System and method for acoustic imaging at two focal lengths with a single lens

Information

  • Patent Grant
  • 6618206
  • Patent Number
    6,618,206
  • Date Filed
    Saturday, October 20, 2001
    23 years ago
  • Date Issued
    Tuesday, September 9, 2003
    21 years ago
Abstract
An acoustic lens having two or more regions, each region having a different acoustic index of refraction. The lens may have a simple, non-compound, surface in which both regions form different sections of the same convex or concave curve with the same functional dependence. The transition between the two regions may be gradual or abrupt. The attenuation and other characteristics of the lens may be tailored to provide apodisation and to filter out unwanted frequencies.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The invention is in the field of imaging devices and more particularly in the field acoustic lenses for ultrasonic imaging.




2. Description of Prior Art




Ultrasonic imaging is a frequently used method of analysis for examining a wide range of materials. Ultrasonic imaging is especially common in medicine because of its relatively non-invasive nature, low cost, and fast response times. Typically, ultrasonic imaging is accomplished by generating and directing ultrasonic sound waves into a medium of interest using a set of ultrasound generating transducers and then observing reflections generated at the boundaries of dissimilar materials, such as tissues within a patient, also using a set of ultrasound receiving transducers. The receiving and generating transducers may be arranged in arrays and are typically different sets of transducers, but may differ only in the circuitry to which they are connected. The reflections are converted to electrical signals by the receiving transducers and then processed, using techniques known in the art, to determine the locations of echo sources. The resulting data is displayed using a display device, such as a monitor.




Typically, the ultrasonic signal transmitted into the medium of interest is generated by applying continuous or pulsed electronic signals to an ultrasound generating transducer. The transmitted ultrasound is most commonly in the range of 40 kHz to 15 MHz. The ultrasound propagates through the medium of interest and reflects off interfaces, such as boundaries, between adjacent tissue layers. Scattering of the ultrasonic signal is the deflection of the ultrasonic signal in random directions. Attenuation of the ultrasonic signal is the loss of ultrasonic signal as the signal travels. Reflection of the ultrasonic signal is the bouncing off of the ultrasonic signal from an object and changing its direction of travel. Transmission of the ultrasonic signal is the passing of the ultrasonic signal through a medium. As it travels, the ultrasonic energy is scattered, attenuated, reflected, and/or transmitted. The portion of the reflected signals that return to the transducers are detected as echoes. The detecting transducers convert the echo signals to electronic signals and, after amplification and digitization, furnishes these signals to a beam former. The beam former in turn calculates locations of echo sources, and typically includes simple filters and signal averagers. After beam forming, the calculated positional information is used to generate two-dimensional data that can be presented as an image.




As an ultrasonic signal propagates through a medium of interest, additional harmonic frequency components are generated. These components are analyzed and associated with the visualization of boundaries, or image contrast agents designed to reradiate ultrasound at specific harmonic frequencies. Unwanted reflections within the ultrasound device can cause noise and the appearance of artifacts (i.e., artifacts are image features that result from the imaging system and not from the medium of interest) in the image. Artifacts may obscure the underlying image of the medium of interest.




One-dimensional acoustic arrays have a depth of focus that is usually determined by a nonadjustable passive acoustic focusing means affixed to each transducer. This type of focusing necessitates using multiple transducers for different applications with different depths of focus.




The width of the beam determines the smallest feature size or distance between observable features that can be observed. The imaging system determines position by treating the beam as if it had essentially a point width. Consequently, efforts have been made to achieve a narrow beam of focus, because when the beam is wide, features that are slightly displaced from the point of interest also appear to be at the point of interest. The longer the region having a narrow beam of focus, the greater the range of depth into the medium of interest that can be imaged.




The beam intensity as a function of position may oscillate rather than fall off monotonically as a function of distance from the center of the beam. These oscillations in beam intensity are often called “side lobes.” In the prior art, the term “apodisation” refers to the process of affecting the distribution of beam intensity to reduce side lobes. However, in the remainder of this specification the term “apodisation” is used to refer to tailoring the distribution of beam intensity for a desired beam characteristic such as having a Guassian or sinc function (without the side lobes) distribution of beam intensity.




Steering refers to changing the direction of a beam. Aperture refers to the size of the transducer or group of transducers being used to transmit or receive an acoustic beam.




The prior art process of producing, receiving, and analyzing an ultrasonic beam is called beam forming. The production of ultrasonic beams optionally includes apodisation, steering, focusing, and aperture control. Using a prior art data analysis technique each ultrasonic beam is used to generate a one dimensional set of echolocation data. In a typical implementation, a plurality of ultrasonic beams are used to scan a multi-dimensional volume.





FIG. 1A

shows a prior art acoustic focusing system


100


A, having a lens


102


A with a simple (i.e., a non-compound) surface, focusing a beam


104


A, into a focused region


106


, having a depth of focus


108


.

FIG. 1A

is a two dimensional depiction of the acoustic art focusing system


100


A. The third dimension is not discussed in conjunction with

FIG. 1A

, but will be discussed in conjunction with

FIGS. 1B and 1C

. In contrast to the usage of the terms “simple” and “compound” in optics, in the context of this specification simple and compound are used to describe the complexity of the curvature of the lens surface. Similarly, in this specification a lens having a compound surface curvature may be referred to as having a compound surface. If for each side of the lens the curvature can be described as one mathematically smooth and continuous curve of the same concavity or convexity, the lens is simple even if each side of the lens is characterized by a different curve. Otherwise, the lens and its associated curvature are complex or compound.




Lens


102


A is an acoustic lens, and beam


104


A is an ultrasound beam. The distance from lens


102


A to the center of focused region


106


is the depth of focus


108


. The focused region


106


represents a range of focus in which the beam is in focus. As long as the velocity in the medium surrounding lens


102


A is greater than in lens


102


A, a convex curvature will tend to focus beam


104


A to a point. When the velocity in the medium surrounding lens


102


A is lower than in lens


102


A a concave curvature will focus beam


104


A to a point or line.




The depth of focus


108


in ultrasonic imaging may be a significant parameter in obtaining high resolution. The direction of the depth of focus is normally taken to be perpendicular to the direction along which phased elements are aligned (in the downstream direction).




The prior art utilizes an acoustic lens, such as lens


102


A, of a fixed focus and relies upon a typical depth of focus of the acoustic beam, such as beam


104


A, during penetration of the signal into a medium of interest. The range of the focus or the length of the focused region


106


is often inadequate for imaging many of the different organs or regions of the human body, for example, that may constitute the medium of interest. One reason the range of focus may be inadequate is because the size of the medium of interest such as an organ may be larger than the focused region. Consequently, for some mediums of interest it may be necessary to switch lenses and/or transducer lenses to image the entire medium of interest when using a lens such as lens


102


A. Efforts have been made to extend the length of the focused region


106


by using lenses with compound surfaces.





FIG. 1B

shows a prior art acoustic focusing system


100


B having a spherical lens


102


B, and a beam


104


B. The beam


104


B becomes a line as it comes to its focus and therefore has a cross section perpendicular to its direction of propagation that is a circle or is ideally a point.





FIG. 1C

shows a prior art acoustic focusing system


100


C having a cylindrical lens


102


C, and a beam


104


C. The beam


104


C becomes a sheet as it comes to its focus and therefore has a cross section perpendicular to its direction of propagation that is a rectangle or is ideally a line.




Acoustic focusing systems


100


B and


100


C are examples of acoustic focusing system


100


A.





FIGS. 1D-F

show ultrasound transducer arrays and aid in understanding terminology used in the ultrasound art.

FIGS. 1D-F

have transducer arrays


118


D-F, transducer elements


120


D-F, and coordinate system


122


. Coordinate system


122


D defines the elevation direction along its vertical axis and the azimuthal direction along its horizontal axis. In the ultrasound art the term one-dimensional or 1D array (e.g., transducer array


118


D) refers to an array of transducers (e.g., transducer elements


120


D) that consists of a single row of transducer


120


D. Often each transducer in the row has a length in elevation direction that is significantly longer than its width in the azimuthal direction. The 1D array allows for steering in only the azimuth direction. The term two dimensional or 2D array (e.g., transducer array


118


F) refers to an essentially square array of transducers including nearly the same number of rows as columns, in which the individual transducer elements can be square or rectangular, for example. In contrast to the 1D array, the 2D array allows for beam steerng in any direction, which is useful in 3-D imaging. Similarly the term 1.5D (e.g., transducer array


118


E) refers to an array of transducers, which contains more than one row of transducers (e.g., transducer elements


120


E) in the azimuthal direction. The 1.5D array may use phasing, for example in the elevation direction form improved beam characteristics. The terms 1.75D and 1.8D and similar terms greater than 1.5D are used to refer to arrays that have a number of rows in the azimuthal direction that is between that of the 1.5D and the 2D arrays.





FIG. 2

shows a prior art focusing system


200


having a lens


202


with a compound surface. This lens


202


includes an inner lens portion


204


and outer lens portion


206


joined at a ring that forms cusp


207


. Beam


208


has an inner beam portion


210


and outer beam portion


212


that travels predominantly through inner lens portion


204


and outer lens portion


206


, respectively.

FIG. 2

also includes near focused region


214


, far focused region


216


, and coordinate system


218


.




The use of different portions of lens


202


with different radii of curvature, or different degrees of concavity or convexity, results in different focal points. Upon exiting lens


202


, inner beam portion


210


is focused into near focused region


214


, whereas outer beam portion


212


is focused into far focused region


216


. The near focused region


214


and far focused region


216


combined form a range of focus that may be greater than is possible for lens


102


A and is greater than either the near focused region


214


or the far focused region


216


alone. In one embodiment inner beam portion


210


and outer beam portion


212


are separate beams applied at different times. When using the near focused region


214


the focusing system


200


is said to be operating in near penetration. When using the far focused region


216


the focusing system


200


is said to be operating in far penetration. Alternatively, inner beam portion


210


and outer beam portion


212


may be the same beam or travel during overlapping time periods. Coordinate system


218


is used to characterize the shape of lens


202


as a curve, z, that is a function of a radial direction r and an angular direction θ, or z(r,θ), that describes the shape of the downstream side of lens


202


. A circular convex or concave lens, such as lens


102


A is symmetrical about the z axis and therefore z(r,θ) is independent of angle θ and consequently can be written as z(r). The lens may be circular or cylindrical, having different regions of different curvature. At cusp


207


curve z(r) is mathematically continuous. However, at cusp


207


the first and second derivatives of the curve, z′(r) and z″(r), are not continuous, and are essentially undefined.




Although possibly not recognized in the prior art, different curvatures on the lens surface of lens


202


result in difficulties of acoustic contact with a medium of interest, such as a human body. These difficulties are highlighted when as a result of different curvatures, some of the coupling gel and/or air bubbles are trapped in different segments of the transducer surface or between the medium of interest and the compound surface of the lens. The coupling gel tends to distort the shape of compound lenses, such as lens


202


, thereby distorting its focusing characteristics. Another problem recognized by the present inventors is that the increased thickness of the inner lens portion


204


has an increased attenuation of the signal causing poor signal return. This problem is exacerbated because the inner lens portion


204


is normally used for higher frequencies, which are particularly sensitive to attenuation by thicker lenses. The attenuation characteristics of lenses


102


A and


202


result in an angular distribution of beam intensity that is low in the center and high at the edges, and is thereby nearly the inverse of a Guassian distribution. However, it is desirable to have a Guassian distribution of beam intensity to maintain a sharp focus.




SUMMARY OF THE INVENTION




An acoustic lens having a non-compound or simple curvature is provided in which different segments or regions of the lens have different acoustic indices of refraction. In many materials, greater amounts of heating, curing, or irradiating with various types of particles or radiation yield greater amounts of material crosslinking, which makes the material harder. In general, however, greater amounts of heating, curing, or irradiating changes the material in a variety of ways such as by increasing or decreasing the amount of crosslinking, the density, and/or hardness. Each region may include different materials, or the same material treated (e.g., cured, irradiated, or heated) differently. These variations in materials may be used to associate different compressibilities and/or different densities with different lens regions, thereby setting different indices of refraction to those regions, for example.




The different focal length portions of the acoustic lens may coincide with different portions of a transducer surface. The different portions of the transducer surface may have different transmit and receive frequency characteristics. A range of frequency can be referred to as a transducer frequency domain. Thus, the different portions of the transducer surface can be associated with different transducer frequency domains. Coupling the different transducer frequency domains with different focal length portions helps extend the focused region of the lens so that it has a sharp focus beyond what is feasible with the prior art.




Further, the transducer or transducer array may be shaped so that different frequencies excite different portions of the transducer or transducer array. The chosen frequency of operation may be higher for shallow penetration into a medium of interest such as a human body, for example. The high frequency portion of the transducer may be aligned with the lens portion having the more shallow focus or shorter focal length, and the low frequency portion of the transducer may be aligned with the portion of the lens having the deeper focus or longer focal length. In this way, the portion of the transducer and the lens associated with the longer focal length will be inactive. An inactive portion will not interfere with the lens' focal quality when activating the portion of the transducer and lens associated with the shorter focal length, and visa versa. In addition to the velocity or compressibility and the density of the lens medium or material, the acoustic attenuation can also be tailored to optimize beam characteristics. For example, the sections of the lens intended to focus low frequency acoustic energy can have a higher attenuation factor than the sections intended to function at higher frequencies. Since attenuation increases at higher frequencies, the sections of the lens that will function at low frequencies will tend to filter out higher frequencies. This feature will allow the construction of devices that will approach the performance of 1.5D, 1.75D, or 1.8D transducers with simpler electronic switches, and can be used for shaping the intensity distribution of the beam or apodisation. Extending the focus will involve only disconnecting the central row or rows of the array when operating at low frequency in the far penetration mode. Connecting and disconnecting the central row or rows while the outer rows remain connected is easier than connecting and disconnecting both the inner and outer rows such that the inner and outer rows are not functional simultaneously.




Broad beam technologies refer to systems and methods that include or take advantage of techniques for generating ultrasound and analyzing detected echoes, broad beam technologies use multidimensional spatial information obtainable from a single ultrasonic pulse.




Area forming is the process of producing, receiving, and analyzing an ultrasonic beam, that optionally includes apodisation, steering, focusing, and aperture control, where a two dimensional set of echolocation data can be generated using only one ultrasonic beam. Nonetheless, more than one ultrasonic beam may still be used with the area forming even though only one is necessary. Area forming is a process separate and distinct from beam forming. Area forming may yield an area of information one transmit and/or receive cycle, in contrast to beam forming that typically only processes a line of information per transmit and/or receive cycle. Alternatively, beam forming can be used instead of area forming electronics throughout this application.




Volume forming is the process of producing, receiving, and analyzing an ultrasonic beam, that optionally includes apodisation, steering, focusing, and aperture control, where a three dimensional set of echolocation data can be generated using only one ultrasonic beam. Nonetheless, multiple ultrasonic beams may be used although not necessary. Volume forming is a superset of area forming.




Multidimensional forming is the process of producing, receiving, and analyzing an ultrasonic beam, that optionally includes apodisation, steering, focusing, and aperture control. Using multidimentional forming a two or more dimensional set of spatial echolocation data can be generated with only one ultrasonic beam. Nonetheless, multiple ultrasonic beams may be used although not necessary. Multidimensional forming optionally includes non-spatial dimensions such as time and velocity.




The present acoustic lens can be used with broad beam technologies, area forming, volume forming, or multidimentsional forming. Alternatively the present acoustic lens can also be used with beam forming. When used with area forming the acoustic lens is typically cylindrical so as to allow the use of a broad beam that has across section shaped like a line rather than a point and is focused along its height, but not along its width.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1A

shows a prior art acoustic focusing system having a lens with a simple surface;





FIG. 1B

shows a prior art acoustic focusing system;





FIG. 1C

shows a prior art acoustic focusing system;





FIGS. 1D-F

ultrasound transducer arrays;





FIG. 2

shows a prior art focusing system having a lens with a compound surface;





FIG. 3

shows a system having a lens with a compound surface according to an embodiment of the invention;





FIG. 4A

shows a focusing system having a lens with a simple surface according to an embodiment of the invention;





FIGS. 4B and 4C

show top views of embodiments of the lens of

FIG. 4A

;





FIGS. 4D and 4E

show top views of two embodiments of transducer of

FIG. 4A

;





FIG. 5

shows a cross-section of another transducer that may be used in an embodiment of the invention according to

FIGS. 4A and 4D

;





FIG. 6A

shows a cross-section of another transducer that may be used in an embodiment of the invention according to

FIG. 4A

;





FIG. 6B

shows a top view of an embodiment of the transducer of

FIG. 6A

;





FIG. 6C

shows a top view of an embodiment of the transducer of

FIG. 6A

;





FIG. 7

shows a method of using the lens of

FIGS. 4A

;





FIG. 8

shows a method of making the lens of

FIGS. 4A

;





FIG. 9

shows another method of making the lens of

FIGS. 4A

; and





FIG. 10

shows another method of making the lens of FIGS.


4


A.











DETAILED DESCRIPTION OF THE INVENTION





FIG. 3

shows a system


300


having a lens


302


with a compound surface, which includes an inner lens portion


304


and outer lens portion


306


joined at a line that forms transition region


307


. System


300


also includes coordinate system


318


.




Lens


302


of system


300


differs from lens


202


of focusing system


200


primarily in that cusp


207


is replaced with transition region


307


. The differences between lenses


202


and


302


are further discussed below. Lens


302


may function substantially the same as and may be substituted for lens


202


. Coordinate system


318


is used to characterize the shape of lens


302


as a function z(r), similar to coordinate system


218


. Inner lens portion


304


is tailored to have acoustic properties suitable for higher frequencies, such as a lower acoustic attenuation, while outer lens portion


306


may be tailored for lower frequencies. Acoustic attenuation within any given medium is affected by the density and size of particles such as bubbles, microshepres, graphite and/or tungsten, embedded within and having an acoustic index of refraction different from that of the rest of the medium or material forming the lens. Consequently, the attenuation of a region of lens


302


can be increased by adding more particles and/or increasing the particle size.




Unlike lens


202


(FIG.


2


), in lens


302


(

FIG. 3

) at transition region


307


curve z(r) and its first and second derivatives z′(r) and z″(r), are mathematically continuous, because curve z(r) at transition region


307


is smooth. Also, at transition region


307


second derivative z″(r) changes sign. Cusp


207


has a sharp corner with a sudden change between lens portions


204


and


206


, whereas transition region


307


has a rounded corner with a gradual transition between lens portions


304


and


306


. Artifacts caused by transition region


307


(

FIG. 3

) may be less noticeable than those caused by cusp


207


(

FIG. 2

) because the smoothness of transition region


307


tends to produce artifacts that are more poorly defined. Lens


302


can be circular, elliptical, cylindrical or any other shape. Transition region


307


forms a ring if the lens


302


is circular, and is two parallel lines if lens


302


is cylindrical.




Alternatively, a lens could be made from a material that can be deformed mechanically or have its acoustic index of refraction otherwise altered by applying an electric and/or magnetic field to change the lens' focal length. For example, the lens could be made from a piezoelectic material or a MicroElectro-Mechanical (MEM) element. Also, one or more piezoelectric elements and/or one or more MEMs may be used to deform a lens made from an elastic material to change its focal length, for example.





FIG. 4A

shows a focusing system


400


having a lens


402


with a simple surface, according to the invention.

FIG. 4A

also shows inner lens portion


404


, outer lens portion


406


, joining region


407


, transducer


408


, beam


409


, inner beam portion


410


, outer beam portion


412


, near focused region


414


, far focused region


416


, and coordinate system


418


.





FIG. 4A

shows a cross-section of lens


402


, and is an acoustic lens with a simple surface. Inner lens portion


404


and outer lens portion


406


have different indices of refraction, and are joined at joining region


407


. Joining region


407


has a different name than transition region


307


to signify that joining region


407


can be either any type of change in the material parameters from a smooth gradual transition to a sudden abrupt change between lens portions


404


and


406


. In contrast, transition region


307


(

FIG. 3

) is always a smooth transition between lens portion


304


and


306


. Lens


402


may have an acoustic impedance that matches the medium of interest, such as the human body, to minimize reflection at the surface. Transducer


408


is an acoustic transducer that generates an ultrasound beam. Beam


409


is an ultrasound beam that is generated by transducer


408


.




Regarding lens


402


, the velocity of sound in a material can be affected by changing either its density or its compressibility. Materials of high compressibility, such as silicones, tend to have low velocity and materials of low compressibility have high velocity, assuming the densities are the same. Also, the velocity in the elevation direction (velocity in the z direction) can be controlled by treating the lens with different means of curing, irradiating, or heating, thereby changing the crosslinking in the material and thereby affect its hardness. Larger particles, such as bubbles, graphite, tungsten, and/or microspheres, have a higher attenuation because they give rise to more scattering. Alternatively, higher densities of particles, such as graphite, tungsten, bubbles, and/or microshperes, will also give rise to a higher amount of scattering and therefore a higher attenuation. Different materials have different amounts of attenuation. Consequently, the attenuation can be controlled by using different materials for the inner lens portion


410


and the outer lens protion


412


. Additionally the attenuation may be controlled by both using a different materials and different amounts of particles in both lens portions. Thus, the density and the velocity of sound associated within the material can be controlled by altering the amount of crosslinking and the density and/or size of the particles added. Therefore, the acoustic index of refraction and the acoustic impedance, which is the density times the velocity, can also be controlled. The acoustic impedance may be kept constant in situations when it is desirable to minimize interface reflections. The attenuation and velocity characteristics of lens


402


may be controlled to achieve a desired apodisation, such as a Guassian or side lobeless sinc function distribution in beam intensity at the surface of the lens.




High frequency ultrasound beams may be used for imaging near regions within a medium of interest while low frequency ultrasound beams may be reserved for imaging far regions. High frequency ultrasound beams tend to be attenuated at too high of a rate of attenuation to be used for imaging far into a medium of interest. The acoustic impedances of lenses


402


and


302


may be set to be close to that of the medium of interest, such as a human body, to minimize signal loss due to impedance mismatch at the surface of medium of interest.




Lens


402


differs from lenses


202


(

FIG. 2

) and


302


(

FIG. 3

) primarily in that the inner lens portion


404


and outer lens portion


406


have different acoustic indices of refraction, rather than having different curvatures or different degrees of concavity or convexity. In focusing system


400


beam


409


has inner beam portion


410


and outer beam portion


412


that travel predominantly through inner lens portion


404


and outer lens portion


406


, respectively. Inner beam portion


410


and outer beam portion


412


may be separate beams generated at different times. Inner beam portion


410


is focused into near focused region


414


, whereas outer beam portion


412


is focused into far focused region


416


. Although near focused region


414


and far focused region


416


are depicted as having a gap therebetween, the gap may be eliminated. Also, near focused region


414


and far focused region


416


may be contiguous or overlapping. In this application near focused region


414


and far focused region


416


have been named according to which portion of lens


402


is used. The location of near focused region


414


and far focused region


416


will be different depending upon the frequency chosen to send through inner lens portions


404


and outer lens portion


406


, respectively. Similar to lens


202


and


302


, by setting the characteristics of lens


402


(e.g., the focal length and acoustic index of refraction) the near focused region


414


and far focused region


416


combined form a range of focus that is greater than either the near focused region


414


or the far focused region


416


alone. Coordinate system


418


is used to characterize the shape of lens


402


as a function z(r), similar to coordinate systems


218


and


318


.




Unlike lens


202


(FIG.


2


), in lens


402


(

FIG. 4A

) at joining region


407


curve z(r) and its first and second derivatives, z′(r) and z″(r), are mathematically continuous. In an embodiment, the curves describing the inner lens portion


404


and outer lens portion


406


may be described as different portions of the same convex curve z(r) or of the same continuous curve z(r), each portion having the same functional dependence on r. Unlike lens


302


(FIG.


3


), at joining region


407


(

FIG. 4A

) second derivative z′(r) does not change sign. Unlike lenses


202


(

FIG. 2

) and


302


(

FIG. 3

) having compound curvature, the curvature of lens


402


is simple in that it is not compound or is non-compound. For example, the inner lens portion


404


and the outer lens portion


406


may have the same radius of curvature or may be different sections of the same parabola.





FIGS. 4B and 4C

show top views of different embodiments of the lens


402


of

FIG. 4A

, which are lens


402


B and lens


402


C. Lens


402


B and lens


402


C have inner lens portions


404


B and


404


C, and outer lens portions


406


B and


406


C, respectively. Both lenses


4


B and


4


C are convex or concave. However, lens


402


B is a spherical lens, while lens


402


C is a cylindrical lens. Lens


402


C focuses the beam to have a line shaped cross section that may be used with broad beam technologies, area forming, volume forming, or multidimentional forming. Inner lens portion


404


B is circular and disk shaped. Outer lens portion


406


B is ring shaped. The function z(r) for

FIG. 4C

describes the curvature in only one dimension. Although lens


402


B is shown as circular and lens


402


C is shown as square, both may be any shape. Other lenses may be used in place of lens


402


. These lenses may have other structural features that tend to focus the corresponding inner beam portion and outer beam portion differently from one another. For example, a GRadient INdex (GRIN) lens having a gradually changing gradient in its acoustic index of refraction may be used in place of lens


402


. Although depicted as convex in

FIG. 4A

, lens


402


may also be plano convex.





FIGS. 4D and 4E

show top views of two embodiments of the transducer


408


of

FIG. 4A

, which are a circular transducer


408


a and a rectangular transducer


408




b


, each has only one portion. However, transducer


408


can be any shape in addition to circular and rectangular. In an alternative embodiment the lens has a compound surface similar to lens


202


or


302


, but differs from lenses


202


and


302


in that the inner lens portion is made from a different material than the outer lens portion.





FIG. 5

shows a cross-section of another transducer


508


that can be used in place of the transducer


408


of

FIGS. 4A

,


4


D and


4


E. Transducer


508


has essentially the same top view as transducer


408


illustrated in

FIGS. 4D

or


4


E. Transducer


508


is thinner in the central region so as to better suited to excite high frequency ultrasound appropriate for being focused by inner lens portion


404


. Transducer


508


is thicker in its outer portion to produce low frequency ultrasound appropriate for being focused by outer lens portion


406


. A pulse could be applied to the inner and outer transducer portions of transducer


508


simultaneously. For example a sharp pulse, although applied to the entire transducer


508


, primarily excites the high frequencies and the center of transducer


508


. Similarly, a smooth slowly varying pulse although applied to the entire transducer primarily excites the lower frequencies and the edges of transducer


508


.




When an excitation appropriate for producing low frequency ultrasound is used to excite entire transducer


508


, the inner portion may emit some high frequency ultrasound. Optionally, the high frequency ultrasound that is emitted may be filtered out by appropriately setting the characteristics of inner lens portion


404


. Conversely, when an excitation appropriate for producing high frequency ultrasound is used to excite the entire transducer


508


, the outer portion may emit some low frequency ultrasound. Similarly, optionally the low frequency ultrasound that is emitted may be filtered out by appropriately setting the characteristics of outer lens portion


406


. Alternatively, the filtering may be performed by a separate filter placed before or after lens


402


rather than by altering the characteristics of lens


402


. In another embodiment, transducer


508


can be divided into separate inner and outer portions with separate electrodes, for example, that excite these portions separately. Although transducer


508


is illustrated as having a concave conical shape, it may also have any shape such as a convex conical shape. Transducer


508


may have a parabolic shape or other shape that does not have a sharp apex at its center, for example. Transducer


508


may have a surface that is a step function with an inner thinner transducer portion. The surface of transducer


508


may be mounted such that the side of the transducer that has curved contour faces toward or away from the lenses


302


and


402


.





FIG. 6

A shows a cross-section of a transducer


608


that may be used in place of transducer


408


of FIG.


4


A. Transducer


608


has two portions, an inner transducer portion


610


for producing a high frequency beam and an outer transducer portion


612


for producing a low frequency beam. Inner transducer portion


610


produces inner beam portion


410


to be sent through inner lens portion


404


, and outer transducer portion


612


produces outer beam portion


412


to be sent through outer lens portion


406


. Inner transducer portion


610


may be essentially aligned with inner lens portion


404


and outer transducer portion


612


may be essentially aligned with outer lens portion


406


.





FIG. 6B

shows a top view of an embodiment of the transducer of FIG.


6


A. Transducer


608


B corresponds to and may be used with lens


402


B.





FIG. 6C

shows a top view of an embodiment of the transducer of FIG.


6


A. Transducer


608


C corresponds to and may be used with lens


402


C.




Although the embodiments of

FIG. 4A

,

FIG. 5

, and

FIG. 6A

form only two beams (inner beam portion


410


and outer beam portion


412


) any number of beams could be formed by increasing the number of portions in lens


402


, each portion for focusing a different beam portion corresponding to different frequencies, for example. The number of portions in transducer


608


may also be increased to a corresponding number, each portion for generating a different beam portion.




Each of transducers


408


,


508


, and


608


may be one transducer or a one- or multi-dimensional array of transducers. Transducers


608


may use different groups of transducers for each of inner transducer portion


610


and outer transducer portion


612


. Some examples of how transducers may be constructed are found in U.S. patent application Ser. No. 10/039,910, filed Oct. 20, 2001, by Umit Tarakci, Mir A. Imran, Glen W. McLaughlin, and Xufeng Xi, entitled “System and Method for Coupling Ultrasound Generating Elements to Circuitry,” which is incorporated herein by reference.




In the general case lens


402


is transmissive. However, lens


402


could also be reflective. Whether transmissive or reflective the attenuation characteristics of lens


402


, or of a filter associated with lens


402


, can be tailored to produce a Guassian distribution. The intensity of beam


409


produced by transducer


408


may have a Guassian distribution. The Fourier transform of a Guassian distribution is another Guassian distribution. Lens


402


performs a Fourier transform on incoming beam


409


. Thus, a Guassian distribution in the attenuation characteristics of lens


402


will focus beam


409


to have a Guassian distribution, and will therefore remain sharply focused longer than for a non-Gaussian distribution.





FIG. 7

shows a method


700


of using the lens


402


of

FIG. 4A. A

medium of interest is scanned point-by-point until the entire medium of interest is scanned. To implement this method, a medium of interest may be, for example, any one of or any combination of an organ, a group of organs, one or more portions of an organ, or one or more portions of multiple organs within a human or animal body. A point in the point-by-point scan will be referred to as a point of interest. Decide or calculate the distance to the medium of interest, step


702


, decides or calculates the distance to the medium of interest. Near or far, step


704


, determines whether the medium of interest is in an area of overlap between the near focused region


414


and the far focused region


416


. If the medium of interest is in an area of overlap, step


704


then decides whether a better image will be obtained by focusing with inner lens portion


404


, in conjunction with near focused region


414


, or outer lens portion


406


in conjunction with far focused region


416


. If there is no overlap between the near focused region


414


and the far focused region


416


, then the step


704


decision as to which lens portion to use includes deciding which one is usable.




If inner lens portion


404


and near focused region


414


are to be used, the method proceeds to activate high frequency portion of the transducer, step


706


. In other words, step


706


activates high frequencies in the transducer such as transducer


408


,


508


, or


608


. If transducer


408


or


508


is used, the entire transducer is activated with a sharp pulse that predominantly activates high frequencies, which in the case of transducer


508


may come predominantly from inner regions. If transducer


608


is used, the inner transducer portion


610


is activated by applying a pulse only to inner transducer portion


610


. Next, focus beam with the inner lens portion, step


708


, focuses inner beam portion


410


using the inner lens portion


404


. If transducer


408


or


508


are used, some high frequency ultrasound may be emitted from the outer portion of transducer


408


or


508


because the entire transducer is excited including the outer region, which is undesirable. However, the characteristics of outer lens portion


406


may be adjusted or a filter may be used to filter out any high frequency beam emitted. Receive reflected or deflected beam, step


710


, receives the reflected or deflected beam from inner beam portion


410


.




Alternatively, if outer lens portion


406


and far focused region


416


are to be used the method proceeds to the step of activate low frequency portion of the transducer, step


712


, which activates low frequencies in transducer


408


,


508


or


608


. If transducer


408


or


508


are used, the entire transducer is activated but predominantly the low frequencies are activated using a slowly oscillating pulse, which in the case of transducer


508


may come predominantly from the outer regions. If transducer


608


is used, outer transducer portion


612


is activated. Next, focus beam with the outer lens portion, step


714


, focuses the outer beam portion


412


using the outer lens portion


406


. A filter may be used or the characteristics of the outer lens portion


406


may be adjusted to filter out any high frequency beam emitted as the outer beam portion


412


. Receive reflected or deflected beam, step


716


, receives the reflected or deflected beam from outer beam portion


412


.




Steps


710


and


716


may be essentially the same. However, the group of transducers used to receive the deflected or reflected beam in steps


710


and


716


may be different.




Method


700


has been described as being applied once for the entire medium of interest. However, method


700


may be applied multiple times to a medium of interest, even once for each point of interest.




As an explanation of the reference to a reflected or deflected beam in steps


710


and


716


, in a transmisive system the receiving transducers (not shown) are located on the other side of the medium of interest (not shown) and receive a deflected beam (not shown) that was transmitted through the medium of interest (not shown). In a reflective system the receiving transducers (not shown) are located on the same side of the medium of interest (not shown) and receive a reflected beam (not shown). The receiving transducers (not shown) of a reflective system could be on the same or a different unit (not shown) as the emitting transducers. Also, in a reflective system the receiving and emitting transducers could be the same transducers.





FIG. 8

shows a method


800


of making the lens of FIG.


4


. Provide or form inner lens portion, step


802


, provides or forms inner lens portion


404


. Provide or form outer lens portion, step


804


, provides or forms outer lens portion


406


. During steps


802


and


804


inner lens portion


404


and outer lens portion


406


can be formed by casting them in molds of the proper curvatures and allowing them to cure, for example. Step


802


and


804


are independent of one another and therefore can be performed at any time relative to one another. Couple inner and outer lens portions, step


806


, couples together inner lens portion


404


to outer lens portion


406


. Inner lens portion


404


and outer lens portion


406


can be held together in any of a number of different ways known in the art such as, but not limited to, by friction, by an adhesive, or by being heated so that they bond together.





FIG. 9

shows a method


900


of making the lens of FIG.


4


A. Provide or form a first lens portion, step


902


, provides or forms a first lens portion, which could be either inner lens portion


404


or outer lens portion


406


. Form or mold a second lens portion on the first lens portion, step


904


, forms a second lens portion, which is the other lens portion not already provided or formed in step


902


, on the first lens portion. The second lens portion may be molded onto or otherwise formed on the first lens portion. The primary difference between method


800


and method


900


is that in method


800


the first lens portion and second lens portion are first formed and then later attached together. In contrast, in method


900


only the first lens portion is first formed. Then the second lens portion is formed on the first lens portion and thereby bonded together onto the first lens portion as part of the process of forming the second lens portion.




Alternatively, the first lens portion could be used as part of the mold to shape the second lens portion without actually joining the first and second lens portions. Then, after the two lens portions are formed they are joined as in method


800


.





FIG. 10

shows a method


1000


of making the lens of FIGS.


4


A. Provide or form a lens having a simple surface, step


1002


, provides or forms a lens of a simple surface, similar to lens


102


A (FIG.


1


A). Modify lens to form the inner and outer lens portions of different indices of refraction and optionally of different attenuations, step


1004


, dopes or otherwise modifies the lens to form inner lens regions


404


and outer lens region


406


.




Although the invention has been described with reference to specific embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the true spirit and scope of the invention. In addition, modifications may be made without departing from the essential teachings of the invention.



Claims
  • 1. A device comprising:an acoustic lens having at least two lens portions each having a different acoustic index of refraction; and a surface having a non-compound shape and at least two sections, the at least two lens portions dividing the surface into the at least two sections, each of the at least two sections joined to adjacent ones of the at least two sections only by edges of the at least two sections.
  • 2. A device comprising:a lens having at least two lens portions each having a different acoustic index of refraction and being joined at a joining region having a gradual transition therebetween.
  • 3. A device comprising:an acoustic lens having at least two lens portions each having a different acoustic index of refraction; and a surface having at least two sections having shapes that can be mathematically described as two parts of a single curve, each of the two parts having an equal degree of concavity or convexity, the at least two lens portions dividing the surface into the at least two sections, each of the at least two sections joined to adjacent ones of the at least two sections only by edges of the at least two sections.
  • 4. A device comprising:an acoustic lens having at least two lens portions each having a different acoustic index of refraction; and a surface having at least two sections, the at least two lens portions dividing the surface into the at least two sections, each of the at least two sections joined on the surface to adjacent ones of the at least two sections only by edges of the at least two sections at a joining region, and wherein the surface has a shape described by a function of distance that is mathematically continuous and smooth within a part of the surface associated with the joining region, the function having a second derivative with a sign that is equal within the at least two sections and on the surface at the joining region.
  • 5. A device comprising:a lens having at least two lens portions each having a different acoustic index of refraction, a first portion made from a material, a second portion made essentially from the material of the first portion except that the at least two lens portions have different amounts of crosslinking.
  • 6. A device comprising:a lens having at least two lens portions, a first portion made from a material, a second portion made essentially from the material of the first portion except that the at least two lens portions have been treated such that each has different attenuation characteristics.
  • 7. A device comprising:a lens having at least two lens portions each having a different acoustic index of refraction, and particles embedded therein with a distribution of particle sizes different from other lens portions.
  • 8. A device comprising:a lens having at least two lens portions each having a different acoustic index of refraction, the at least two lens portions are formed from at least one lens medium, only one of the at least two lens portions having particles embedded in the lens medium, and the lens medium having a different acoustic index of refraction than the particles.
  • 9. A device comprising:a lens having at least two lens portions each having a different acoustic index of refraction; and a transducer aligned for transmitting or receiving an acoustic signal through the lens, the transducer having different thicknesses or materials in different parts.
  • 10. A device comprising:an acoustic lens having at least two lens portions each having a different acoustic index of refraction, the at least two lens portions include a first lens portion that is capable of forming a first focused region; and a second lens portion that is capable of forming a second focused region that is spatially different and associated with a different frequency range from the first focused region, the first focused region and the second focused region combined forming a focused region having a larger range of focus than either the first focused region or the second focused region.
  • 11. The device of claim 10, wherein the first focused region and the second focused region partly overlap.
  • 12. A device comprising:a lens having a structure including at least two lens portions, each having a different acoustic index of refraction, the at least two lens portions being joined at a joining region, the at least two lens portions including an inner cylindrical portion and an outer cylindrical portion including two parts, each part on one of two sides of the inner cylindrical portion with only one part on each side, the lens having a shape described by a function of a distance from its center that is mathematically continuous and smooth within the joining region, the function having a second derivative with a sign that is equal for both of the at least two lens portions and the joining region, the at least two lens portions having shapes that can be mathematically described as two parts of the function, each of the at least two parts having an equal degree of concavity or convexity, the at least two lens portions having different amounts of crosslinking, the at least two lens portions having particles embedded therein, such that the at least two lens portions have different attenuation characteristics, the first lens portion being capable of forming a first focused region, the second lens portion being capable of forming a second focused region that is different from the first focused region, the first focused region and the second focused region combined forming a focused region having a larger range of focus than either the first focused region or the second focused region; and a transducer including at least two transducer portions each aligned with a different one of the at least two lens portions.
  • 13. A method comprising:forming an acoustic lens having at least two lens portions each having a different acoustic index of refraction, and a surface having a non-compound shape and at least two sections, the at least two lens portions dividing the surface into the at least two sections, each of the at least two sections joined to adjacent ones of the at least two sections only by edges of the at least two sections.
  • 14. A method comprising:forming a lens having at least two lens portions each having a different acoustic index of refraction by at least joining the at least two lens portions at a joining region having a gradual transition therebetween.
  • 15. A method comprising:forming an acoustic lens having at least two lens portions each having a different acoustic index of refraction, and a surface having at least two sections having shapes that can be described as two parts of a single curve, each of the at least two parts having an equal degree of concavity or convexity, the at least two lens portions dividing the surface into the at least two sections, each of the at least two sections joined to adjacent ones of the at least two sections only by edges of the at least two sections.
  • 16. A method comprising:forming an acoustic lens having at least two lens portions each having a different acoustic index of refraction, and a surface having at least two sections, the at least two lens portions dividing the surface into the at least two sections, each of the at least two sections joined on the surface to adjacent ones of the at least two sections only by edges of the at least two sections at a joining region, and wherein the surface has a shape described by a function of distance that is mathematically continuous and smooth within a part of the surface associated with the joining region, the function having a second derivative that has a sign that is equal within two or more of the at least two sections and the part of the surface associated with the joining region.
  • 17. A method comprising:forming a lens having at least two lens portions each having a different acoustic index of refraction, by at least forming a first lens portion from a material, forming a second lens portion from essentially the material of the first lens portion, and crosslinking the first portion and the second portion to a different degree.
  • 18. A method comprising:forming a lens having at least two lens portions by at least forming a first lens portion from a material, forming a second lens portion from essentially the material of the first lens portion, and treating the at least two lens portions, each being treated to a different degree so that they have different indices of refraction.
  • 19. The method of claim 18, wherein the treating includes irradiating the at least two lens portions, each being irradiated to a different degree.
  • 20. The method of claim 18, wherein the treating includes curing the at least two lens portions, each being cured to a different degree.
  • 21. The method of claim 18, wherein the treating includes heating the at least two lens portions, each being heated to a different degree.
  • 22. The method of claim 18, wherein forming the lens further comprises:imparting different attenuation characteristics in the at least two lens portions.
  • 23. A method comprising:forming a lens having at least two lens portions each having a different acoustic index of refraction, including embedding in each of the at least two lens portions a different distribution of particle sizes.
  • 24. A method comprising:forming a lens having at least two lens portions each having a different acoustic index of refraction by forming the lens from at least one lens medium; and embedding particles within only one of the at least two lens portions of the lens medium, and the acoustic index of refraction of the particles being different from that of the lens medium.
  • 25. A method comprising:forming a lens having at least two lens portions each having a different acoustic index of refraction; forming a transducer such that the transducer has different thicknesses or is composed of different materials in different parts; and aligning the transducer and lens for transmitting or receiving an acoustic signal through the lens.
  • 26. A method comprising:forming a lens having at least two lens portions each having a different acoustic index of refraction by at least creating a first lens portion that is capable of forming a first focused region; and a second lens portion that is capable of forming a second focused region that is spatially different from and is associated with a different frequency range from the first focused region; and setting the first lens portion and the second lens portion such that the first focused region and the second focused region combined form a focused region that is longer than either the first focused region or the second focused region.
  • 27. The method of claim 26, wherein setting includes setting the first focused region and the second focused region such that they partly overlap.
  • 28. A method comprising:forming a lens having a non-compound surface including at least two lens portions each having a different acoustic index of refraction, and being capable of forming at least two focused regions including a first focused region that is different from a second focused region, including forming the at least two lens portions such that the at least two lens portions are joined at a joining region, the at least two lens portions including a first portion that has two parts that are cylindrically shaped and disposed on two opposite sides of a second portion that is cylindrically shaped, forming the lens to have a shape described by a function of a distance from its center that is mathematically continuous and smooth within the joining region, the function having a second derivative with a sign that is equal for both of the at least two lens portions and the joining region, and forming the at least two lens portions to have shapes that can be described as two parts of the function each having an equal degree of concavity or convexity; crosslinking the at least two lens portions, each being crosslinked to a different degree, forming the first lens portion so as to be capable of forming the first focused region, forming the second lens portion so as to be capable of forming the second focused region, and setting the first lens portion and the second lens portion such that the first focused region and the second focused region combined form a focused region having a larger range of focus than either the first focused region or the second focused region; embedding particles in the at least two lens portions such that the at least two lens portions have different attenuation characteristics; forming a transducer with at least two portions; and aligning each of the at least two portions of the transducer with a different one of the at least two lens portions.
  • 29. A method comprising:sending an acoustic signal through a lens having a non-compound surface including at least two lens portions each having a different acoustic index of refraction, the at least two lens portions being joined at a joining region, the at least two lens portions including a first portion that has two parts that are cylindrically shaped and disposed on two opposite sides of a second portion that is cylindrically shaped, the lens having a shape described by a function of a distance from its center that is mathematically continuous and smooth within the joining region, the function having a second derivative with a sign that is equal for at least two of the at least two portions and the joining region, the at least two lens portions having shapes that can be described as two parts of the function having an equal degree of concavity or convexity, the at least two lens portions having different amounts of crosslinking, the at least two lens portions having particles embedded therein, each lens portion with a distribution of particles that is different such that the at least two lens portions have different attenuation characteristics, focusing the acoustic signal into one of a first focused region formed by the first lens portion or a second focused region formed by the second lens portion, the first focused region and the second focused region combined forming a focused region that is longer than either the first focused region or the second focused region; and transmitting or receiving the acoustic signal with a transducer including at least two transducer portions each aligned with a different one of the at least two lens portions.
US Referenced Citations (43)
Number Name Date Kind
3866711 Folds Feb 1975 A
4409982 Plesset et al. Oct 1983 A
4477158 Pollack et al. Oct 1984 A
4802487 Martin et al. Feb 1989 A
4803990 Bonnefous et al. Feb 1989 A
4853904 Pesque Aug 1989 A
5083568 Shimazaki et al. Jan 1992 A
5119342 Harrison, Jr. et al. Jun 1992 A
5140558 Harrison, Jr. et al. Aug 1992 A
5278757 Hoctor et al. Jan 1994 A
5291090 Dias Mar 1994 A
5295485 Shinomura et al. Mar 1994 A
5417219 Takamizawa et al. May 1995 A
5483963 Butler et al. Jan 1996 A
5505203 Deitrich et al. Apr 1996 A
5667373 Wright et al. Sep 1997 A
5722412 Pflugrath et al. Mar 1998 A
5740806 Miller Apr 1998 A
5793701 Wright et al. Aug 1998 A
5817024 Ogle et al. Oct 1998 A
5839442 Chiang et al. Nov 1998 A
5893363 Little et al. Apr 1999 A
5897501 Wildes et al. Apr 1999 A
5904652 Gilbert et al. May 1999 A
5905692 Dolazza et al. May 1999 A
5919138 Ustuner Jul 1999 A
5925967 Toda Jul 1999 A
5964709 Chiang et al. Oct 1999 A
5970025 Cole et al. Oct 1999 A
5973438 Toda Oct 1999 A
6052215 Montgomery et al. Apr 2000 A
6055861 Banta, Jr. et al. May 2000 A
6063030 Vara et al. May 2000 A
6089096 Alexandru Jul 2000 A
6113545 Chiao et al. Sep 2000 A
6126608 Kemme et al. Oct 2000 A
6135961 Pflugrath et al. Oct 2000 A
6139498 Katsman et al. Oct 2000 A
6174286 Ramamurthy et al. Jan 2001 B1
6203498 Bunce et al. Mar 2001 B1
6238346 Mason May 2001 B1
6251073 Imran et al. Jun 2001 B1
6369954 Berge et al. Apr 2002 B1
Non-Patent Literature Citations (8)
Entry
U.S. patent application Ser. No. 10/039,862, Ting-Lan Ji, filed Oct. 20, 2001, Simultaneous Multi-Mode and Multi-Band Ultrasonic Imaging.
U.S. patent application Ser. No. 10/039,910, Umit Tarakci, filed Oct. 20, 2001, System and Method for Coupling Ultrasound Generating Elements to Circuitry.
U.S. patent application Ser. No. 10/039,922, Xufeng Xi, filed Oct. 20, 2001, Block Switching in Ultrasound Imaging.
U.S. patent application Ser. No. 29/147,576, Ian Felix, filed Aug. 31, 2001, Handheld Ultrasonic Display Device.
U.S. patent application Ser. No. 29/147,660, Ian Felix, filed Aug. 31, 2001, Handheld Ultrasonic Display Device with Cover.
U.S. patent application Ser. No. 29/148,421, Ian Felix, filed Sep. 19, 2001, Handheld Ultrasonic Transducer with Curved Bulb Grip.
U.S. patent application Ser. No. 29/148,532, Ian Felix, filed Sep. 19, 2001, Handheld Ultrasonic Tkransducer with Bulb Grip.
U.S. patent application Ser. No. 29/149,730, Ian Felix, filed Oct. 15, 2001, Docking Station.