The present disclosure relates to systems and methods for accessing disk image files, and more particularly to a system and method for accessing disk image files using an HTML5 KVM/vMedia client running in a Web browser of a user's device, and when the disk image file is too large to be copied as a single file into the Web browser's sandbox.
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
Present day keyboard, video and mouse (KVM) appliances and baseboard management controllers (BMCs) allow a user to access remote servers and other devices by passing the keyboard, video and mouse signals between the user's device (typically a laptop, PC, tablet, smartphone, etc.) and the KVM appliance (or between the user's device and the BMC). For the purpose of discussion, the following examples will make reference only to a KVM appliance, but it will be appreciated that they are equally applicable to communication with a BMC. The keyboard and mouse signals received from a KVM/vMedia client by the KVM appliance are typically received by the KVM appliance in some network protocol, for example Ethernet protocol packets. The Ethernet protocol packets are then converted to a format (e.g., USB) that the remote device can accept.
With the recent development of the HTML5 protocol, an HTML5 KVM/vMedia client is now able to run in the Web browser of a user's device when a KVM session is established by the user. Currently HTML5 is supported by several web browsers including Apple Corporation's SAFARI® Web browser (recently released and now part of iOS6), Mozilla's FIREFOX® Web browser, and the Google CHROME® Web browser. The ability to run the HTML5 KVM/vMedia client in the user's Web browser is a significant advantage because the user typically is highly familiar with using a Web browser. As such, this implementation provides the user with a comfortable, easy to use means for conducting a KVM session with a remote KVM device (e.g., KVM appliance or BMC).
Running an HTML5 KVM/vMedia client in the user's Web browser does, however, present some significant limitations. For one, the Web browser does not allow the KVM/vMedia client access to the physical disks of the client device on which the Web browser is running (e.g., PC workstation, laptop, computing tablet, smartphone, etc.). This necessitates the use of a disk image by the HTML5 KVM/vMedia client. This limitation did not exist with a KVM/vMedia client that did not run in the user's Web browser. The technology previously used, such as Java or ActiveX, allowed access to the physical media devices such as disk drives, and thus a disk image was not required to access the data files on the user device. When using a Web browser, however, the Web browser provides a “sandbox” into which the JavaScript engine that runs in the Web browser can bring files. But the JavaScript engine still is not allowed to write out the files, nor is it allowed direct access to the physical media devices on the user's device, such as disk drives, typically used in virtual media implementations.
Still another challenge when using an HTML5 KVM/vMedia client running in a Web browser is the limited size of the Web browser's sandbox. Typically a Web browser's sandbox will be less than 1 GB in size. However, a disk image file may be much larger than the size of the Web browser's sandbox. The limited size of the sandbox may also be a problem if more than one disk image is in use at a given time. In some instances a disk image file may be an exact replica of a disk on the user's device. Thus, the size of the disk image file may potentially be equal to the entire storage capacity of a hard disk drive of the user's device, or in other words up to 3 TB worth of data with current technology. Alternatively, the disk image file may represent the entire contents of a flash drive. The disk image file may reside either on the user's device (e.g., PC workstation, laptop, tablet, smartphone, etc.) or it may be accessible by the user's device over a network, and network “mounted” to the user's device. But in any event, the size of the Web browser's sandbox will often be insufficient to enable the entire disk image file to be copied in a single operation into the Web browser's sandbox by the JavaScript engine.
In view of the above limitations imposed by a Web browser's sandbox when working with disk image files, a new system and method is needed for accessing the disk image files stored on the user's device, or physically accessible by the user's device.
In one aspect the present disclosure relates to a method for exposing virtual disk images on a user device, where the user device is running an HTML5 KVM/vMedia client in a Web browser of the user device, and where the user device has established a KVM session with a KVM device associated with the remote device. The method may comprise obtaining a selected disk image file for use by the user device. A message may be sent to the remote device that the disk image file is available for use. The HTML5 KVM/vMedia client of the user device may be used to expose the disk image file for use to the remote device. The remote device may be used to send a request message to the HTML5 KVM/vMedia client of the user device requesting a specific portion of the disk image file. The HTML5 KVM/vMedia client may also be used to receive the request message. A script engine running in the Web browser may be used to create a new file available to the Web browser of just the portion requested by the remote device. The new file may then be transmitted to the remote device.
In another aspect the present disclosure relates to a method for exposing virtual disk images on a user device, where the user device is running an HTML5 KVM/vMedia client in a Web browser of the user device, and where the user device has established a KVM session with a KVM device associated with the remote device. The method may comprise a plurality of operations comprising obtaining a selected disk image file for use by the user device, and then sending a message to the remote device that the disk image file is available for use. The HTML5 KVM/vMedia client of the user device may be used to expose the disk image file for use to the remote device. The remote device may be used to send a request message to the HTML5 KVM/vMedia client of the user device requesting a specific portion of the disk image file. The HTML5 KVM/vMedia client may be used to receive the request message and, using a script engine running in the Web browser, may determine which specific bytes of the disk image file are being requested in the request message. The script engine may then be used to copy the specific bytes being requested into the Web browser's sandbox to form a new file. The HTML5 KVM/vMedia client may then be used to transmit the new file from the sandbox to the remote device, and the remote device may be used to receive the new file.
In still another aspect the present disclosure relates to a system for exposing virtual disk images on a user device to a remote device. The system may comprise a user device; a Web browser running on the user device; an HTML5 KVM/vMedia client running in the Web browser of the user device; and a script engine running in the Web browser. The HTML5 KVM/vMedia client may be configured to obtain a selected disk image file for use by the user device, and then to send a message to the remote device that the disk image file is available for use. The HTML5 KVM/vMedia client may also be configured to expose the disk image file to the remote device for use, and to receive a request message from the remote device requesting a specific portion of the disk image file. The script engine may be used to copy selected bytes of information from the disk image file corresponding to just the requested portion of the disk image file into the sandbox of the Web browser, and to create a new file using the selected bytes. The HTML5 KVM/vMedia client may then be used to transmit the new file to the remote device.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way. In the drawings:
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.
Referring to
The Web browser 14 may have an HTML5 KVM/vMedia client 20 running in it. The Web browser 14 also provides a “sandbox” 22, which is segregated memory space into which a JavaScript engine 23 running in the Web browser 14 can bring files. However, as noted above, the JavaScript engine 23 is not able to write the files out, nor is it permitted direct access to any of the physical devices (disks of a disk drive, a flash drive, etc.) that are contained within the workstation 12, or physically connected to the workstation, or accessible by the workstation via a network connection.
The HTML5 KVM/vMedia client 20 communicates with a wide area network connection (e.g., the Internet). The wide area network connection enables communication with the Host server 16 via the KVM appliance 18, with a vMedia connection device 24 inside the KVM appliance 18, and with a USB port 26 of the Host server 16. Messages, for example and without limitation AVMP (Avocent Virtual Messaging Protocol) messages, are communicated between the HTML5 KVM/vMedia client 20 and the Host server 16 when disk image files are accessed from the workstation 12 and exposed to the Host server 16, and when status updates (e.g., number of bytes transferred) are sent from the HTML5 KVM/vMedia client 20 to the Host server 16. The AVMP is a proprietary messaging protocol of Avocent, Inc., which is an Emerson Network Power company. However, any other suitable messaging protocol could be used.
Exposing the disk image files to the Host server 16 provides a means for allowing the Host server 16 to access all or just selected portions of the disk image files stored on the workstation 12, or network mounted to the workstation. Accordingly, any virtual media device (e.g., flash drive, portable memory device, etc.) that may be physically connected to the workstation 12, or any disk image file accessible to the workstation 12 via a network connection, may potentially be accessed by the Host server 16 using the system 10. Thus, in
Referring to
At operation 102 the user initially establishes a KVM session with the Host server 16 via the HTML5 KVM/vMedia client 20 running in the Web browser 14 on the user's workstation 12. At operation 104 the KVM appliance 18 sends to the KVM/vMedia client 20 a list of vMedia devices that are available for mapping on the Host server 16 and thus which are available for use by the KVM/vMedia client 20. At operation 106 the user selects the Host server device to be mapped, and then the user selects a specific disk image file, in this example disk image file 30 stored on the hard disk drive 28 of the workstation 12. But as mentioned above, alternatively disk image file 34, which is network mounted to workstation 12, could be selected. When the user selects a specific disk image file, the JavaScript engine 23 determines the size of the disk image file 30. For example, and without limitation, the disk image file 30 may be an image of a FAT32 file system, an image of an ISO9660 file system, or potentially an image of any other type of file system. At operation 108 the HTML5 KVM/vMedia client 20 may send an AVMP message (or using any other suitable messaging protocol) to the Host server 16 notifying it of the available disk image file 30, and exposing the disk image file to the Host server 16 for use. By “exposing”, it will be appreciated that the disk image file is mounted in accordance with a requirement of the LINUX® operating system, which the KVM appliance 18 in this example is running, and then made available to the Host server 16 for use.
At operation 110 the Host server 16 may send a read request message (e.g., an AVMP message) to the HTML5 KVM/vMedia client 20 for specific content of the disk image file 30. At operation 112 the JavaScript engine 23 may receive the read request message and may determine, considering the offset and number of bytes requested, how far into the disk image file 30 that it must traverse (i.e., seek) to obtain the requested bytes of data. At operation 114, beginning at the offset location, the JavaScript engine 23 may begin copying the portion of the disk image file 30 into the Web browser's sandbox 22. By this action the JavaScript engine 23 creates a new file in the sandbox 22, with the new file representing the selected (i.e., just copied) portion of the disk image file 30. It will be appreciated that the above operation of the JavaScript engine 23 is the only means available to get the data from the disk image file outside of the sandbox 22 to the Host server 16. The creation of a new file inside the sandbox 22 is the only means by which the browser's JavaScript engine 23 can bring that data into the sandbox 22. The vMedia JavaScript code needs the data in the sandbox 22 before it can transmit the data to the Host server 16 via the KVM appliance 18.
At operation 116, the HTML5 KVM/vMedia client 20 may then transmit the new file from the sandbox 22 to the KVM appliance 18 (or BMC). The new file that is transmitted will include the bytes of data that represent the selected portion of the disk image file 30.
At operation 118 the Host server 16 receives the transmitted bytes of data from the KVM appliance 18. The bytes of data represent one or more blocks of data that form the selected portion of the disk image file 30. The Host server 16 does not realize that the bytes of data are from disk image file 30; to the Host server 16 it appears that it is obtaining the bytes of data from a physical device connected to its USB port 26.
At operation 120 a check is made if the Host server 16 is done obtaining the bytes of data that make up the selected portion of the disk image file 30, or if the user has unmapped the disk image file. If the answer is “No”, then operations 110-118 are re-performed to obtain one or more blocks of data of the selected disk image 30 to complete the read request. If the check at operation 120 produces a “Yes” answer, then at operation 122 the KVM session ends when the user unmaps the disk image file 30 from the HTML5 KVM/vMedia client 20, or when the user “ejects” it from the Host server 16. By the term “ejects”, it will be appreciated that to the Host server 16 it appears that it is accessing a physical device that has the disk image file 30 on it. As such, a command such as the USB “Eject” command may be provided by the Host server 16. The USB Eject command instructs that the disk image file 30 be unmapped from the KVM appliance 18. Again, it will be appreciated that at this point the Host server 16 does not know that the USB device it is interacting with represents a virtual disk. To the Host server 16 it appears as if it is communicating with an actual disk drive. At operation 124, the KVM appliance 18 firmware receives the ejection notice and sends notice to the HTML5 KVM/vMedia client 20, such as by an AVMP message, which then unmaps the disk image file 30.
By the system 10 and method described herein, disk image files can be readily accessed by a remote host server during a KVM session, even if the disk image files are too large to be copied into the sandbox of the user's Web browser. By selecting portions of the disk image files and sequentially transmitting blocks of data representing the selected portions, disk image files of virtually any size can be accessed, copied into the Web browser's sandbox 22, and transmitted by the HTML5 KVM/vMedia client 20 to the KVM appliance 18 to be exposed to the Host server 16 for use. The user's familiarity with using the Web browser 14 will typically be a significant advantage to the user in conducting a KVM session. By having the HTML5 KVM/vMedia client 20 running in the Web browser 14, this provides a highly familiar and convenient means by which the user is able to conduct a KVM session.
While various embodiments have been described, those skilled in the art will recognize modifications or variations which might be made without departing from the present disclosure. The examples illustrate the various embodiments and are not intended to limit the present disclosure. Therefore, the description and claims should be interpreted liberally with only such limitation as is necessary in view of the pertinent prior art.
This application claims priority to U.S. Provisional Application No. 61/717,299, filed Oct. 23, 2012. The entire disclosure of the above application is incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/066004 | 10/22/2013 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61717299 | Oct 2012 | US |