The present disclosure is generally directed to a trigger assembly for a firearm and, more particularly, to a trigger assembly that actuates along a parallel or substantially parallel axis to the barrel of the firearm.
Firearm triggers cause one or more mechanisms within a firearm to ignite the primer and discharge a projectile. However, some triggers are more complicated than others. Depending on the firearm, triggers can be optimized for trigger weight, safety modifications, and trigger shoe shape, among other characteristics. Each of these characteristics may be difficult to customize on certain firearms due to size constraints within the receiver, other components within the firearm, and/or a reduction in overall firearm safety.
The detailed description is set forth with reference to the accompanying drawings. The use of the same reference numerals may indicate similar or identical items. Various embodiments may utilize elements and/or components other than those illustrated in the drawings, and some elements and/or components may not be present in various embodiments. Elements and/or components in the figures are not necessarily drawn to scale. Throughout this disclosure, depending on the context, singular and plural terminology may be used interchangeably.
Example embodiments will now be described more fully hereinafter with reference to the accompanying drawings, in which example embodiments are shown. The concepts disclosed herein may, however, be embodied in many different forms and should not be construed as limited to the example embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the concepts to those skilled in the art Like numbers refer to like, but not necessarily the same or identical, elements throughout.
Referring now to
The trigger assembly 100 can also include the brace 110 coupled to the trigger bar 183, the trigger shoe 102, and the joint 116. The brace 110 can include the first brace end 112 and the second brace end 114. In some examples, the brace 110 is an elongated member with rounded ends. In other examples, the brace can be a variety of other shapes such as rectangular, triangular, circular, or other oblong shape (e.g., brace 210, as shown in
The trigger assembly 100 can also include the joint 116 coupled to the brace 110. The joint 116 can include a first joint end 118 and a second joint end 120. In some examples, the joint 116 is an L-shaped member. For example, the joint can include a first joint member that extends from the first joint end 118, and a second joint member that extends from the second joint end 120. The first joint member and the second joint member can meet and define an angle of substantially degrees. In other examples, the joint 116 may have any other shape, such as arcuate or straight from the first joint end 118 to the second joint end 120. The first joint end 118 can include a first joint end aperture 119 that aligns with the brace pin aperture 123 that extends from the first joint end 118, through the second brace end 114, to the leg aperture 173. In this manner, movement of the trigger shoe 102 translates through the brace 110 to the first joint end 118 of the first joint 116. The movement of the first joint end 118 then translates through the joint 116 to the second joint end 120. As shown in
The trigger assembly 100 can include the trigger hood 126 coupled to the trigger shoe 102. The trigger hood 126 can include a top surface 127, the bottom surface 128, and a track 130 disposed between the top surface 126 and the bottom surface 128. In some examples, the track 130 is disposed along the bottom surface 128 of the trigger hood 126. The track 130 can include a keyway slot 138. That is, the keyway slot 138 can include two channels opposite one another disposed along the bottom surface 128 of the trigger hood 126. The keyway slot 138 can receive a key 140 disposed on or adjacent to the top surface 108 of the trigger shoe 102. In this manner, the keyway slot 138 guides the trigger shoe 102 as the trigger shoe 102 moves along the keyway slot 138. In certain example embodiments, the keyway slot 138 and the key 140 have complementary shapes so that all or a portion of key 140 will fit into the keyway slot 138. As shown in
The trigger assembly 100 can include the trigger bar 164 coupled to the brace 110. In some examples, the trigger bar 164 includes an elongated body 165 with a front end 166, a rear end 167, a first face 168, and a second face 169. The trigger bar 164 can include a plunger safety tab 170 extending up from a top surface of the elongated body 165 adjacent to the front end 166. The plunger safety tab 170 can extend substantially perpendicular to the body 165. In certain examples, the plunger safety tab 170 is configured to disengage the plunger safety (not shown) within a firearm receiver as the trigger bar 164 moves towards the butt of the firearm. The front end 166 of the trigger bar 164 can include a laterally extending leg 172 that is acutely angled relative to the body 165. The laterally extending leg 172 can include a leg aperture 173 at the front end 166 that extends through the leg 172. The leg aperture 173 can receive the brace pin 124 therethrough to couple the trigger bar to the brace 110. In this manner, movement of the brace 110 translates through the brace pin 124 to the front end 166 of the trigger bar 164. The movement of the front end 166 of the trigger bar 164 can then translate to the rear end 167 of the trigger bar 164 to discharge the firearm. In some examples, the rear end 167 of the trigger bar 164 includes a cruciform 171. The cruciform 171 can include a first arm 174, a second arm 175, and a third arm 176. For example, the first arm 174 can extend perpendicularly or substantially perpendicularly out from a side wall of the body 165. The second arm 175 can extend perpendicularly or substantially perpendicularly out from the first arm 174 towards the rear end 167 of the trigger bar 164. The second arm 175 can be angled away from the first arm 174 to catch a firing pin upon discharge of the firearm. The third arm 176 can extend perpendicular to the first arm 174 partially towards the front end 166 of the body 165. In some examples, the first arm 174 is arcuate and includes a trigger spring aperture to receive a trigger spring (not shown). In other embodiments, the trigger bar may not have a crucible. Additionally, the trigger bar may have the components described herein located in different positions along the body. For example, the trigger bar may include the plunger safety near the butt end of the firearm. In yet other embodiments, trigger bars from various known firearms may be coupled to the trigger assembly to permit lateral movement of the trigger shoe as described herein.
As shown in
Referring now to
The trigger assembly 200 can include the trigger lever 244 with a first end 246 and a second end 248. In some examples, the first end 246 includes a first latch portion 256. The first latch portion 256 can be a surface angled away (e.g., perpendicular) to the rest of the surface of the trigger lever 244. In this manner, the first latch portion 256 can engage a second latch portion 258 extending from the brace 210 in the safety position 286. The trigger lever 244 can rotate to disengage the second latch portion 258 into the dischargeable position 286 in which the trigger shoe 202 may then move. The trigger lever 244 can rotate about the trigger lever pin 254 in a clockwise and counterclockwise direction. The second end 248 of the trigger lever 244 protrudes from within the trigger shoe 202 in the safety position 286 and can recede within the trigger shoe 202 in the dischargeable position 286. In some examples, the trigger lever 244 includes an indent 250 and a spring 252 disposed within the indent 250. The spring 252 can extend towards an inner surface of the trigger shoe 202. In other examples, the trigger shoe 202 includes an indent opposite the trigger lever indent 250. The spring 252 can be a compression spring that moves the trigger lever 244 back to the safety position 285 when the trigger lever 244 is moved to the dischargeable position 286, as described herein.
The trigger assembly 200 can include the brace 210 with a first brace end 212 and a second brace end 214. In some examples, the brace 210 is an elongated shape with rounded ends. In other examples, the brace can be a variety of other shapes such as rectangular, triangular, circular, or other oblong shape. The second brace end 214 can include a trigger shoe aperture 221. The first brace end 214 can align a brace pin aperture 223. The brace 210 can be a rigid structure through which a force acts on the second brace end 214 that translates to the first brace end 212. In this manner, the trigger shoe aperture 221 and the brace pin aperture 223 simultaneously move. The brace 210 can include a second latch portion 258 that extends from the brace 210. For example, the brace 210 can be secured within the trigger shoe 202, and the second latch portion 258 can extend toward the trigger lever 244. The second latch portion 258 can have a surface that contacts the first latch portion 256 on the trigger lever 244. In other examples, the latch portions can be hooks or some other connection to prevent trigger shoe 202 movement.
The trigger assembly 200 can include the joint 216 with a first joint end 218 and a second joint end 220. In some examples, the joint 216 is an L-shaped member where the first joint end 218 extends, turns 90 degrees, and then extends to the second joint end 220. For example, the joint 216 can include a first joint member that extends from the first joint end 218 and a second joint member that extends from the second joint end 220. The first joint member and the second joint member can meet and define an angle of substantially 90 degrees. In other examples, the joint 216 may be another shaped member, such as arcuate or straight from end to end. The first joint end 218 can include the brace pin aperture 223 that extends from the first joint end 218, through the second brace end 214, to the leg aperture leg 273. In this manner, the movement of the trigger shoe 202 translates through the brace 210 to the first joint 218. The actuation of the first joint end 218 then translates through the joint 216 to the second joint end 220. As shown in
The trigger assembly 200 can include the trigger hood 226 with a top surface 227, a bottom surface 228, and a track 230. In some examples, the track 230 is disposed along the bottom surface 228 of the trigger hood 226. The track 230 can include a first groove 232 aligned with a second groove 234 disposed on the trigger shoe 202. The first groove 232 and the second groove 234 can secure a plurality of ball bearings 236 therebetween. For example, the grooves can secure two or more ball bearings to roll between the grooves. In this manner, as a force acts upon (e.g., moves) the trigger shoe 202, the ball bearings 236 roll between the grooves, thereby guiding the trigger shoe 202 in the direction of the grooves. The first groove 232 and the second groove 234 can be substantially linear with the firearm slide (not shown). In other examples, the first groove 232 and the second groove 234 can be angled relative to the firearm slide. The trigger hood 226 can include a variety of channels, such as a trigger bar channel 259. The trigger bar channel 259 complements the trigger bar 264 and can receive the trigger bar 264 during actuation of the trigger shoe 202.
The trigger assembly 200 can include a trigger shoe stop 242 attached to the trigger hood 226 via a trigger hood pin 225. The trigger shoe stop 242 can be attached to the trigger hood 226 at the end of the track 230. The trigger shoe stop 242 can be semi-circular. In other examples, the trigger shoe stop 242 can be another shape such as rectangular, triangular, cubic, or some other shape that prevents further movement along the track 230.
The trigger assembly 200 can include the trigger bar 264. In some examples, the trigger bar 264 includes a body 265 with a front end 266, a rear end 267, a first face 268, and a second face 269. The trigger bar 264 can include a plunger safety tab 270 extending adjacent to the front end 266. The plunger safety tab 270 can extend substantially perpendicular to the body 265. In this manner, the plunger safety tab 270 can disengage the plunger safety (not shown) within a firearm receiver as the trigger bar 264 is moved. At the front end 266 of the trigger bar, a laterally extending leg 272 is angled relative to the body 265. The laterally extending leg 272 can include a leg aperture 273 at the front end 266. The leg aperture 273 can receive the brace pin 224 therethrough. In this manner, actuation of the brace 210 translates through the brace pin 224 to the trigger bar 264. The actuation of the trigger bar 264 translates to the rear end 267 of the trigger bar 264 to discharge the firearm. In some examples, the trigger bar rear end 267 includes a cruciform 271. The cruciform 271 includes a first arm 274, a second arm 275, and a third arm 276. For example, the first arm 274 can extend perpendicular to the body 265. The second arm 275 can extend perpendicular to the first arm 274 towards the rear end 267 of the trigger bar 264. The second arm 275 can be angled away from the first arm 274 to catch a firing pin upon discharge of the firearm. The cruciform 271 third arm 276 can extend perpendicular to the first arm 274 towards the front end 266 of the body 265. In some examples, the first arm 274 actuates and includes a trigger spring aperture to receive a trigger spring (not shown). In other embodiments, the trigger bar may not have a crucible. Additionally, the trigger bar may have the components described herein located in different positions along the body. For example, the trigger bar may include the plunger safety near the butt end of the firearm. In yet other embodiments, trigger bars from various known firearms may be coupled to the trigger assembly to permit lateral movement of the trigger shoe as described herein.
Conditional language, such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain implementations could include, while other implementations do not include, certain features, elements, and/or operations. Thus, such conditional language generally is not intended to imply that features, elements, and/or operations are in any way required for one or more implementations or that one or more implementations necessarily include logic for deciding, with or without user input or prompting, whether these features, elements, and/or operations are included or are to be performed in any particular implementation.
Many modifications and other implementations of the disclosure set forth herein will be apparent having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the disclosure is not to be limited to the specific implementations disclosed and that modifications and other implementations are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
The present disclosure is a continuation application of and claims priority to and the benefit of U.S. patent application Ser. No. 17/653,148, filed Mar. 2, 2022, which claims priority to and the benefit of U.S. application Ser. No. 16/878,768, filed May 20, 2020, which claims priority to and the benefit of U.S. Application No. 62/858,188, filed Jun. 6, 2019, which are all hereby incorporated by reference herein in their entirety.
Number | Date | Country | |
---|---|---|---|
62858188 | Jun 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17653148 | Mar 2022 | US |
Child | 18465530 | US | |
Parent | 16878768 | May 2020 | US |
Child | 17653148 | US |