The present invention relates to a system and a method for a modular door structure, and more particularly to a modular door structure with integrated electrical and information components and networks.
In most buildings, doors are used for providing access into and out of the building and for providing access into and out of partitioned sections within the building. Buildings also include wiring, connectors, and electrical and electronic devices for providing power and communications to the entire building and to the partitioned sections. Most of the wiring, connectors, and electrical and electronic devices are built into the building walls or are externally attached to the building walls. These type of built-in wiring, connectors and devices form a fixed building infrastructure that is difficult to change, upgrade and update. At the same time, several of the building electrical and electronic devices and connectors and some of the wiring become obsolete in very short time and they need to be frequently updated and upgraded. Therefore, there is a need for a flexible building infrastructure that provides wiring, connectors and electrical and electronic devices that can be easily connected, disconnected, upgraded, updated, and programmed without changing the existing building walls.
In general, in one aspect, the invention features a system for a modular door for a building structure including a door skeleton, an electrical interface, and a communication interface. The door skeleton includes one or more removable modular structures. At least one of the modular structures includes one or more electronic components and at least one of the electronic components is configured to receive and transmit electrical signals and data via the electrical interface and the communication interface, respectively.
Implementations and advantages of this aspect of the invention may include one or more of the following features. The electrical interface and the communication interface are external to the door skeleton, or are integrated within the door skeleton. The electrical interface and the communication interface transmit and receive electrical signals and data to the electronic components via an electrical connector and a communication connector, respectively, and the electrical connector and the communication connector pass through a door hinge. One of the electronic components comprises a wireless network repeater, or a microprocessor unit. The electronic components comprise one of a bi-directional camera, a bi-directional microphone, a motion detector, a smoke detector, a carbon monoxide detector, a temperature detector, a speaker, a display, a battery, a power module manager, a modem, a router, a memory storage device, software stored in a storage device, distributed power storage, electronic noise cancelling device, door lock controller, pet access control, air quality sensor, allergen sensor, environmental handler, thermostat, light switch, smart communication device, voice activated and voice recognition device, and a sound alarm. The door skeleton further includes a strike jamb, a hinge jamb, a top extender, a bottom extender and one or more molding structures and the molding structures interdigitate with each other and form a center portion of the door skeleton. At least one of the molding structures includes a central opening and the central opening is sized to slidably receive one or more of the removable modular structures. The strike jamb, the hinge jamb, the top extender, the bottom extender, and the one or more molding structures are held together via one or more rods. The strike jamb, the hinge jamb, the top extender, the bottom extender, and the one or more molding structures are held together via mortise and tenon joints. Each of the molding structures includes one or more crenellations formed on a top surface and a bottom surface of the molding structure, and adjacent crenellations are separated by a gap and the gap is shaped and sized to receive a crenellation from an adjacent molding structure. At least one of the removable modular structures includes a visible front surface and the visible front surface comprises one of an acoustic panel, glass, electric privacy glass, touch screen, lights, LED lights, mirror, LED mirror, display, a voice controlled assistant, information center, tablet holder, biometric recognition pad, voice activated device, voice recognition device, smartphone and smart tablet. The system further includes a door frame sized to receive the door skeleton and the door frame is located in an existing building structure, or in a new building structure. The system further includes a controller configured to control the one or more electronic components remotely, and the controller includes one of a smartphone, a tablet, a remote controller, or a computing device. The system further includes one or more skin surfaces configured to be applied onto the door skeleton's front and back surfaces. Each removable modular structure includes a power connector and a communication connector and the power connector and communication connector are configured to mate with a corresponding power connector and a corresponding communication connector, respectively, that are located on a surface of the hinge jamb, when the removable modular structure is fully inserted into a molding structure.
In general, in another aspect, the invention features a method for a modular door for a building structure including the following. Providing a door skeleton comprising one or more removable modular structures. Next, providing an electrical interface and a communication interface. Next, placing one or more electronic components within at least one of the removable modular structures, wherein at least one of the electronic components is configured to receive and transmit electrical signals and data via the electrical interface and the communication interface, respectively.
In general, in another aspect, the invention features a method for configuring a modular door for a building structure including the following. Providing a door configuration design application configured to present various door configuration design parameters and to generate instructions for constructing a modular door configuration based on user input. Next, providing a computing system comprising at least a processor configured to execute computer-implemented instructions of the door configuration design application. Next, providing a user interface that displays the various door configuration design parameters, wherein the door configuration parameters comprise door skeletons and electronic components. Next, selecting a door skeleton comprising one or more removable modular structures. Next, selecting one or more electronic components and placing the one or more electronic components within at least one of the removable modular structures. At least one of the electronic components is configured to receive and transmit electrical signals and data via an electrical interface connector and a communication interface connector, respectively, and wherein the electrical interface connector and the communication interface connector are located within the door skeleton.
In general, in another aspect, the invention features a system for configuring a modular door for a building structure including a door configuration design application, a computing system and a user interface. The door configuration design application is configured to present various door configuration design parameters and to generate instructions for constructing a modular door configuration based on user input. The computing system includes at least a processor configured to execute computer-implemented instructions of the door configuration design application. The user interface displays the various door configuration design parameters, and the door configuration parameters comprise door skeletons and electronic components. A door skeleton includes one or more removable modular structures and one or more electronic components located within at least one of the removable modular structures. At least one of the electronic components is configured to receive and transmit electrical signals and data via an electrical interface connector and a communication interface connector, respectively, and the electrical interface connector and the communication interface connector are located within the door skeleton.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and description below. Other features, objects, and advantages of the invention will be apparent from the following description of the preferred embodiments, the drawings and from the claims.
Referring to the figures, wherein like numerals represent like parts throughout the several views:
FIG.13C is an enlarged side view of the knob opening 111 of
The invention features a modular door system that provides a hub or portal with variable power and multiple locations to extend the function of a door from a simple blocking or obstructing device to a multi-sensing, multi-functioning, communicating, measuring, recording, and amplifying device. The system is a physical door that receives power & data feed, and is configured to be used as a chassis where electronic modules can be inserted, for enhanced home design, or home automation/security/entertainment applications. The door can be a “traffic” door interior or exterior, and includes closet doors, within homes, apartment buildings, office buildings, public buildings, or industrial sites. It could be installed in new constructions or as a replacement to an existing unit.
The door system can be placed in existing door locations, or be built as new construction to be optimally functioning as an integrated home system, on multiple residence levels or office environments to network together. The door system can be controlled via smartphone and allows for some apps to be developed, or direct touch control, or voice recognition. The modular door system allows multiple skins or surfaces that can be easily replaced or altered. The modular door system provides a hub or portal of independent or connected electrically powered functioning devices either through a single operating system or independently. Using the sketch on how the doors would create a vertically and horizontally optimized network of wireless repeaters (field of use) something with an azimuthal or isotropic band or range. The modular door system provides and facilitates co-location of equipment or devices in the core of an interior or exterior door for either independent function or connectivity of equipment and devices both with each other or complimentary devices within the household or business environment. The modular door system can be placed in existing door locations, or be built as new construction to be optimally functioning as an integrated home system, on multiple residence levels or office environments to network together without the threat of obsolescence due to its accessibility. The modular door system extends the current function of a door which allows/prevents ingress and egress and provides privacy and noise control to a multi-device unit or series of units without compromising the current function. The modular door system can be assembled by a novice or general homeowner without the need for equipment. The modular door system provides virtually limitless options for small electrical devices to be co-located, networked, updated, customized, or designed based on this new base low voltage DC hub. Numerous alternative configurations of powered equipment or technology only limited by the physical size in width of a standard door (approximately 1.5 inches). A key feature is the access and more efficient use of “dead space or volume” in a common household or office/business environment. A key feature is an easily replaceable skin or surface face of the door to allow updating without complete replacement of the structure. The modular door system reduces waste and therefore is more economically friendly. A key feature is the modularity of the system—allowing on-site assembly and an alternate method of shipping. Another key feature is the size adaptability of the system to accommodate multiple configurations and various standard door openings, both rough and framed openings. The modular door system is readily compatible with varying door standards prevailing on the world markets today, while minimizing the amount of adaptations and deviations in the case of unique, customized dimensional requirements, by defining some common denominators that push said dimensional variations to vertical and horizontal extenders. The modular door system combines hardware, software, sensors and communication technologies by providing electrical power in the form of low voltage Direct Current electricity. The modular door system can act both as a door, a portal for data networking, storage and co-location of equipment, a home or office network by providing the easily accessible structure (spine) and power and wiring (nervous system) allowing the consumer to determine the number of senses the system wants. The modular door system may provide slow charging battery backups for key systems in the event of a power outage (charging of mobile phones, continuity of internet, modems and routers) as short term protection during a natural event, and for continuous security in the case where the system houses monitoring devices. The modular door system is applicable to any part of the real-estate process (before building, selling, buying, renting and occupying a space). The modular door system offers the capability of incorporating air sensors-allergen detectors into a door embodiment. The modular door system offers the capability of incorporating a voice-controlled assistant into a door embodiment. The modular door system offers the capability of incorporating a smoke/carbon dioxide detection device into a door embodiment. The modular door system offers the capability of incorporating a wireless signal repeater/enhancer into a door embodiment. The modular door system offers the capability of incorporating speakers into a door embodiment. The modular door system offers the capability of incorporating displays into a door embodiment. The modular door system offers the capability of incorporating device chargers, such as smartphones or tablets, into a door embodiment. The modular door system offers the capability of incorporating power storage into a door embodiment, whether for local power backup or working as a lithium-ion battery stationary energy storage network. The modular door system provides software that offers the capability to customize door skins.
The system provides a door that is configured in order to allow three major evolutions from what current doors available to the public can provide:
A. Dramatically enhanced flexibility in the definition by the customer of the door basic properties. After the door is installed, by applying a different set of options, the owner can elect to adjust any of its four intrinsic parameters
a. Acoustic performance
b. Fire-resistance rating
c. Mechanical integrity/Bullet resistance
d. External appearance:
B. Within a private or commercial building, leveraging a network of doors, by allowing each system to carry an array of accessories, the performance of which can be dramatically enhanced by multiple, fixed and strategically distributed locations within the building, as well as constant power and data network access. Those accessories can be embarked on each individual door and include, among others:
a. medium range data (wifi-bluetooth-4G-5G) signal repeaters (or beacons)
b. security cameras-motion detectors
c. bi-directional microphones and temperature sensors
d. smoke-carbon monoxide detectors
e. backup batteries
f. module management system (power switch and micro-processor).
C. Configuring the system to be usable as an open chassis for any other device that is candidate for using the available distributed, data & power connected space, with added functionalities including, among others:
g. Entertainment (e.g. speakers and/or displays)
h. Network memory storage
i. Distributed power storage
j. Electronic noise cancelling devices
k. Voice-controlled assistants (such as Amazon's Alexa/Google's Home)
l. Mechanical door lock controllers
m. Pet access control
n. Air quality sensors—for allergens
o. Environment handlers (air purifiers, humidifiers, diffusers, electronic insect repellants . . . )
p. Home automation controls (e.g. thermostats, light switches)
q. Information centers (date, time, temperature, reminders)
r. Phone/Tablet charging station
s. Sensors/detectors: door motion, room infra-red, radiation, seismic,
t. Recognition pads, such as Badge Biometric/visual recognition
u. Voice activated or voice recognition devices
v. Any small to medium size electronic device (Philips Hue, smartphone-to-TV relay, Z-wave hub such as Vera).
Referring to
Once assembled, the modular door components 103, 104, 107, 108 and 109 are secured in place with holding rods 122 that are designed to pass through holding rod shafts 116 that extend from the hinge jamb 103, across the top and/or bottom sides of the standard molding frame 109, to the strike jamb 104, as shown in
The assembled modular door structure 100 attaches to a doorframe via two, or three or four hinges 112, 113. In this embodiment, hinges 113 are used purely for mechanical attachment and hinge 12 is also used to provide power and data to the door frame. Hinge 12 includes a feedthrough opening 118, through which flexible power and data cables pass to connect the outside electrical power source 80 and data interface relay 90 to the inside of the door skeleton 102. In one example, the electrical power source 80 and the data interface 90 are provided by an inverted power outlet combined with a powerline-type data converter, thus allowing Ethernet to use the electrical circuit.
Referring to
Once the holding rods 122 are inserted into openings 116, the five molding bodies 109 behave mechanically as a single, perfectly rectangular body, which precludes the possibility of sagging of the system through its lifetime. Each standard molding 109 also includes a rectangular shaped through-opening 125 at strike side 109e that extends through the center 109a and through the hinge side 109d. Openings 125 are shaped and dimensioned to allow the module tray 150 to slide through and be positioned and held within the central opening 109a.
Top extender 107 and bottom extender 108 represent the vertical terminations of the central door assembly. The top extender 107 features crenellations 124 and gaps 123 on the bottom surface 107e, one dedicated rod shaft 116a, one shared rod shaft 116b, three accessory compartments 107a-107c, a pair of alignment pegs 121, and an opening 127 extending laterally into and through the accessory compartments, as shown in
Referring to
Referring to
The entirety of the door skeleton 102 is held in the assembled position by a number of holding rods 122 in the range between 3 and 8. Referring to
Dimensional flexibility of the door 100 is provided in the vertical direction by the top extender 107 and the bottom extender 108 and in the horizontal direction by the hinge core jamb 103 and the strike jamb 104.
In one example, the standard moldings 109 are made of high density polyethylene (HDPE) or acrylonitrile butadiene styrene (ABS) and the top extender, bottom extender, hinge jamb and strike jamb are made of metal. In some examples the cavities of the skeleton 102 are filled with materials that improve acoustic performance or provide acoustic insulation. In other examples the cavities of the skeleton 102 are filled with fire resistant materials.
Referring to
Referring to
The bottom extender 108 includes three functional modules 167, 168, 169, located in the corresponding openings 108a, 108b, 108c. Module 167 includes a module manager that distributes the incoming power to the various locations within the door perimeter. Module 168 includes a microprocessing unit, which manages data traffic between the door components and the network, e.g. communication of sensor data. Module 169 includes a battery that allows the system to work independently and to provide emergency power during power outages for phone charging or light, among others.
The current wiring and cabling configuration of the door aims at reducing the risk of the door system becoming obsolescent early in its lifetime. As the user is enabled to permanently acquire the latest functionalities to embark on his system, a wiring/cabling upgrade, although feasible, is far less within reach. In order to reduce the odds that wiring becomes a bottleneck, each standard module is fed independently by a USB 3.1 (or equivalent) cable standard.
Referring to
Each module tray 150 is configured to hold modules that are dimensioned to fit within the openings 152, 151. The modules are developed within dimensional, thermal and electrical/network specifications. Central openings 152 are configured to accommodate central modules with at least one visible face that can serve decorative or entertainment purposes. Referring to
The outer surfaces of the door may be covered with various types of skins or coverings. Referring to
Even within a fixed dimensional specification, the skin “catalogue offering” that can be applied to this modular concept cannot fully leverage the virtual infinity of combinations of materials (wood veneer, paint, rubber, leather, metal, fabric . . . ), geometries (classical, modern, moldings, raised panes, recessed panes, etc . . . ) and added electric features (glass, EPG, lights, etc . . . ). The anticipation is that a venue will be opened for people that acquire modular doors to customize their door skin design.
The skins 180 are attached to the door skeleton 102 via several mechanisms for skin attachments. Referring to
In one example, the door skeleton 102 has a width of 762 mm, a height of 2032 mm, and a thickness of 36 mm. The module opening 109a has a width of 496 mm, a height of 278 mm and a thickness of 30 mm. The cable channel height is 178 cm.
Referring to
The invention also provides a method for a customer to design a modular door via an online web application. Referring to
Referring to
Computer system 400 may further include one or more memories, such as first memory 430 and second memory 440. First memory 430, second memory 440, or a combination thereof function as a computer usable storage medium to store and/or access computer code. The first memory 430 and second memory 440 may be random access memory (RAM), read-only memory (ROM), a mass storage device, or any combination thereof. As shown in
The computer system 400 may further include other means for computer code to be loaded into or removed from the computer system 400, such as the input/output (“I/O”) interface 450 and/or communications interface 460. Both the I/O interface 450 and the communications interface 460 allow computer code to be transferred between the computer system 400 and external devices including other computer systems. This transfer may be bi-directional or omni-direction to or from the computer system 400. Computer code transferred by the I/O interface 450 and the communications interface 460 are typically in the form of signals, which may be electronic, electromagnetic, optical, or other signals capable of being sent and/or received by the interfaces. These signals may be transmitted via a variety of modes including wire or cable, fiber optics, a phone line, a cellular phone link, infrared (“IR”), and radio frequency (“RF”) link, among others.
The I/O interface 450 may be any connection, wired or wireless, that allows the transfer of computer code. In one example, I/O interface 450 includes an analog or digital audio connection, digital video interface (“DVI”), video graphics adapter (“VGA”), musical instrument digital interface (“MIDI”), parallel connection, PS/2 connection, serial connection, universal serial bus connection (“USB”), IEEE1394 connection, PCMCIA slot and card, among others. In certain embodiments the I/O interface connects to an I/O unit 455 such as a user interface, monitor, speaker, printer, touch screen display, among others. Communications interface 460 may also be used to transfer computer code to computer system 400. Communication interfaces include a modem, network interface (such as an Ethernet card), wired or wireless systems (such as Wi-Fi, Bluetooth, and IR), local area networks, wide area networks, and intranets, among others.
The invention is also directed to computer products, otherwise referred to as computer program products, to provide software that includes computer code to the computer system 400. Processor 420 executes the computer code in order to implement the methods of the present invention. In one example, the methods according to the present invention may be implemented using software that includes the computer code that is loaded into the computer system 400 using a memory 430, 440 such as the mass storage drive 443, or through an I/O interface 450, communications interface 460, or any other interface with the computer system 400. The computer code in conjunction with the computer system 400 may perform any one of, or any combination of, the steps of any of the methods presented herein. The methods according to the present invention may be also performed automatically, or may be invoked by some form of manual intervention. The computer system 400, or network architecture, of
Other embodiments include one or more of the following. In the current configuration, the system skeleton has been designed in a way that:
a) allows the system to be readily compatible with varying door standards prevailing on the world markets today, while minimizing the amount of adaptations and deviations in the case of unique, customized dimensional requirements, by defining some common denominators that push said dimensional variations to vertical and horizontal extenders,
b) breaks the system down into smaller dimension subcomponents in order to improve transportation and storage of the system before assembly and installation, as well as to optimize the manufacturing costs,
c) makes several types of upgrades easy to implement during the lifetime of the door:
Although the present design configuration features accessories and modules that are designed to be easily removable/interchangeable/upgradable, an approach could be adopted whereby less importance would be awarded to this flexibility, and where some of the modules and accessories would be fixed or more difficult, possibly impossible, once installed, to change by the user.
The current “Multibloc” design approach, prioritizes modularity, ease of use, ease of transportation, while maintaining the ultimate door sturdiness to a maximal level. The system is configured in order to allow the maximum level of modularity, adaptability and flexibility, having in mind existing functions that could be incorporated into a door chassis as well as anticipating (and leaving maximum flexibility for) those that could be the fruit of future home design and automation innovations. However, an approach that would favor a “Monobloc” skeleton, or reduce the number of components that make up the skeleton, or favor a certain type of material in order to answer a specific requirement, could also be adopted (sheet metal, steel, wood, composite materials etc . . . ).
For example, a re-engineered solid wood door that would allow for the incorporation of a wireless signal emitter and/or advanced design features such as lights or electric privacy glass would fall under the field of this invention.
In the present design configuration, the insertion of Modules is performed by sliding Module Trays through the side (strike jamb) of the door, rendering the substitution of one module by another as simple as the replacement of a printer ink cartridge. However, frontal insertion, while it would require the removal of at least one of the skins, is an option that could be preferred for some specific applications and would fall under the field of this invention.
In the present configuration, skins that determine the final appearance of the front and rear of the doors are assumed to be two distinct one-piece panels that attach to the front of the door, through a peg and peg anchor system that is built into the skeleton. In other embodiments, the skins are attached to the door skeleton via magnetic interfacing, or frontal and or lateral screws, either visible, or concealed with the use of a set of decorative devices (caps, bars or reglettes), mechanical holds to a set of grooves or channels built into the skeleton, and/or lateral attachment through a lip, as widely used for smart phone and tablet cases.
In some design configuration, the system includes 5 Module Trays that each offer 2 modules positions. In the final inserted position, one of the modules, can be rendered visible (if the skin geometry allows), and a substantially narrower one lands behind the door strike jamb. That configuration (5 large+5 small) is anticipated to allow a large number of interesting combinations of decorative (lights, electric privacy glass) and utilitarian modules, large (speakers or display) or small (knob control) in the likely best positions on the door space. That said, different layouts and numbers of modular spaces could be developed, depending on demand and technical margins and parameters. A less flexible configuration can be used with either reservation of available locations for later extension or reduced costs or complexity.
In the present design configuration, the system data and power feed is operated through one of 2-4 hinges (or edge of the door which is concealed when in the closed position) that allows a) a low voltage and b) a data feed to securely enter the door embodiment. Several alternatives may be used for both data and power:
The present design configuration targets making those benefits available, and thus envisions tapping into the house electrical network to create a secured wired network and entirely eliminate the need for a high power Wi-Fi router. That said, a number of alternate possibilities exist, including an all-wireless supported grid of repeaters relaying peer to peer to a central node, however it would likely not provide the same communication speed
In the traditional, most common configuration whereby hinges are present on the side of the door body, they are assigned fixed landing positions on the hinge jamb. However, in order to increase the flexibility of the door and facilitate the adaptation of the skeleton into already installed door frames (in the case of remodeling), the option could be made available for customers adapt the hinge landing positions to their existing frame dimensions (thus minimizing rework of the frame itself).
A specific adaptation of the design is anticipated for:
Several embodiments of the present invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the following claims.
This application claims the benefit of U.S. provisional application Ser. No. 62/631,821 filed on Feb. 18, 2018 and entitled SYSTEM AND METHOD FOR A MODULAR DOOR STRUCTURE, which is commonly assigned and the contents of which are expressly incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62631821 | Feb 2018 | US |