The present invention relates generally to a system and method for driving a fin fan cooler. More particularly, the present invention relates to a system and method for driving variable speed fan in a fin fan cooler with an internal combustion engine on a skid mounted compressor.
Skid mounted compressors are commonly used on well sites for compressing natural gas so it can be shipped via a pipeline. The skids typically have an internal combustion engine which is fueled by a small portion of the natural gas being produced. These skids typically have a fin fan heat exchanger used to cool the engine and natural gas between compression stages. The fin fan heat exchanger has a fan which pushes or pulls ambient air across the heat exchanger to remove heat from the compressed gas and engine coolant. The fan is typically being driven via belt directly off of the crank shaft of the engine without the ability to independently adjust the fan speed. This puts additional load on the engine leading to additional fuel consumption and additional heat from the engine.
These skid assemblies must operate in extreme conditions including temperatures in excess of 100° F. Thus the heat exchangers and fan speed must be designed to operate at this extremely high temperature. While the skid must be capable of operating at this extreme temperature, it typically only operates at that temperature for a few days every year. Even on those days where the temperature exceeds 100° F., it only does so for a few hours. Thus these skids have traditionally operated 24 hours a day, 365 days a year at fan speeds which are only needed for a few hours in the afternoon of the hottest days of the year. This excess fan speed leads to extraordinary additional fuel consumption and costs of the course of a year.
Some attempts have been made to provide an adjustable cooling fan speed on a compressor skid. These have been limited to using a hydrostatic clutch mechanism. These required additional gearing and drive mechanisms. Further they do not allow for the direct drive of the cooling fan in an efficient manner. The complexity and expense of these drives have led to few installations in the industry.
What is needed, therefore, is a simple and efficient system and method to provide a variable speed cooling fan on a gas compressor skid for use on a wellsite.
The present invention achieves its objections by providing a simple and efficient variable speed cooling fan for a skid mounted compressor. The present invention uses a magnetic variable speed clutch mounted to the cooling fan drive shaft. The clutch mechanism is driven via by a drive pulley on the crankshaft of the engine driving the compressor. The speed of the fan is varied through operation of the magnetic variable speed clutch dependent upon the temperature of the fluids being cooled.
Thus the present invention provides a system and method for reducing the fan speed to the lowest necessary level. This reduces fuel usage and operating costs.
Preferred embodiments of the invention will now be described in further detail. Other features, aspects, and advantages of the present invention will become better understood with regard to the following detailed description, appended claims, and accompanying drawings (which are not to scale) where:
Turning now to the drawings wherein like reference characters indicate like or similar parts throughout,
Natural gas from a well or other source enters the system 18 through the inlet 54 of the first compression stage 42 where it is compressed. The compressed gas leaves through the first compression stage outlet 56 which is in fluid communication with the first stage cooling inlet 58. Heat is removed from the compressed gas as it passes through the first cooling stage 46. The cooled compressed gas leaves the first cooling stage 46 through the outlet 60 which is in fluid communication with the inlet 62 of the second compression stage 44. The gas is compressed and leaves the second compression stage 44 via the outlet 64 which is in fluid communication with the inlet 66 of the second cooling stage 48. The gas is cooled as it passes through the second cooling stage 48. The gas leaves the second cooling stage 48 via the outlet 68 and passes on to a pipeline or further processing which varies based on the specific installation. Condensate knockout drums and other liquid removal may also be incorporated in the process between the cooling stages and compression stages as necessary.
The third cooling stage 50 of the fin fan cooler 26 is in fluid communication with the cooling system of the internal combustion engine 24. Thus it cools the cooling fluid of the internal combustion engine 24.
The fourth cooling stage 52 in this example, provides cooling fluid for the intercooler 112 of the turbo 70 on the internal combustion engine 24. The turbo 70 is powered by the exhaust 72 leaving the internal combustion engine 24. This is used to pressurize combustion air. The combustion air enters the turbo 70 through the inlet 74. It is pressurized in the turbo 70 and exits through the outlet 76, where it is cooled in the intercooler prior to entering the intake 83 of the internal combustion engine 24. The compressed and cooled combustion air is mixed with fuel and used in the operation of the internal combustion engine 24.
Cooling fluid leaves intercooler 112 via the outlet 114 which is in fluid communication with the inlet 78 of the fourth cooling stage 52 of the fin fan cooler 26. The cooling fluid is cooled and then leaves the fourth cooling stage 52 through the outlet 80 which is in fluid communication with the inlet 116 of the intercooler 112. Many applications of the present invention use a turbo charged engine thus the example includes a turbo 70 and fourth cooling stage 52, used to cool an intercooler 112. However, the present invention may also be used with a normally aspirated engine in which case the intercooler would not be needed.
During operation the fan 30 blows air across the first, second, third and fourth cooling stages 46, 48, 50 and 52. This helps remove heat from the compressed gas, compressed combustion air and cooling fluids flowing through the fin fan heat exchanger 26. Temperature sensors 84, 86, 88 and 90 are located at the outlets 60, 68, 80 and 82 of the various stages. The temperature detected at these points is sent to a controller 92. The connection between the temperature sensors 84, 86, 88, and 90 and the controller 92 can be hardwired or wireless.
If the temperature at any one of these locations exceeds a preset upper limit the speed of the fan 30 is increased through operation of the magnetic variable speed clutch 38. This increase in fan speed and air flow in turn increases the amount of the heat removed from the fluids flowing through the other side of the heat exchanger 26. The fan speed can be stepped up or down incrementally based upon hitting predetermined temperature levels.
There is a natural slippage between the plates 104 and the disk 102. This slippage can be increased by increasing the gap 106 thus decreasing the fan speed. Conversely the fan speed can be increased by reducing the gap 106 and thus reducing the slip. The gap 106 can be adjusted through operation of the one or more solenoids 108 (adjusting devices). The solenoids 108 are operable by the controller 92. The linkage 110 ensures the gaps 106 on either side of the disk 102 remain equal.
The foregoing description details certain preferred embodiments of the present invention and describes the best mode contemplated. It will be appreciated, however, that changes may be made in the details of construction and the configuration of components without departing from the spirit and scope of the disclosure. Therefore, the description provided herein is to be considered exemplary, rather than limiting, and the true scope of the invention is that defined by the following claims and the full range of equivalency to which each element thereof is entitled.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/056332 | 3/17/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/158137 | 9/21/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4124001 | Samuel et al. | Nov 1978 | A |
4228691 | Smirl | Oct 1980 | A |
4376424 | Mazur | Mar 1983 | A |
4955431 | Saur | Sep 1990 | A |
5362207 | Martin | Nov 1994 | A |
5873708 | Delhomme, II et al. | Feb 1999 | A |
6129193 | Link | Oct 2000 | A |
6176690 | Knepp | Jan 2001 | B1 |
6682430 | Killen | Jan 2004 | B2 |
7294947 | Corbin, III et al. | Nov 2007 | B2 |
7341026 | Laukemann | Mar 2008 | B2 |
7686146 | Taylor | Mar 2010 | B2 |
9165514 | Choi et al. | Oct 2015 | B2 |
9394906 | Fujimoto et al. | Jul 2016 | B2 |
20040011306 | Liederman et al. | Jan 2004 | A1 |
20180371981 | Kight et al. | Dec 2018 | A1 |
Number | Date | Country |
---|---|---|
203081761 | Jul 2013 | CN |
Entry |
---|
Written Opinion of the International Searching Authority dated Oct. 7, 2017 issued by the European Patent Office in corresponding PCT Application No. PCT/EP2017/056332 (6 pages). |
International Search Report dated Oct. 7, 2017 issued by the European Patent Office in corresponding PCT Application No. PCT/EP2017/056332 (5 pages). |
U.S. Official Action dated Nov. 15, 2019 issued in corresponding U.S Appl. No. 16/119,271 by the U.S. Patent and Trademark Office (14 pages). |
Number | Date | Country | |
---|---|---|---|
20200173340 A1 | Jun 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15074299 | Mar 2016 | US |
Child | 16081392 | US |