plurality of sides and defining a space therebetween,wherein the plurality of retaining walls are configured to retain a weight within the space to counteract memory effects of a flexible pipe passing through the passage.
  • 13. The flexible pipe containment sled of claim 1, further comprising a first set of legs including a length and extending from the platform,a second set of legs including a length and extending from the platform, wherein the length of the first set of legs is substantially equal to the length of the second set of legs,a first set of supports extending from the first bottom sled surface of the first sled portion and configured to engage the first set of legs to fixedly secure the platform to the first sled portion, anda second set of supports extending from the second bottom sled surface of the second sled portion and configured to engage the second set of legs to fixedly secure the platform to the second sled portion, wherein the first and second sets of structural members have a length that is longer than the length of the first and second sets of legs, and wherein the first and second bottom sled surfaces are curved.
  • 14. A method of using a flexible pipe containment sled, comprising: placing the flexible pipe containment sled on a surface, wherein the flexible pipe containment sled comprises: a platform configured to be substantially parallel with the surface;a first sled portion fixedly coupled to a bottom surface of the platform, wherein the first sled portion is disposed at a first side of the platform;a second sled portion fixedly coupled to the bottom surface of the platform, wherein the second sled portion is disposed at a second side of the platform opposite to the first side of the platform;a passage formed between the first and second sled portions, wherein the passage is configured to allow a flexible pipe to pass through the passage in a direction substantially parallel to the surface while a first bottom sled surface of the first sled portion and a second bottom sled surface of the second sled portion are placed on the surface;a first set of structural members fixedly connected to and disposed between the platform and the first bottom sled surface; anda second set of structural members fixedly connected to and disposed between the platform and the second bottom sled surface.
  • 15. The method of claim 14, further comprising: providing a set of legs fixedly connected to and extending from the platform;providing a first set of supports extending from the first sled portion;providing a second set of supports extending from the second sled portion; wherein the set of legs are configured to engage the first and second set of supports to attachably connect the platform to the first and second sled portions; anddisassembling the flexible containment sled by detachably uncoupling the set of legs from the first and second set of supports.
  • 16. The method of claim 14, further comprising moving the flexible containment sled along the surface via the first and second bottom sled surfaces, wherein the first and second bottom sled surfaces comprise a first portion, a second portion and a third portion, wherein the second portion is substantially flat and disposed between the first and third portions, and wherein the first and third portions extend at an angle outwardly from the second portion.
  • 17. The method of claim 14, further comprising: weighting the flexible pipe containment by placing a weight on the platform; wherein the platform comprises: a plurality of sides; anda plurality of retaining walls extending from two or more sides of the platform and defining a space therebetween; wherein the weight is retained within the space between the retaining walls.
  • 18. The method of claim 14, further comprising: providing a first wheel that extends through the first bottom sled surface partially into the first space;providing a second wheel that extends through the second bottom sled surface partially into the second space; andmoving the flexible containment sled along the surface via the first wheel and the second wheel.
US Referenced Citations (74)
Number Name Date Kind
2595655 Hannay May 1952 A
2738143 Hannay Mar 1956 A
3372461 Tesson Mar 1968 A
3563481 Stahmer Feb 1971 A
3712100 Key et al. Jan 1973 A
3739985 Odom Jun 1973 A
3849999 Coffey Nov 1974 A
3965713 Horton Jun 1976 A
3982402 Lang et al. Sep 1976 A
4148445 Reynolds et al. Apr 1979 A
4186881 Long Feb 1980 A
4228553 Genuuit Oct 1980 A
4266724 Dipalma May 1981 A
4838302 Prange Jun 1989 A
5012886 Jonas May 1991 A
5139751 Mansfield et al. Aug 1992 A
5437518 Maloberti et al. Aug 1995 A
5454431 Ledwig Oct 1995 A
5598866 Nelson Feb 1997 A
5606921 Elder et al. Mar 1997 A
6419424 Null et al. Jul 2002 B1
7566024 Krise et al. Jul 2009 B2
7661683 Fernandez Feb 2010 B2
10190722 Espinasse et al. Jan 2019 B2
10197198 Glejbol Feb 2019 B2
10226823 Karpachevskyy Mar 2019 B2
10226892 Kremers Mar 2019 B2
10234068 Varagnolo et al. Mar 2019 B2
10281065 Secher et al. May 2019 B2
10285223 Hatton et al. May 2019 B2
10288207 Littlestar et al. May 2019 B2
10378682 Cloos et al. Aug 2019 B2
10408795 Nicolas et al. Sep 2019 B2
10415731 Boche et al. Sep 2019 B2
10429267 Grimsley Oct 2019 B2
10436667 Littlestar et al. Oct 2019 B2
10442925 Rong et al. Oct 2019 B2
10451206 Espinasse et al. Oct 2019 B2
10471661 Boczkowski et al. Nov 2019 B2
10480054 Valdez et al. Nov 2019 B2
10487965 Bouey et al. Nov 2019 B2
10494519 Wilson et al. Dec 2019 B2
10513896 Gudme et al. Dec 2019 B2
10526164 Barnett et al. Jan 2020 B2
10527198 Nicolson et al. Jan 2020 B2
10544889 Bouey et al. Jan 2020 B2
10544892 Holst Jan 2020 B2
10800634 Barnett Oct 2020 B2
20080029645 Gideon et al. Feb 2008 A1
20120061504 Powell Mar 2012 A1
20140312156 Minino et al. Oct 2014 A1
20190003921 Nicholas Jan 2019 A1
20190024830 Glejbol Jan 2019 A1
20190055106 Barnett Feb 2019 A1
20190094101 Spiegel et al. Mar 2019 A1
20190101233 Hatton et al. Apr 2019 A1
20190126567 Bornemann et al. May 2019 A1
20190154186 Varagnolo et al. May 2019 A1
20190162334 Westhoff et al. May 2019 A1
20190162335 Yu et al. May 2019 A1
20190162336 Andersen et al. May 2019 A1
20190186656 Kozak et al. Jun 2019 A1
20190194440 Rong et al. Jun 2019 A1
20190217337 Gujare et al. Jul 2019 A1
20190219473 Littlestar et al. Jul 2019 A1
20190242501 Bereczkne et al. Aug 2019 A1
20190257448 Chalmers et al. Aug 2019 A1
20190285199 Nicolson et al. Sep 2019 A1
20190309582 Procida Oct 2019 A1
20190338868 Hjorth Nov 2019 A1
20190368967 Grimsley Dec 2019 A1
20190391097 Nicolas et al. Dec 2019 A1
20200011467 Holst Jan 2020 A1
20200140229 Barnett May 2020 A1
Foreign Referenced Citations (149)
Number Date Country
2014299014 Jan 2019 AU
2014363465 Jan 2019 AU
2017302735 Jan 2019 AU
2014310509 Mar 2019 AU
2017319390 Mar 2019 AU
2017347152 May 2019 AU
2017365730 Jun 2019 AU
2018211384 Aug 2019 AU
2018222217 Aug 2019 AU
2015335367 Oct 2019 AU
2015345613 Oct 2019 AU
2018288000 Jan 2020 AU
2019279941 Jan 2020 AU
112014017998 Jan 2019 BR
112018013586 Jan 2019 BR
PI0810573 Jan 2019 BR
PI0819542 Jan 2019 BR
112019001414 Feb 2019 BR
112018075840 Mar 2019 BR
112019004048 Mar 2019 BR
PI0517181 Mar 2019 BR
112019000076 Apr 2019 BR
112019007789 Apr 2019 BR
PI0914836 Apr 2019 BR
112019003669 May 2019 BR
112019005154 Jun 2019 BR
112013032388 Jul 2019 BR
112019013850 Jul 2019 BR
PI0720487 Aug 2019 BR
112012015257 Sep 2019 BR
112013017957 Sep 2019 BR
112015027495 Sep 2019 BR
112016001932 Sep 2019 BR
PI0909348 Sep 2019 BR
112015002088 Oct 2019 BR
112019020051 Oct 2019 BR
112012020776 Nov 2019 BR
112019012614 Nov 2019 BR
PI0808956 Nov 2019 BR
112013028806 Dec 2019 BR
112013000428 Jan 2020 BR
112019013850 Jan 2020 BR
PI0924891 Jan 2020 BR
2859433 Mar 2019 CA
2823056 Apr 2019 CA
2765294 Jun 2019 CA
2854955 Jun 2019 CA
2835008 Aug 2019 CA
3012146 Jan 2020 CA
1083193 Mar 1994 CN
109153196 Jan 2019 CN
109153229 Jan 2019 CN
109958827 Jul 2019 CN
110177969 Aug 2019 CN
106985493 Nov 2019 CN
108291686 Nov 2019 CN
110461586 Nov 2019 CN
110462273 Nov 2019 CN
107250643 Dec 2019 CN
108291670 Jan 2020 CN
102018214615 Jun 2019 DE
3224393 Jan 2019 DK
2820083 Feb 2019 DK
2959199 Feb 2019 DK
3228639 Feb 2019 DK
2780159 Apr 2019 DK
3196523 Apr 2019 DK
2516534 Jul 2019 DK
2901062 Aug 2019 DK
3286474 Sep 2019 DK
2360406 Jan 2019 EP
2780159 Jan 2019 EP
3069063 Jan 2019 EP
3433523 Jan 2019 EP
3089846 Feb 2019 EP
3334969 Feb 2019 EP
3334970 Feb 2019 EP
3439871 Feb 2019 EP
2386894 Mar 2019 EP
2516534 Mar 2019 EP
2737238 Mar 2019 EP
2859173 Mar 2019 EP
3371502 Mar 2019 EP
3455059 Mar 2019 EP
3455536 Mar 2019 EP
3458531 Mar 2019 EP
2862700 Apr 2019 EP
3105484 Apr 2019 EP
3258155 Apr 2019 EP
3334965 Apr 2019 EP
3334967 Apr 2019 EP
3463849 Apr 2019 EP
3468725 Apr 2019 EP
3314155 May 2019 EP
3488135 May 2019 EP
2519764 Jun 2019 EP
2572134 Jul 2019 EP
2661578 Jul 2019 EP
3507535 Jul 2019 EP
3513108 Jul 2019 EP
2576333 Aug 2019 EP
3014157 Aug 2019 EP
3059481 Aug 2019 EP
3526437 Aug 2019 EP
2588787 Sep 2019 EP
2870397 Sep 2019 EP
3093546 Oct 2019 EP
3548280 Oct 2019 EP
3350498 Dec 2019 EP
3482112 Dec 2019 EP
3583344 Dec 2019 EP
2556812 Jun 1985 FR
3068104 Jul 2019 FR
3077997 Aug 2019 FR
3074251 Dec 2019 FR
3076337 Jan 2020 FR
1137473 Dec 1968 GB
2471488 Jan 2011 GB
2503880 Mar 2019 GB
2562674 Mar 2019 GB
2557571 Sep 2019 GB
2572120 Sep 2019 GB
2520756 Oct 2019 GB
2535925 Dec 2019 GB
2574296 Dec 2019 GB
E045956 Jan 2020 HU
330637 Jan 2020 IN
S5247428 Apr 1977 JP
20140137060 Dec 2014 KR
2678216 Feb 2019 PL
2379299 May 2019 PL
2018113428 Oct 2019 RU
458798 May 1989 SE
2011001183 Jan 2011 WO
2019016554 Jan 2019 WO
2019016558 Jan 2019 WO
2019028231 Feb 2019 WO
2019073047 Apr 2019 WO
2019022599 May 2019 WO
2019099219 May 2019 WO
2019105926 Jun 2019 WO
2019112431 Jun 2019 WO
2019120677 Jun 2019 WO
2019141326 Jul 2019 WO
2019165562 Sep 2019 WO
2019197538 Oct 2019 WO
2019207031 Oct 2019 WO
2019238456 Dec 2019 WO
2020016325 Jan 2020 WO
Non-Patent Literature Citations (6)
Entry
Eurasian Patent Office; Office Action, issued in connection to patent application No. 202090464; dated Nov. 27, 2020; 4 pages; Russia.
China National Intellectual Property Administration; First Office Action, issued in connection to application No. 2018800632718; dated Jan. 28, 2021; 21 pages; China.
Eurasian Patent Office; Office Action, issued in connection to patent application No. 202090464; dated Jun. 28, 2021; 4 pages; Russia.
European Patent Office; Extended European Search Report, issued in connection to application No. 18840655.7; dated Mar. 24, 2021; 8 pages; Europe.
United States Patent and Trademark Office; PCT International Search Report and Written Opinion, issued in connection to PCT/US18/44969; dated Dec. 10, 2018; 12 pages; U.S.
Intellectual Property Office of Singapore; Written Opinion, issued in connection to patent application No. 11202001977W; dated Jan. 13, 2022; 6 pages; Singapore.
Related Publications (1)
Number Date Country
20210094791 A1 Apr 2021 US
Continuations (2)
Number Date Country
Parent 16736447 Jan 2020 US
Child 17068597 US
Parent 15681451 Aug 2017 US
Child 16736447 US