The disclosed embodiments relate generally to a system and method for accelerating a device under test, and more particularly, to highly accelerating a MEMS accelerometer.
Generally, a handler device is used to receive devices, such as integrated circuit (IC) devices, present such devices to a test apparatus, and remove the devices after testing. In such an environment, the IC devices may be referred to as devices under test or “DUTs.” Tested devices may be sorted based on the results of the testing. Based on the results of a test, the devices may also be calibrated by burning fuses inside them.
Testing may be performed under a range of conditions. In some such cases, the DUTs may be placed within an environmental chamber in which temperature, humidity, and/or other conditions may be controlled.
Certain applications present particular challenges. For example, many modern accelerometers are micro electro-mechanical systems (MEMS) devices which are capable of detecting acceleration up to very high ranges, well in excess of fifty times the acceleration of gravity (i.e., greater than 50 g). In order to fully test these devices, it is necessary to subject the MEMS devices to such accelerations in a controlled manner, while the MEMS devices are operating, and to review the measurements provided by the MEMS devices.
U.S. Pat. No. 7,683,608 describes a handler for acceleration testing of electronic components. An acceleration device is disclosed in which a DUT is held on a nest that is attached to the free end of a tappet. The other end of the tappet is connected to a coil motor that moves the tappet back and forth in an axial direction at a certain frequency. One drawback of such system is that a large force is required to accelerate the DUT, nest, and tappet at sufficiently high levels. Accordingly, the motor must be large enough to generate such a force, requiring a large amount of energy. Further, generation of the large force results in high levels of stress on the motor, possibly hastening wear and reducing the life of the motor. Such a system may also be incapable of functioning properly when placed in an environmental chamber. These constraints impose practical limitations on the level of acceleration that can be achieved and the overall durability of the system.
Another method of testing accelerometers utilizes controlled impact. With this method, a device at a set velocity undergoes an impact with a hard surface or spring. This method can produce high acceleration magnitudes, but may give an erratic acceleration profile, may not be sufficiently repeatable, and may not produce a profile with a sufficiently long period to fully characterize a device.
Yet another method involves mounting devices onto a rotating drum and having the acceleration obtained from the centrifugal forces on the devices. This method still requires a large torque and becomes cumbersome if testing needs to be performed at different levels and in both the positive and negative direction.
It would be advantageous to provide an acceleration device for a handler system capable of accelerating a device to high levels in a controlled, energy-efficient, repeatable manner.
According to an embodiment of the invention, an acceleration device includes an actuator configured to displace a mass in a reciprocating motion at a desired frequency, a mount configured to hold a device, such as an accelerometer, and at least one spring connecting the mount to the mass. The actuator is used to apply a force to achieve resonance.
The actuator may include a voice coil motor, where the voice coil motor includes a permanent magnet and an armature and where the armature includes part of the mass.
According to an aspect of the invention, the actuator applies a periodic force to a mass. The periodic force may be a sinusoidal force. Preferably, the applied force is aligned with a resulting velocity of the mass.
According to an aspect of the invention, the mount includes a test socket to which the device is electrically connected.
In another embodiment, the mass is further coupled to a fixed surface by at least one spring, such as one or more flexure elements.
In certain embodiments, the acceleration device further includes a handler device to connect and disconnect the device to and from the mount. Optionally, the handler device includes a chamber surrounding the mount, wherein the conditions of the chamber are controlled, the conditions including at least one of temperature and humidity.
According to another embodiment of the invention, a method of accelerating a device includes placing a device on a mount, where the mount is coupled to a mass via at least one flexure, and applying a periodic force to the mass with an actuator to displace the mass in a reciprocating motion at a desired frequency.
These and other features, aspects, and advantages of the disclosed embodiments will become apparent from the following description, appended claims, and the accompanying exemplary embodiments shown in the drawings, which are briefly described below.
The large magnitude of force necessary to accelerate a device at high levels of acceleration is evident from the following example provided for context. Consider a mass m to be accelerated to 200 times the acceleration of gravity g (i.e., g is about 9.81 m/s2). The force F in Newtons required would be about 1961 m/s2 times the mass m in kilograms. The following Table 1 illustrates the forces required to accelerate masses in a range of 0.5 to 10.0 kg (i.e., roughly 1 to 20 pounds).
As shown by Table 1, the force required on the mass m, which may include a test fixture, is very large. Accordingly it would be advantageous to minimize the moving mass m including both the fixture and DUT. The DUT, particularly if the DUT is a MEMS or like-sized item, may have mass that is significantly less than the fixture, sockets, etc. Even if the system involved multiple MEMS devices under test at the same time, the combined mass of the DUTs may be significantly less than the associated fixture.
In some applications, it may be desirable to not only subject a DUT to high acceleration, but also to test a DUT over multiple frequencies of oscillatory motion (e.g., periodic motion, harmonic motion). The following equation provides the amplitude of displacement x as a function of acceleration {umlaut over (x)} and angular frequency ω (e.g., circular frequency, angular speed, two π times the frequency f in hertz) for a single degree-of-freedom system including a mass, such as the mass of the fixture holding the DUT, coupled to a “massless” spring, in turn coupled to a fixed body, where the system is in simple harmonic motion (e.g., sinusoidal motion):
Vibrating with a maximum acceleration {umlaut over (x)} of 200 g toward the at-rest position of the mass, the following table provides a range of amplitudes of displacement x as a function of frequency f in Hertz.
In accordance with one aspect of the invention, the amount of force required to excite a mass of a system, which may include a fixture, sensors, a DUT, etc., is reduced by attaching a spring to the mass and exciting the system at a resonant frequency of the system. Purposely exciting a system to induce resonance may be counterintuitive to structural engineers, because resonance is typically avoided in structural design due to the associated enhancement of vibrations, which may be destructive to some systems (e.g., Tacoma Narrows Bridge). However in some embodiments disclosed herein, resonance of systems are purposely induced and used to provide for efficiently testing MEMS-accelerometers at high accelerations, on the order of 50 to 200 g, or even greater accelerations.
For purposes of example, the spring of
m{umlaut over (x)}+c{umlaut over (x)}+kx=F(t), (Eq. 3)
where {umlaut over (z)} is velocity, and F(t) is the driving force as a function of time. Or alternatively:
where ζ is the non-dimensional damping factor (e.g., damping ratio, damping coefficient c divided by twice the root of the product of k and m) and ωn is the natural frequency (rad/s). When damping is negligible, the natural frequency is approximately the resonant frequency of the system, where the system readily transfers energy between kinetic and potential energy modes.
For purposes of context,
As such, the driving force F(t) is aligned with the velocity vector to excite the system.
In some embodiments, the driving force F(t) may be directed opposite to the velocity vector to quickly brake the system, so as to allow for fast substitution of DUTs between tests.
Due to factors such as frictional losses, spring mass, elasticity of the mass (e.g., fixture), imprecise dimensions (e.g., limited tolerances), and other factors within components of a real-world system, it may be difficult to predict the resonant frequency based only on vibration theory. However, calculation of the natural frequency of an idealized version of the real-world system according to vibration theory may be used to provide a ballpark estimate of the resonant frequency. Then, if one monitors velocity and controls the direction of the driving force F(t) so as to be aligned with velocity {umlaut over (x)}, one can excite the resonant frequency ωn of the real world system without knowing the exact value. Further, if the resonant frequency changes, due to changes in mass, spring conditions, etc., the algorithm of aligning the excitation force with the velocity vector automatically compensates for the change.
The results of the simulation shown in
In some embodiments of a system according to
As illustrated in
According to an exemplary embodiment, an environmental chamber may surround or contain mass m2 and not other parts of the system. Accordingly, with a smaller, more concentrated volume of the environmental chamber, the environmental chamber may be more responsive to changes in test parameters (e.g., temperature, humidity, gas composition, light), than would a larger environmental chamber. Furthermore, less energy resources may be used to control conditions in the environmental chamber, relative to a larger environmental chamber enveloping the entire system.
In contemplated embodiments, the environmental chamber surrounds the mass m2, and the spring passes through an aperture in the environmental chamber. In some embodiments, such as those that use flexible beams (e.g., flexures 210a, 210b as shown in
According to the theoretical example, the calculated deflection has one end at 0.420 and the other at −0.805.
In contemplated embodiments, the spring member deflects lengthwise, such as axial deflection of an elastic beam. The environmental chamber surrounding only the mass m2 includes an aperture through which the spring member extends to the mass m2. The aperture is sized to have a tight tolerance around the beam, to contain the space between the aperture and the beam. The aperture may further include a low-friction bearing designed to reduce friction between the beam and the aperture. In other contemplated embodiments, other environmental chamber configurations are used to surround only the mass m2. In still other contemplated embodiments, a larger environmental chamber is used to surround both the mass m1 and mass m2, but not the motor. A gasket may be used between the aperture of the environmental chamber and the output shaft of the motor. And in yet other contemplated embodiments, no environmental chamber is used, or the environmental chamber surrounds the entire system.
Still referring to
m
1
{umlaut over (x)}
1
=F
1
+k
2(x2−x1)−k1x1 (Eq. 5)
m
2
{umlaut over (x)}
2
=F
2
+k
2(x1−x2) (Eq. 6)
where subscripts denote the structures labeled in
To find the natural frequencies and eigenvectors of such a system, harmonic motion is assumed where {umlaut over (x)}=ω2x, and Equation 7 may be presented as homogeneous second-order linear differential equations (e.g, in free vibration, without driving forces F1, F2):
where, if the determinant of the matrix equals zero (zero driving forces F1, F2), this equation has two roots:
If
then Equation 9 yields:
Note that there are two natural frequencies ω1 and ω2, where ω1 is greater than ω2.
The following equation may be used to solve for the spring rate k2 corresponding to the natural frequency ω1:
The eigenvectors (mode shapes, ratio of m1 displacement to m2 displacement) associated with each frequency can be defined from Equation 8:
((k1+k2))−m1ω12)x1−k2x2=0, (Eq. 12)
which may also be written as:
In order to later define the amplitude in the damping matrix, the vectors are normalized with respect to the mass matrix:
Using equations (11) and (12) yields:
Defining a damping value ζ for the first mode (at ω1), one can use the normalized vector for that mode and can solve the following:
which yields:
which may also be written as:
Numerically, the equations from the matrix of equation (14) can be solved as:
Provided the following assumptions f=100 Hz (or ω1=628.3 rad/s), m2=1 kg, β=2.0, α=0.125, and ζ=0.05, k2=259,484 N/m, k1=32,436 N/m, m1=2 kg, ω2=103.2 rad/s (16.43 Hz.), the above equations yield the normalized vector at ω1=628.3 rad/s of:
and the normalized vector at 032=103.2 rad/s (16.43 Hz.):
which correspond to the two resonant mode shapes.
Note that in the first vector, corresponding to ω1, the motion for x2 is out of phase with that of x1 and the amplitude of x2 is almost double that of x1, while in the second vector, corresponding to ω2, the motion for x1 and x2 are in phase with one another. This allows one to apply an excitation force to achieve the mode of vibration associated with ω1 without exciting the mode associated with ω2. According to an exemplary embodiment, the force at m1 is defined to be in the opposite direction of the velocity of m2, such that:
F
1=470 N if {umlaut over (x)}2≦0,
F
1=−470 N if {umlaut over (x)}2>0, and
F
2=0,
for ζ=0.05, c2=41.3 (Ns/m), and c1=5.16 (Ns/m).
The results for this simulation are shown in
In various contemplated embodiments, the excitation force may be applied in a magnitude that is proportional to the magnitude of velocity, acceleration, or displacement. In other contemplated embodiments, the force may be of a constant magnitude applied discretely, at one or more intervals within each cycle in the direction of the velocity vector. In still other contemplated embodiments, the force may be applied in a sinusoidal manner, where the frequency is a function of the resonance frequency of the system.
Referring to
According to at least one embodiment of the invention, the fixture 102 is connected to a mass 106 by a pair of flexures 108a and 108b. The flexures 108a and 108b may comprise any suitable material that allows reciprocating movement within a desired frequency range. In one embodiment, 1095-tempered steel has been employed with a Young's modulus of 207 Gpa and each flexure with a spring rate (k2) of 66,060 N/m. The combined flexures 108a and 108b allow motion in a single direction (positive and negative).
In this example, the mass 106 is coupled to a fixed mounting platform 112 via a second pair of flexures 110a and 110b. These flexures may also comprise a suitable material that allows reciprocating movement within a desired frequency range. In the above-noted example, the lower flexures utilized the same material (tempered steel) but with a substantially lower spring rate (k1) of 7,484 N/m. In other contemplated embodiments, the lower flexures are removed, and the mass 106 moves on a platform. Rollers or bearings in tracks may be used to reduce frictional losses while still precisely constraining the movement of the mass 106 to prevent drifting.
According to an exemplary embodiment, an actuator is used to apply a driving force to the mass 106 so that the mass 106 moves in a reciprocating motion (e.g., oscillatory motion, periodic motion, harmonic motion). In this example, the actuator comprises a bearing-less motor, such as voice coil motor 114. In some such embodiments, the motor armature (i.e., the coil) is attached to the mass 106. The motor housing contains a magnet attached to an adjustable x-y stage (e.g., in this case adjusts in they and z directions) so that the axis of the motor 114 housing may be aligned with the axis of the coil.
In operation, a device 104 to be tested is affixed to the fixture 102. The device 104 may be placed by hand or with an automated handler system. The fixture 102 may be contained within an environmental chamber as noted above.
In the example shown in
Use of the theoretical model may provide an approximation of the resonant frequency, and the frequency of the applied signal may then be adjusted to determine the resonant frequency of the real-world system, at which the displacement magnitude of the fixture is at a maximum. Additional devices, such as those of similar mass and geometry to the device 104, may be subjected to acceleration at the same frequency.
It will be understood that variations in operating conditions may result in a change in the resonant frequency. For example, temperature changes may affect the length or stiffness of the flexures. Calibration may be achieved by monitoring the displacement of the fixture and adjusting the frequency of the applied signal. In some embodiments, calibration may be conducted by human operators of the system. Masses of a system may change with different types or numbers of DUTs.
According to a contemplated embodiment, a resonant frequency of the test system may be determined by an automated tuning algorithm of the system that iterates by changing the driving frequency of the actuator, and using a numerical method (e.g., bisection method, Newton's method, secant method) to find the frequency corresponding to the maximum displacement, or to another parameter indicative of a resonance frequency (e.g., minimal input energy required to achieve a steady state response profile). Prior determinations of a resonant frequency as well as theoretical computations (e.g., model of
It will be appreciated that while embodiments illustrated in
The spring rate k for an isotropic flexure of constant cross-section is believed to be approximately twelve times the product of the modulus of elasticity for the material of the flexure and the moment of inertia of the cross-sectional area of the flexure, divided by the length of the flexure cubed. As such, the stiffness of the flexure may be adjusted by changing the length of the flexure. According to a contemplated embodiment, the resonant frequency of a system disclosed herein may be adjusted by sliding the flexure(s) relative to a fastening point to change the effective length of the flexure(s). The resonant frequency can be tuned to a desired frequency for testing a given DUT.
It will be understood that other variations are possible. For example, wireless communication may be used in place of wired connections between the device in the test fixture and the test device. Alternatively, test data may be recorded and stored on the fixture during testing, then subsequently received by a computer for analysis following a test. In some contemplated embodiments, the DUT may have more than one accelerometer incorporated in it. For example, a 3-axis accelerometer may have three sensors that are measuring accelerations along axes that are orthogonal from each other. It may be desirable to subject the DUT to stimulation such that two or more of these accelerometers are tested simultaneously. This may be accomplished by attaching a second actuator to a system oriented orthogonally to the first actuator, and by using a spring member (e.g., flexible rod(s)) that is able to flex in multiple directions. Another method of exciting multiple accelerometers on the DUT is to mount the DUT with the axes of the DUT set at angles to the motion of the platform on which it is mounted. For example, if the DUT is to be equally excited in two axes, the DUT is mounted with a rotation of 45° with respect to the motion of the platform, resulting in an excitation magnitude of 0.707 times the original excitation in two axes. This methodology can be extended for excitation in three axes.
Referring now to
According to an exemplary embodiment, the mass assembly 316 includes a fixture 326 (e.g., platform) mounted to a lower platform 328 by way of additional flexures 330. Oscillations of the lower platform 328 translate through the flexures 330 to the fixture 326, shaking the fixture 326. In some embodiments, the frequency of oscillation provided by the actuator 322 is tuned to induce a resonant response with a maximum amplitude in the motion of the fixture 326. Such a response induces the fixture 326 to accelerate at a much greater magnitude than the lower platform 328 of the mass assembly 316.
Referring to
Referring to
Referring to
Accelerometers 426, 428 coupled (either physically or otherwise) to the platforms 414, 416 provide signals associated with sensed accelerations of the respective platforms 414, 416. Alternatively or in addition thereto, other sensors, such as position sensors 430, 432 may be used to sense the position of the platforms 414, 416. Integration of the accelerations or differentiation of the positions with respect to time may be used by control circuitry 434 to provide (e.g., estimate, calculate) the velocity of the platform 416. In other contemplated embodiments, the sensors are used to provide the velocity of the platform 414. In some embodiments sensed positions or accelerations are used as feedback to operate to the motor 412 to apply force to influence the velocity of the platform 414 and/or the platform 416, where, for excitation of the resonant response, the force is applied in phase with the velocity of the platform 414 or opposite to that of the platform 416, and vice versa for braking.
The velocity of the platform 416, which may be in the form of an oscillating frequency, may then be shifted by a phase shift module 436 based on a signal provided to the motor 412 for operation thereof, so that the motor 412 pushes in the same direction as the velocity of the platform 414. The signal may then be provided to a comparator 438 to compare the signal to null. Output of the comparator 438, for example, may change polarity every time the signal passes zero from positive to negative velocity, and vice versa. From the comparator 438, the signal may then be adjusted with a gain control module 440 (e.g., automatic gain control) to adjust the signal strength as necessary to be received by the motor drive amplifier 442. The motor drive amplifier 442 then provides the control signal to the motor 412, and further provides the signal received by the phase shift module 436.
One versed in the art would appreciate that there may be other embodiments and modifications within the scope and spirit of the disclosure. Accordingly, all modifications attainable by one versed in the art from the present disclosure, within its scope and spirit, are to be included as further embodiments of the present disclosure. The scope of the following claims and their equivalents is intended to cover such embodiments, modifications, and alternative designs.
This application claims the benefit of U.S. Provisional Application No. 61/326,565, filed Apr. 21, 2010, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61326565 | Apr 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13091995 | Apr 2011 | US |
Child | 14690919 | US |