1. Field of the Invention
This invention relates to wireless networks, and particularly to configuration and capability discovery in Internet Protocol (IP) based wireless networks.
2. Description of Related Technology
Recently a variety of computer network systems have been widely used. Such network systems include a local area network (LAN), a wide area network (WAN), a metropolitan area network (MAN), a wireless local area network (WLAN), a wireless personal area network (WPAN), a general packet radio service (GPRS) network and other wireless network systems, such as wireless fidelity (WiFi), worldwide interoperability for microwave access (WiMAX) and code division multiple access 2000 (CDMA2000). WiFi is a term for certain types of WLANs that use specifications in the IEEE 802.11 family. WiMAX is a form of broadband wireless access based on the IEEE 802.16 standard for MANs. CDMA is also known as IMT-CDMA Multi Carrier or 1×RTT, and is a third generation mobile wireless technology. The network systems allow communication between various end terminals or mobile stations such as a personal computer (desktop, laptop, palmtop or handheld), a mobile phone, or other portable communication devices. It is typical that the above network systems include at least one bridge element such as an access node or access point where user traffic enters and exits a communications network.
Dynamic Host Configuration Protocol (DHCP) [1] [2] allows a host (a computing device such as an end terminal or a mobile station) to discover the capabilities and configurations associated with a currently serving access network. The DHCP, however, does not provide this information for any of the other networks (target networks) that the host may connect to. Neighbor networks are wireless networks in the vicinity or neighborhood of a mobile station.
There is some ongoing work to achieve this goal over Media Access Control (MAC) layer designs [2]. Such designs can provide only a subset of the information that is needed for a full discovery. In addition, as Level 2-specific (of the seven layer open system interconnection model) mechanisms, they lack universal applicability (for example, an IEEE 802.11k solution works only on IEEE 802.11 links, and on nothing else). Such designs also cannot be easily applied to legacy networks that are already deployed.
A very small subset of the target information is incorporated in some specific protocol work, such as Proxy Router Discovery used in Mobile IPv6 Fast Handovers [3] (e.g., prefix information of the candidate access router). Again, this has very limited applicability and cannot solve the general problem.
Current solutions lack the fundamental needs of wireless networks:
Applicability to any IP networks (All-IP)
Discovering the presence of neighbor networks
Learning the extensive list of capability and configurations of neighbor networks.
Embodiments of a method and system for proactively discovering a capability and configuration of candidate wireless networks in the neighborhood of a mobile station are described. The DHCP enables a mobile station to discover the capabilities and configurations of a currently serving network. Using the method, the mobile station can discover the wireless networks in its vicinity and the respective capability and configurations. This enables the mobile station to make better handover decisions in selecting target networks, take preparatory actions prior to the handover, and expedite the connection setup once the mobile station connects to the target.
In one embodiment, there is a network having a dynamic host configuration protocol server, comprising a dynamic host configuration protocol (DHCP) server embedded in a network being in a neighborhood of identified wireless networks; a database, in data communication with the DHCP server, configured to store at least media access control (MAC) address of each identified network; and an access point, in communication with the DHCP server, configured to send beacons to at least one mobile station, wherein each beacon has at least a MAC address of the access point; wherein the DHCP server receives a request for configuration and capability information of one or more of the identified networks, obtains the requested information from the database, and provides the requested information to a mobile station that requested the information.
In another embodiment, there is a network discovery method, comprising maintaining a database of network identifiers associated with a plurality of networks in a neighborhood of a particular network, sending beacons from an access point of at least one network identified in the database, receiving a request for capability and/or configuration information of at least one network identified in the database, and providing the requested capability and/or configuration information to a mobile station.
In another embodiment, there is a network discovery system, comprising means for storing information about identified networks in a neighborhood of a particular network, means for sending beacons from an access point of at least one network identified in the storing means,
means for receiving a request for capability and/or configuration information of at least one network identified in the storing means, and means for providing the requested capability and/or configuration information to a mobile station.
In another embodiment, there is a network discovery method, comprising storing information about a plurality of networks in a neighborhood of a particular network, sending beacons from an access point of at least one of the neighborhood networks, requesting capability and configuration information of at least one network, and providing the requested capability and configuration information to a mobile station.
In another embodiment, there is a network discovery method, comprising learning information about one or more access networks within a neighborhood of a mobile host via dynamic host configuration protocol (DHCP).
In yet another embodiment, there is a network discovery method, comprising learning a configuration and capability of a given access network via dynamic host configuration protocol (DHCP) by a mobile station.
The foregoing and other features of the invention will become more fully apparent from the following description and appended claims taken in conjunction with the following drawings, in which like reference numerals indicate identical or functionally similar elements.
The exemplary mobile station 130, e.g., a mobile telephone, is in communication with the network 110 as shown by paths 180, 181 and 184 of
In one embodiment, the neighborhood database 120 includes a plurality of fields for each access point or base station in the networks of the system 100. These fields include a media access control (MAC) address, an operator identifier, a network access server (NAS) identifier, and an Internet protocol identifier (e.g., IPv4, IPv6). Naturally, in other embodiments, the database 120 can contain other fields.
In a wireless network, an access point is generally a station that transmits and receives data to connect users to other users within the network and also can serve as the point of interconnection between the wireless network and a fixed wire network. In a WiFi network embodiment, an example of one or more of the access points 112, 114, 152 and 154 can be an Airespace 1200, available from Airespace Inc., an IronPoint, available from Foundry Networks, or an Altitude 300, available from Extreme Networks.
The mobile station 130 can be referred to as an end terminal or a user device. The mobile station 130 can include, for example, a personal computer (laptop, palm-top), a mobile phone, or other portable communication devices such as a hand-held PC, a wallet PC and a personal digital assistant (PDA).
Referring to
Proceeding to state 206, the MS hears or receives periodic beacons from one or more networks in the system, such as from the access points or base stations of the networks. For the sake of simplicity, an access point is to be considered as including both access points and base stations. In certain embodiments, beacon frames are described as part of the IEEE 802.11 wireless network protocol. Each beacon transmission identifies the presence of an access point and includes information regarding the access point for the mobile stations that are within range. The beacon interval is a variable parameter. For example, path 180 shown in
At any given time, but shown as state 210 of process 200, the MS can either request:
Continuing at state 212, the DHCP server in the currently serving network responds to the MS request by requesting data from the neighborhood database 120. For example, this request is sent via path 182 to the database 120 as shown in
Referring to
Referring to
Neighborhood Database
Each access point in the neighborhood is entered as a separate “access network” in the neighborhood database 120 (
The database 120 may contain both static and dynamic (e.g., network load) information. While static information can be entered manually, there is a separate mechanism to keep the dynamic information up-to-date.
In certain embodiments, the following are the information items retained in the neighborhood database 120 (
Various applications can take advantage of this network neighborhood discovery capability. A few exemplary applications are listed as follows.
Key scoping in 2.3 GHz Wireless Broadband (WiBro) fast handoffs: (WiBro is a Korean standard, Telecommunications Technology Association Project Group 302, and is part of the IEEE 802.16 family of wireless Internet specifications.)
Pre-authentication WiBro/WiFi:
Pro-active detection of network attachment (DNA):
Reduced scan time:
Advanced network selection:
Pro-active fast mobile IP handovers:
Certain embodiments of the new DHCP process option provide features and advantages not described in prior DHCP options. These features are as follows:
While specific blocks, sections, devices, functions and modules may have been set forth above, a skilled technologist will realize that there are many ways to partition the system, and that there are many parts, components, modules or functions that may be substituted for those listed above.
While the above description has pointed out novel features of the invention as applied to various embodiments, the skilled person will understand that various omissions, substitutions, and changes in the form and details of the device or process illustrated may be made without departing from the scope of the invention. Therefore, the scope of the invention is defined by the appended claims rather than by the foregoing description. All variations coming within the meaning and range of equivalency of the claims are embraced within their scope.
[1] Droms, R., “Dynamic Host Configuration Protocol,” RFC 2131, March 1997.
[2] Droms, R., Bound, J., Volz, B., Lemon, T., Perkins, C., Carney, M., “Dynamic Host Configuration Protocol for IPv6 (DHCPv6),” RFC 3315, July 2003.
[3] IEEE 802.11k Working Group Draft
[4] Koodli, R. (ed), “Fast Handovers for Mobile IPv6,” work in progress, October 2004.
This application claims the benefit under 35 U.S.C. §119(e) of U.S. Patent Application No. 60/687,833 filed Jun. 6, 2005, for “MOBILE AND WIRELESS NEIGHBORHOOD DISCOVERY USING DHCP”, which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60687833 | Jun 2005 | US |