Field of the Invention
This invention relates generally to the field of data processing systems. More particularly, the invention relates to a system and method for adaptive application of authentication policies.
Description of Related Art
Systems have been designed for providing secure user authentication over a network using biometric sensors. In such systems, the score generated by the application, and/or other authentication data, may be sent over a network to authenticate the user with a remote server. For example, Patent Application No. 2011/0082801 (“'801 application”) describes a framework for user registration and authentication on a network which provides strong authentication (e.g., protection against identity theft and phishing), secure transactions (e.g., protection against “malware in the browser” and “man in the middle” attacks for transactions), and enrollment/management of client authentication tokens (e.g., fingerprint readers, facial recognition devices, smartcards, trusted platform modules, etc).
The assignee of the present application has developed a variety of improvements to the authentication framework described in the '801 application. Some of these improvements are described in the following set of U.S. Patent Applications (“Co-pending Applications”), all filed Dec. 29, 1012, which are assigned to the present assignee and incorporated herein by reference: Ser. No. 13/730,761, Query System and Method to Determine Authentication Capabilities; Ser. No. 13/730,776, System and Method for Efficiently Enrolling, Registering, and Authenticating With Multiple Authentication Devices; Ser. No. 13/730,780, System and Method for Processing Random Challenges Within an Authentication Framework; Ser. No. 13/730,791, System and Method for Implementing Privacy Classes Within an Authentication Framework; Ser. No. 13/730,795, System and Method for Implementing Transaction Signaling Within an Authentication Framework.
Briefly, the Co-Pending applications describe authentication techniques in which a user enrolls with biometric devices of a client to generate biometric template data (e.g., by swiping a finger, snapping a picture, recording a voice, etc); registers the biometric devices with one or more servers over a network (e.g., Websites or other relying parties equipped with secure transaction services as described in the Co-Pending applications); and subsequently authenticates with those servers using data exchanged during the registration process (e.g., encryption keys provisioned into the biometric devices). Once authenticated, the user is permitted to perform one or more online transactions with a Website or other relying party. In the framework described in the Co-Pending applications, sensitive information such as fingerprint data and other data which can be used to uniquely identify the user, may be retained locally on the user's client device (e.g., smartphone, notebook computer, etc) to protect a user's privacy.
For certain classes of transactions, the riskiness associated with the transaction may be inextricably tied to the location where the transaction is being performed. For example, it may be inadvisable to allow a transaction that appears to originate in a restricted country, such as those listed on the US Office of Foreign Asset Control List (e.g., Cuba, Libya, North Korea, etc). In other cases, it may only be desirable to allow a transaction to proceed if a stronger authentication mechanism is used; for example, a transaction undertaken from within the corporation's physical premises may require less authentication than one conducted from a Starbucks located in a remote location where the company does not have operations.
However, reliable location data may not be readily available for a variety of reasons. For example, the end user's device may not have GPS capabilities; the user may be in a location where Wifi triangulation data is unavailable or unreliable; the network provider may not support provide cell tower triangulation capabilities to augment GPS, or Wifi triangulation capabilities. Other approaches to divine the device's location may not have a sufficient level of assurance to meet the organization's needs; for example, reverse IP lookups to determine a geographic location may be insufficiently granular, or may be masked by proxies designed to mask the true network origin of the user's device.
In these cases, an organization seeking to evaluate the riskiness of a transaction may require additional data to provide them with additional assurance that an individual is located in a specific geographic area to drive authentication decisions.
Another challenge for organizations deploying authentication is to match the “strength” of the authentication mechanism to the inherent risks presented by a particular user's environment (location, device, software, operating system), the request being made by the user or device (a request for access to restricted information, or to undertake a particular operation), and the governance policies of the organization.
To date, organizations have had to rely on a fairly static response to the authentication needs of its users: the organization evaluates the risks a user will face during operations they normally perform and the requirements of any applicable regulatory mandate, and then deploys an authentication solution to defend against that risk and achieve compliance. This usually requires the organization to deploy multiple authentication solutions to address the multitude and variety of risks that their different users may face, which can be especially costly and cumbersome to manage.
The techniques described in the Co-pending applications provide an abstraction that allows the organization to identify existing capabilities on the user's device that can be used for authentication. This abstraction shields an organization from the need to deploy a variety of different authentication solutions. However, the organization still needs a way to invoke the “correct” authentication mechanism when necessary. Existing implementations provide no capabilities for the organization to describe what authentication mechanism is appropriate under which circumstances. As a result, an organization would likely need to codify their authentication policy in code, making the solution brittle and necessitating code changes in the future to enable use of new authentication devices/tokens.
A better understanding of the present invention can be obtained from the following detailed description in conjunction with the following drawings, in which:
Described below are embodiments of an apparatus, method, and machine-readable medium for implementing a location-aware authentication policy. Throughout the description, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that the present invention may be practiced without some of these specific details. In other instances, well-known structures and devices are not shown or are shown in a block diagram form to avoid obscuring the underlying principles of the present invention.
The embodiments of the invention discussed below involve client devices with authentication capabilities such as biometric devices or PIN entry. These devices are sometimes referred to herein as “tokens,” “authentication devices,” or “authenticators.” Various different biometric devices may be used including, but not limited to, fingerprint sensors, voice recognition hardware/software (e.g., a microphone and associated software for recognizing a user's voice), facial recognition hardware/software (e.g., a camera and associated software for recognizing a user's face), and optical recognition capabilities (e.g., an optical scanner and associated software for scanning the retina of a user). The authentication capabilities may also include non-biometric devices such as trusted platform modules (TPMs) smartcards, Trusted Execution Environments (TEEs), and Secure Elements (SEs)
As mentioned above, in a mobile biometric implementation, the biometric device may be remote from the relying party. As used herein, the “relying party” is the entity which utilizes the authentication techniques described herein to authenticate the end user. For example, the relying party may be an online financial service, online retail service (e.g., Amazon®), cloud service, or other type of network service with which the user is attempting to complete a transaction (e.g., transferring funds, making a purchase, accessing data, etc). In addition, as used herein, the term “remote” means that the biometric sensor is not part of the security boundary of the computer it is communicatively coupled to (e.g., it is not embedded into the same physical enclosure as the relying party computer). By way of example, the biometric device may be coupled to the relying party via a network (e.g., the Internet, a wireless network link, etc) or via a peripheral input such as a USB port. Under these conditions, there may be no way for the relying party to know if the device is one which is authorized by the relying party (e.g., one which provides an acceptable level of authentication and integrity protection) and/or whether a hacker has compromised the biometric device. Confidence in the biometric device depends on the particular implementation of the device.
One embodiment of the invention implements an authentication policy that allows authentication mechanisms to be selected based on the physical location of the client device being used for authentication. For example, the client and/or server may make a determination of the physical location of the client device, and feed that location to a policy engine that evaluates an ordered set of policy rules. In one embodiment, these rules specify classes of locations and the authentication mechanism or mechanisms that must be applied if the client location matches the location definition in the rule.
As illustrated in
In one embodiment, the relying party 250 specifies the authentication policy to be implemented by the authentication policy engine 210 for each transaction (as indicated by the dotted line from the relying party to the authentication policy engine). Thus, the authentication policy may be uniquely tailored to the authentication requirements of each relying party. In addition, the level of authentication required may be determined based on the current transaction (as defined by the authentication policy). For example, a transaction which requires a transfer of a significant amount of money may require a relatively high authentication assurance threshold, whereas non-monetary transaction may require a relatively lower authentication assurance threshold. Thus, the location-aware authentication techniques described herein may be sufficient for certain transactions but may be combined with more rigorous authentication techniques for other transactions.
In one embodiment, the location class determination module 240 provides the determined class to an authentication policy module 211 which implements a set of rules to identify the authentication techniques 212 to be used for the determined class. By way of example, and not limitation,
Once the authentication policy engine 210 selects a set of authentication techniques 212, the authentication policy engine 210 may implement the techniques using one or more explicit user authentication devices 220-221 and/or non-intrusive authentication techniques 242-243 to authenticate the user with a relying party 250. By way of example, and not limitation, the explicit user authentication 220-221 may include requiring the user to enter a secret code such as a PIN, fingerprint authentication, voice or facial recognition, and retinal scanning, to name a few.
The non-intrusive authentication techniques 242-243 may include user behavior sensors 242 which collect data related to user behavior for authenticating the user. For example, the biometric gait of the user may be measured using an accelerometer or other type of sensor 242 in combination with software and/or hardware designed to generate a gait “fingerprint” of the user's normal walking pattern. As discussed below, other sensors 243 may be used to collect data used for authentication. For example, network data may be collected identifying network/computing devices within the local proximity of the client device 200 (e.g., known peer computers, access points, cell towers, etc).
In one embodiment, secure storage 225 is a secure storage device used to store authentication keys associated with each of the authentication devices 220-221. As discussed below, the authentication keys may be used to establish secure communication channels with the relying party 250 via a secure communication module 213.
Various different “classes” of locations may be defined consistent with the underlying principles of the invention. By way of example, and not limitation, the following classes of locations may be defined:
Class 1: The client is within a given radius of a specified location. In this class, the associated authentication policy is applied if the current client location is within an area bounded by a circle of a given radius, centered at a specified latitude and longitude.
Class 2: The client is within a specified boundary region. In this class, the associated authentication policy is applied if the client is located within an area bounded by a polygon defined by an ordered set of latitude and longitude pairs (e.g., a closed polygon).
Class 3: The client is outside a specified boundary. In this class, the associated authentication policy is applied if the client is located outside an area bounded by a polygon defined by an ordered set of latitude and longitude pairs (e.g., a closed polygon).
In one embodiment, additional classes are defined using Boolean combinations of the classes and policy rules defined above. For example, the Boolean operations AND, OR, NOT, and the nesting of Boolean operations allow the expression of complex conditions. Such policies could be used, for example, to implement a policy that applies when the client is located in one of a variety of facilities owned by a company.
Various different mechanisms may be used to determine the current physical location of the client (represented generally in
GPS: Embedded GPS sensors can directly provide details on the location of the client. New emerging standards seek to add authentication of the location provided as a capability that address this shortcoming in current GPS solutions.
Geo-IP Lookup: Reverse lookups of the client's IP address can be used to determine a coarse approximation of the client's location. However, the trustworthiness of the location obtained through this method requires the IP address to be cross-checked against blacklists of known compromised hosts, anonymizing proxy providers, or similar solutions designed to obfuscate the source IP address of the host.
Cell Tower Triangulation: Integration between the client, the server, and wireless carrier infrastructure could allow the client and server to perform high resolution determination of physical location using cellular signal strength triangulation.
Wi-Fi Access Point Triangulation: A higher resolution method to determine physical location is to triangulate the signal strength of nearby Wifi access points with known physical locations. This method is particularly effective in determining the location of a device within facilities.
Location Displacement Inference: A device's exact location may be unknown, but a statistical probability of location may be used as an approximation for the purpose of evaluating policy. This may be calculated by noting the change in the device's position relative to a starting point with a known location; the user's device may have, in the past, had a known starting point, and in the interim has moved a known or estimate distance and bearing, allowing an approximate location to be calculated. Possible methods to calculate the displacement from the starting point may include inferring distance travelled using measurements gathered from an accelerometer (i.e. using the accelerometer to measure how far the user walked based on gait measurement), changes in signal strength from a known, stationary set of signal sources, and other methods.
At 401 the client's location is identified using one or more available techniques (e.g., GPS, triangulation, peer/network device detection, etc). At 402, one or more location classes (and potentially Boolean combinations of classes) are identified for the current location based on an existing set of policy rules. At 403, one or more authentication techniques are identified according to the location class(es). For example, if the client device is currently at a location known to be the user's home or office or within a defined radius of another trusted location, then minimal (or no) authentication may be required. By contrast, if the client device is currently at an unknown location and/or a location known to be untrusted, then more rigorous authentication may be required (e.g., biometric authentication such as a fingerprint scan, PIN entry, etc). At 404, the authentication techniques are employed and if authentication is successful, determined at 405, then the transaction requiring authentication is authorized at 406.
As mentioned above, the level of authentication required may be determined based on the current transaction. For example, a transaction which requires a transfer of a significant amount of money may require a relatively high authentication assurance threshold, whereas non-monetary transaction may require a relatively lower authentication assurance threshold. Thus, the location-aware authentication techniques described herein may be sufficient for certain transactions but may be combined with more rigorous authentication techniques for other transactions.
If authentication is not successful, then the transaction is blocked at 407. At this stage, the transaction may be permanently blocked or additional authentication steps may be requested. For example, if the user entered an incorrect PIN, the user may be asked to re-enter the PIN and/or perform biometric authentication.
The embodiments of the invention described herein provide numerous benefits to authentication systems. For example, the described embodiments may be used to efficiently block access from unauthorized locations, reducing unauthorized access by limiting the location from which users are permitted to attempt authentication (e.g., as defined by location classes). In addition, the embodiments of the invention may selectively require stronger authentication to respond to location-specific risks. For example, the relying party can minimize the inconvenience of authentication when a user is entering into a transaction from a known location, while retaining the ability to require stronger authentication when the user/client is connecting from an unknown or unexpected location. Moreover, the embodiments of the invention enable location-aware access to information. Alternatively, a location-centric policy may be used by a relying party to provide a user with additional access to location-specific information. By way of example, and not limitation, a user located in a Walmart may be granted access to special offers from Amazon.com when the user logs into their Amazon.com account on their mobile phone.
As mentioned above, the location of the client device 200 may be determined using a variety of different techniques. In one particular embodiment, the definition of a “location” may not be tied to a set of physical coordinates (as with GPS), but instead be prescribed by the presence of a set of peer devices or other types of network devices. For example, when at work, the client's wireless network adapters (e.g., Wifi adapter, Bluetooth adapter, LTE adapter, etc) may “see” a set of peer network devices (e.g., other computers, mobile phones, tablets, etc) and network infrastructure devices (e.g., Wifi access points, cell towers, etc) on a consistent basis. Thus, the presence of these devices may be used for authentication when the user is at work. Other locations may be defined by the presence of devices in a similar manner such as when the user is at home.
For example, using the techniques described herein, a location may be defined as “with my work colleagues” or “at work” where the presence of a set of peer devices known to be owned by the user's work colleagues may be used as a proxy for the risk that needs to be mitigated by authentication policy. For example, if a user is surrounded by a set of known peer devices or other types of network devices, then the user may be deemed to be less of a risk than if no known devices are detected.
As illustrated, device proximity detection logic 501 on the client device 200 may capture data related to visible devices and compare the results against historical device proximity data 504. The historical device proximity data 504 may be generated over time and/or through a training process. For example, in one embodiment, the user may specify when he/she is at work, at home, or at other locations (either manually, or when prompted to do so by the client 200). In response, the device proximity detection logic 501 may detect the devices in the vicinity and persistently store the results as historical device proximity data 504. When the user subsequently returns to the location, the device proximity detection logic 501 may compare the devices that it currently “sees” against the devices stored as historical proximity data 504 to generate a correlation between the two. In general, the stronger the correlation, the more likely it is that the client is at the specified location. Over time, devices which are seen regularly may be prioritized above other devices in the historical device proximity data 504 (e.g., because these devices tend to provide a more accurate correlation with the user's work location).
In one embodiment, the authentication policy engine 210 may use the correlation results provided by the device proximity detection logic 501 to determine the level of authentication required by the user for each relying party 250. For example, if a high correlation exists (i.e., above a specified threshold), then the authentication policy engine may not require explicit authentication by the end user. By contrast, if there is a low correlation between the user's current location and the historical device proximity data 504 (i.e., below a specified threshold), then the authentication policy engine 210 may require more rigorous authentication (e.g., a biometric authentication such as a fingerprint scan and/or requesting PIN entry).
In one embodiment, the device proximity detection logic 501 identifies the set of other devices that are in the client's proximity which have been authenticated. For example, if several of a user's colleagues have already authenticated successfully, then there may be less risk associated with allowing the user to access certain data with a less reliable authenticator, simply because the user is operating in the presence of his/her peers. In this embodiment, peer-to-peer communication over standards such as 802.11n may be used to collect authentication tokens from peers that can be used to prove those peers have already authenticated.
In another embodiment, the device proximity detection logic 501 may also detect a previously authenticated device that is paired with the user's client (e.g., such as the user's mobile phone or tablet). The presence of another authenticated device that is used by the same user that is attempting to authenticate may be used as an input to the authentication decision, particularly when accessing the same application.
In one embodiment, the historical device proximity data 504 is collected and shared across multiple devices, and may be stored and maintained on an intermediate authentication service. For example, a history of groups of peers and network devices in each location may be tracked and stored in a central database accessible to the device proximity detection logic 501 on each device. This database may then be used as an input to determine the risk of an attempted authentication from a particular location.
As mentioned above, one embodiment of the invention leverages data from additional sensors 243 from the mobile device to provide supplemental inputs to the risk calculation used for authentication. These supplemental inputs may provide additional levels of assurance that can help to either confirm or refute claims of the location of the end user's device.
As illustrated in
The supplemental data correlation module 640 may use the data provided by the additional sensors 243 in a variety of different ways to correlate against the supplemental location data 610. For example, in one embodiment, the supplemental location data 610 includes current local meteorological conditions at the location provided by the location sensor(s) 241. By comparing the humidity, temperature, or barometric pressure gathered from the additional sensors 243 against real-time local weather data 610, the supplemental data correlation module 640 identifies cases where the sensor data is inconsistent with local conditions. For example, if the client device's GPS reading indicates that the device is outside, yet the temperature, humidity, or barometric pressure are not consistent with the local weather conditions, then the supplemental data correlation module 640 may generate a low correlation score and the location may be deemed less trustworthy. Consequently, the authentication policy module 211 may require more rigorous authentication techniques 212 (e.g., fingerprint, PIN entry, etc) to approve a transaction.
As another example, by comparing the altitude provided by an altimeter pressure sensor 603 against the known geographical or network topology of the claimed location (provided with the supplemental location data 610), the supplemental data correlation module 640 may identify discrepancies that signal the claimed location is not genuine. For example, if a reverse IP lookup of the user's claimed location identifies them as being in the Andes Mountains, but altimeter data from the device indicates the device is at sea level, then the supplemental data correlation module 640 may generate a low correlation score and the location may be deemed less trustworthy. As a result of the low correlation score, the authentication policy module 211 may attempt to mitigate the higher risk with stronger authentication for the transaction.
In one embodiment, the supplemental data correlation module 640 compares data gathered from sensors 243 on the user's device against multiple other end users in the immediate area to identify anomalies that suggest the user is not operating in the same physical location as those known users. For example, if a set of authenticated users are identified who are operating the same physical area, and all of those users' devices note that the local temperature in the area is 10° C., the supplemental data correlation module 640 may generate a low correlation score for an end user whose temperature sensor 601 indicates the local temperature is 20° C. As a result, the authentication policy 211 may require more rigorous authentication techniques 212.
As yet another example, the supplemental data correlation module 640 may compare current readings against historical data for a particular user. For example, as mentioned, sensor data may be analyzed during periods of time when the user is known to be in possession of the device 200 (e.g., for a time period following an explicit authentication). The supplemental data correlation module 640 may then look for discontinuities in the local data to identify suspicious behavior. For example, if the user's ambient temperature normally floats between 10° C. and 20° C. and it is currently at 30° C., this may indicate the user is not in a typical location, thereby generating a low correlation and causing the authentication policy module 211 to require an additional level of scrutiny for a transaction.
The supplemental data correlation module 640 may perform various different types of correlations between sensor data and supplemental location data while still complying with the underlying principles of the invention. For example, various known correlation mechanisms may be used to determine the statistical relationship between the two sets of data. In one embodiment, the correlation score provided to the authentication policy engine 211 comprises a normalized value (e.g., between 0-1) indicating a level of correlation. In one embodiment, various threshold levels may be set for detected differences between the sensors 243 and supplemental location data 610. For example, if the temperature sensor 601 measures a temperature of more than 3 degrees off of the current temperature (gathered from other devices or the Internet), then a first threshold may be triggered (resulting in a lowering of the correlation score). Each additional 3 degrees off from the current temperature may then result in a new threshold being met (resulting in a corresponding lowering of the correlation score). It should be noted, however, that these are merely examples of one embodiment of the invention; the underlying principles of the invention are not limited to any particular manner of performing a correlation.
A method in accordance with one embodiment of the invention is illustrated in
At 703, a correlation is performed between the supplemental location data and the sensor data provided by the device sensors. In one embodiment, a relatively higher correlation will result in a relatively higher correlation score at 704 whereas lower correlations will result in relatively lower correlation scores. As mentioned, in one embodiment, the correlation score is a normalized value (e.g., between 0-1) indicating the similarity between the sensor readings and supplemental data.
At 705 one or more authentication techniques are selected based (at least in part) on the correlation score. For example, if a relatively low correlation score is provided, then more rigorous authentication techniques may be selected whereas if a relatively high correlation exists then less rigorous authentication techniques may be selected (potentially those which do not require explicit authentication by the end user).
If the user successfully authenticates using the selected techniques, determined at 706, then the transaction is allowed to proceed at 707. If not, then the transaction is blocked at 708.
Numerous benefits are realized from the above embodiments. For example, these embodiments provide an additional level of assurance for location data gather from other sources: Allows the organization to supplement location data gathered from other sources (IP, GPS, etc) in order to gain additional assurance that the location is authentic. In addition, the embodiments of the invention may block a transaction from an unauthorized location, reducing unauthorized access by limiting the location from which users can even attempt authentication. Moreover, these embodiments may force stronger authentication to respond to location-specific risks (e.g., the relying party can minimize the inconvenience of authentication when the user is accessing information from a known location, while retaining the ability to require stronger authentication when the user/client is accessing from an unknown or unexpected location, or a location whose veracity can't be sufficiently qualified using multiple inputs).
As illustrated in
In one embodiment, the authentication device data 829 comprises data associated with each of the explicit user authentication devices 220-221 known to be used with clients 200. For example, the policy database 825 may include an entry for a “Validity Model 123” fingerprint sensor along with technical details related to this sensor such as the manner in which the sensor stores sensitive data (e.g., in cryptographically secure hardware, EAL 3 certification, etc) and the false acceptance rate (indicating how reliable the sensor is when generating a user authentication result).
In one embodiment, the authentication device classes 828 specify logical groupings of authentication devices 829 based on the capabilities of those devices. For example, one particular authentication device class 828 may be defined for (1) fingerprint sensors (2) that store sensitive data in cryptographically secure hardware that has been EAL 3 certified, and (3) that use a biometric matching process with a false acceptance rate less than 1 in 1000. Another device class 828 may be (1) facial recognition devices (2) which do not store sensitive data in cryptographically secure hardware, and (3) that use a biometric matching process with a false acceptance rate less than 1 in 500. Thus, a fingerprint sensor or facial recognition implementation which meets the above criteria will be added to the appropriate authentication device class(es) 828.
Various individual attributes may be used to define authentication device classes, such as the type of authentication factor (fingerprint, PIN, face, for example), the level of security assurance of the hardware, the location of storage of secrets, the location where cryptographic operations are performed by the authenticator (e.g., in a secure chip or Secure Enclosure), and a variety of other attributes. Another set of attributes which may be used are related to the location on the client where the “matching” operations are performed. For example, a fingerprint sensor may implement the capture and storage of fingerprint templates in a secure storage on the fingerprint sensor itself, and perform all validation against those templates within the fingerprint sensor hardware itself, resulting in a highly secure environment. Alternatively, the fingerprint sensor may simply be a peripheral that captures images of a fingerprint, but uses software on the main CPU to perform all capture, storage, and comparison operations, resulting in a less secure environment. Various other attributes associated with the “matching” implementation may also be used to define the authentication device classes (e.g., whether the matching is (or is not) performed in a secure element, trusted execution environment (TEE)), or other form of secure execution environment).
Of course, these are merely examples for illustrating the concept of authentication device classes. Various additional authentication device classes may be specified while still complying with the underlying principles. Moreover, it should be noted that, depending on how the authentication device classes are defined, a single authentication device may be categorized into multiple device classes.
In one embodiment, the policy database 825 may be updated periodically to include data for new authentication devices 829 as they come to market as well as new authentication device classes 828, potentially containing new classes into which the new authentication devices 829 may be classified. The updates may be performed by the relying party and/or by a third party responsible for providing the updates for the relying party (e.g., a third party who sells the secure transaction server platforms used by the relying party).
In one embodiment, interaction classes 827 are defined based on the particular transactions offered by the relying party 825. For example, if the relying party is a financial institution, then interactions may be categorized according to the monetary value of the transaction. A “high value interaction” may be defined as one in which an amount of $5000 or more is involved (e.g., transferred, withdrawn, etc); a “medium value interaction” may be defined as one in which an amount between $500 and $4999 is involved; and a “low value transaction” may be defined as one in which an amount of $499 or less is involved.
In addition to the amount of money involved, interaction classes may be defined based on the sensitivity of the data involved. For example, transactions disclosing a user's confidential or otherwise private data may be classified as “confidential disclosure interactions” whereas those which do not disclose such data may be defined as “non-confidential disclosure interactions.” Various other types of interactions may be defined using different variables and a variety of minimum, maximum, and intermediate levels.
Finally, a set of authentication rules 826 may be defined which involve the authentication devices 829, authentication device classes 827, and/or interaction classes 827. By way of example, and not limitation, a particular authentication rule may specify that for “high value transactions” (as specified by an interaction class 827) only fingerprint sensors that store sensitive data in cryptographically secure hardware that has been EAL 3 certified, and that use a biometric matching process with a false acceptance rate less than 1 in 1000 (as specified as an authentication device class 828) may be used. If a fingerprint device is not available, the authentication rule may define other authentication parameters that are acceptable. For example, the user may be required to enter a PIN or password and also to answer a series of personal questions (e.g., previously provided by the user to the relying party). Any of the above individual attributes specified for authentication devices and/or authentication device classes may be used to define the rules, such as the type of authentication factor (fingerprint, PIN, face, for example), the level of security assurance of the hardware, the location of storage of secrets, the location where cryptographic operations are performed by the authenticator.
Alternatively, or in addition, a rule may specify that certain attributes can take on any value, as long as the other values are sufficient. For example, the relying party may specify that a fingerprint device must be used which stores its seed in hardware and performs computations in hardware, but does not care about the assurance level of the hardware (as defined by an authentication device class 828 containing a list of authentication devices meeting these parameters).
Moreover, in one embodiment, a rule may simply specify that only specific authentication devices 829 can be used for authenticating a particular type of interaction. For example, the organization can specify that only a “Validity Model 123 fingerprint sensor” is acceptable.
In addition, a rule or set of rules may be used to create ordered, ranked combinations of authentication policies for an interaction. For example, the rules may specify combinations of policies for individual authentication policies, allowing the creation of rich policies that accurate reflect the authentication preferences of the relying party. This would allow, for example, the relying party to specify that fingerprint sensors are preferred, but if none is available, then either trusted platform module (TPM)-based authentication or face recognition are equally preferable as the next best alternatives (e.g., in a prioritized order).
In one embodiment, the adaptive authentication policy engine 845 implements the authentication rules 826, relying on the interaction classes 827, authentication device classes 828, and/or authentication device data 829, when determining whether to permit a transaction with the client 200. For example, in response to the user of the client device 200 attempting to enter into a transaction with the relying party website or other online service 846, the adaptive authentication policy engine 845 may identify a set of one or more interaction classes 827 and associated authentication rules 826 which are applicable. It may then apply these rules via communication with an adaptive authentication policy module 850 on the client device 200 (illustrated in
The results of the authentication techniques 812 are provided to an assurance calculation module 840 which generates an assurance level that the current user is the legitimate user. In one embodiment, if the assurance level is sufficiently high, then the client will communicate the results of the successful authentication to the authentication engine 811 of the relying party, which will then permit the transaction.
In one embodiment, data from the client device sensors 241-243 may also be used by the assurance calculation module 840 to generate the assurance level. For example, the location sensor (e.g., a GPS device) may indicate a current location for the client device 200. If the client device is in an expected location (e.g., home or work), then the assurance calculation module 840 may use this information to increase the assurance level. By contrast, if the client device 200 is in an unexpected location (e.g., a foreign country not previously visited by the user), then the assurance calculation module 840 may use this information to lower the assurance level (thereby requiring more rigorous explicit user authentication to reach an acceptable assurance level). As discussed above, various additional sensor data such as temperature, humidity, accelerometer data, etc, may be integrated into the assurance level calculation.
The system illustrated in
In another embodiment, only a generic description of the authentication capabilities of the client device 200 may be provided to protect the user's privacy. For example, the client device may communicate that it has a fingerprint sensor that stores sensitive data in a cryptographically secure hardware that has been EAL 3 certified and/or that uses a biometric matching process with a false acceptance rate less than 1 in N. It may specify similar generic information related to the capabilities and specifications of other authentication devices, without disclosing the specific models of those devices. The adaptive authentication policy engine 845 may then use this general information to categorize the authentication devices in applicable authentication device classes 838 within the database 825. In response to a request to perform a transaction, the adaptive authentication policy module 845 may then instruct the client device 200 to use a particular authentication device if its class is sufficient to complete the transaction.
In yet another embodiment, the client device 200 does not communicate any data related to its authentication capabilities to the relying party. Rather, in this embodiment, the adaptive authentication policy module 845 communicates the level of authentication required and the adaptive authentication policy module 850 on the client selects one or more authentication techniques which meet that level of authentication. For example, the adaptive authentication policy module 845 may communicate that the current transaction is classified as a “high value transaction” (as specified by an interaction class 827) for which only certain classes of authentication devices may be used. As mentioned, it may also communicate the authentication classes in a prioritized manner. Based on this information, the adaptive authentication policy module 850 on the client may then select one or more authentication techniques 812 required for the current transaction.
As indicated in
A method for performing adaptive authentication based on client device capabilities is illustrated in
At 901 a client attempts to perform a transaction with a relying party. By way of example, and not limitation, the client may enter payment information for an online purchase or attempt to transfer funds between bank accounts. At 902, the transaction is categorized. For example, as discussed above, the transaction may be associated with a particular interaction class based on variables such as the amount of money involved or the sensitivity of information involved.
At 903, one or more rules associated with the category of transaction are identified. Returning to the above example, if the transaction is categorized as a “high value transaction” then a rule associated with this transaction type may be selected. At 904, the rule(s) associated with the transaction type are executed and, as discussed above, information is sent to the client indicating the authentication requirements to complete the transaction. As discussed above, this may involve identifying specific authentication devices, identifying classes of authentication devices, or merely indicating the particular rule which needs to be implemented (e.g., if the client maintains local copies of the rules).
In any case, at 905 a set of one or more authentication techniques are selected based on the requirements specified via the rule(s) and the authentication capabilities of the client. If authentication is successful, determined at 906, then the transaction is permitted at 907. If not, then the transaction is blocked at 908 (or additional authentication is requested from the user).
There are numerous benefits realized from the embodiments of the invention described herein. For example, these embodiments reduce the effort required to integrate authentication capabilities at the relying party. For example, instead of writing code to codify an authentication policy, rules can be configured through a simple graphical user interface. All the relying party needs to do to integrate is define a policy for a class of interactions (for example: “Large Money Transfers”) and have the integration code use that policy identifier when interacting with the policy engine to determine the correct authentication mechanism to leverage.
Moreover, these embodiments simplify authentication policy administration. By expressing the authentication policy outside of code, this approach allows the organization to easily update their authentication policies without requiring code changes. Changes to reflect new interpretations of regulatory mandates, or respond to attacks on existing authentication mechanisms become a simple change in the policy, and can be effected quickly.
Finally, these embodiments allow for future refinement of authentication techniques. As new authentication devices become available, an organization can evaluate its appropriateness to addressing new or emerging risks. Integrating a newly available authentication device only requires adding the authentication device to a policy; no new code has to be written to deploy the new capability immediately.
It should be noted that the term “relying party” is used herein to refer, not merely to the entity with which a user transaction is attempted (e.g., a Website or online service performing user transactions), but also to the secure transaction servers implemented on behalf of that entity which may performed the underlying authentication techniques described herein. The secure transaction servers may be owned and/or under the control of the relying party or may be under the control of a third party offering secure transaction services to the relying party as part of a business arrangement. These distinctions are indicated in
In particular,
Turning to
While the secure storage 1020 is illustrated outside of the secure perimeter of the authentication device(s) 1010-1012, in one embodiment, each authentication device 1010-1012 may have its own integrated secure storage. Additionally, each authentication device 1010-1012 may cryptographically protect the biometric reference data records (e.g., wrapping them using a symmetric key to make the storage 1020 secure).
The authentication devices 1010-1012 are communicatively coupled to the client through an interface 1002 (e.g., an application programming interface or API) exposed by a secure transaction service 1001. The secure transaction service 1001 is a secure application for communicating with one or more secure transaction servers 1032-1033 over a network and for interfacing with a secure transaction plugin 1005 executed within the context of a web browser 1004. As illustrated, the Interface 1002 may also provide secure access to a secure storage device 1020 on the client 1000 which stores information related to each of the authentication devices 1010-1012 such as a device identification code, user identification code, user enrollment data (e.g., scanned fingerprint or other biometric data), and keys used to perform the secure authentication techniques described herein. For example, as discussed in detail below, a unique key may be stored into each of the authentication devices and used when communicating to servers 1030 over a network such as the Internet.
In addition to enrollment of devices, the secure transaction service 1001 may then register the biometric devices with the secure transaction servers 1032-1033 over the network and subsequently authenticate with those servers using data exchanged during the registration process (e.g., encryption keys provisioned into the biometric devices). The authentication process may include any of the authentication techniques described herein (e.g., generating an assurance level on the client 1000 based on explicit or non-intrusive authentication techniques and transmitting the results to the secure transaction servers 1032-1033).
As discussed below, certain types of network transactions are supported by the secure transaction plugin 1005 such as HTTP or HTTPS transactions with websites 1031 or other servers. In one embodiment, the secure transaction plugin is initiated in response to specific HTML tags inserted into the HTML code of a web page by the web server 1031 within the secure enterprise or Web destination 1030 (sometimes simply referred to below as “server 1030”). In response to detecting such a tag, the secure transaction plugin 1005 may forward transactions to the secure transaction service 1001 for processing. In addition, for certain types of transactions (e.g., such as secure key exchange) the secure transaction service 1001 may open a direct communication channel with the on-premises transaction server 1032 (i.e., co-located with the website) or with an off-premises transaction server 1033.
The secure transaction servers 1032-1033 are coupled to a secure transaction database 1040 for storing user data, authentication device data, keys and other secure information needed to support the secure authentication transactions described below. It should be noted, however, that the underlying principles of the invention do not require the separation of logical components within the secure enterprise or web destination 1030 shown in
As mentioned above, the underlying principles of the invention are not limited to a browser-based architecture shown in
In either of the embodiments shown in
Embodiments of the invention may include various steps as set forth above. The steps may be embodied in machine-executable instructions which cause a general-purpose or special-purpose processor to perform certain steps. Alternatively, these steps may be performed by specific hardware components that contain hardwired logic for performing the steps, or by any combination of programmed computer components and custom hardware components.
Elements of the present invention may also be provided as a machine-readable medium for storing the machine-executable program code. The machine-readable medium may include, but is not limited to, floppy diskettes, optical disks, CD-ROMs, and magneto-optical disks, ROMs, RAMs, EPROMs, EEPROMs, magnetic or optical cards, or other type of media/machine-readable medium suitable for storing electronic program code.
Throughout the foregoing description, for the purposes of explanation, numerous specific details were set forth in order to provide a thorough understanding of the invention. It will be apparent, however, to one skilled in the art that the invention may be practiced without some of these specific details. For example, it will be readily apparent to those of skill in the art that the functional modules and methods described herein may be implemented as software, hardware or any combination thereof. Moreover, although some embodiments of the invention are described herein within the context of a mobile computing environment, the underlying principles of the invention are not limited to a mobile computing implementation. Virtually any type of client or peer data processing devices may be used in some embodiments including, for example, desktop or workstation computers. Accordingly, the scope and spirit of the invention should be judged in terms of the claims which follow.
This application claims the benefit of and priority to U.S. Provisional Patent Application No. 61/804,568, filed, Mar. 22, 2013, entitled, “Advanced Methods of Authentication And Its Applications”.
Number | Name | Date | Kind |
---|---|---|---|
5272754 | Boerbert et al. | Dec 1993 | A |
5280527 | Gullman et al. | Jan 1994 | A |
5764789 | Pare, Jr. et al. | Jun 1998 | A |
5892900 | Ginter et al. | Apr 1999 | A |
6035406 | Moussa et al. | Mar 2000 | A |
6088450 | Davis et al. | Jul 2000 | A |
6178511 | Cohen et al. | Jan 2001 | B1 |
6270011 | Gottfried | Aug 2001 | B1 |
6377691 | Swift et al. | Apr 2002 | B1 |
6510236 | Crane et al. | Jan 2003 | B1 |
6588812 | Garcia et al. | Jul 2003 | B1 |
6618806 | Brown et al. | Sep 2003 | B1 |
6751733 | Nakamura et al. | Jun 2004 | B1 |
6801998 | Hanna et al. | Oct 2004 | B1 |
6842896 | Redding | Jan 2005 | B1 |
6938156 | Wheeler et al. | Aug 2005 | B2 |
7155035 | Kondo et al. | Dec 2006 | B2 |
7194761 | Champagne | Mar 2007 | B1 |
7194763 | Potter et al. | Mar 2007 | B2 |
7263717 | Boydstun et al. | Aug 2007 | B1 |
7444368 | Wong et al. | Oct 2008 | B1 |
7487357 | Smith et al. | Feb 2009 | B2 |
7512567 | Bemmel et al. | Mar 2009 | B2 |
7698565 | Bjorn et al. | Apr 2010 | B1 |
7865937 | White et al. | Jan 2011 | B1 |
7941669 | Foley et al. | May 2011 | B2 |
8060922 | Crichton et al. | Nov 2011 | B2 |
8166531 | Suzuki | Apr 2012 | B2 |
8185457 | Bear et al. | May 2012 | B1 |
8245030 | Lin | Aug 2012 | B2 |
8284043 | Judd et al. | Oct 2012 | B2 |
8291468 | Chickering | Oct 2012 | B1 |
8353016 | Pravetz et al. | Jan 2013 | B1 |
8359045 | Hopkins, III | Jan 2013 | B1 |
8412928 | Bowness | Apr 2013 | B1 |
8458465 | Stern et al. | Jun 2013 | B1 |
8489506 | Hammad et al. | Jul 2013 | B2 |
8516552 | Raleigh | Aug 2013 | B2 |
8526607 | Liu et al. | Sep 2013 | B2 |
8555340 | Potter et al. | Oct 2013 | B2 |
8561152 | Novak et al. | Oct 2013 | B2 |
8584219 | Toole et al. | Nov 2013 | B1 |
8584224 | Pei et al. | Nov 2013 | B1 |
8607048 | Nogawa | Dec 2013 | B2 |
8646060 | Ben | Feb 2014 | B1 |
8713325 | Ganesan | Apr 2014 | B2 |
8719905 | Ganesan | May 2014 | B2 |
8745698 | Ashfield et al. | Jun 2014 | B1 |
8776180 | Kumar et al. | Jul 2014 | B2 |
8843997 | Hare | Sep 2014 | B1 |
8856541 | Chaudhury | Oct 2014 | B1 |
8949978 | Lin et al. | Feb 2015 | B1 |
8958599 | Starner | Feb 2015 | B1 |
8978117 | Bentley et al. | Mar 2015 | B2 |
9015482 | Baghdasaryan et al. | Apr 2015 | B2 |
9032485 | Chu et al. | May 2015 | B2 |
9083689 | Lindemann et al. | Jul 2015 | B2 |
9161209 | Ghoshal et al. | Oct 2015 | B1 |
9171306 | He et al. | Oct 2015 | B1 |
9172687 | Baghdasaryan et al. | Oct 2015 | B2 |
9219732 | Baghdasaryan et al. | Dec 2015 | B2 |
9306754 | Baghdasaryan et al. | Apr 2016 | B2 |
9317705 | O'Hare et al. | Apr 2016 | B2 |
9367678 | Pal et al. | Jun 2016 | B2 |
9396320 | Lindemann | Jul 2016 | B2 |
9521548 | Fosmark et al. | Dec 2016 | B2 |
9547760 | Kang et al. | Jan 2017 | B2 |
9633322 | Burger | Apr 2017 | B1 |
9698976 | Statica et al. | Jul 2017 | B1 |
20010037451 | Bhagavatula et al. | Nov 2001 | A1 |
20020010857 | Karthik | Jan 2002 | A1 |
20020016913 | Wheeler et al. | Feb 2002 | A1 |
20020037736 | Kawaguchi et al. | Mar 2002 | A1 |
20020040344 | Preiser et al. | Apr 2002 | A1 |
20020054695 | Bjorn et al. | May 2002 | A1 |
20020073316 | Collins et al. | Jun 2002 | A1 |
20020073320 | Rinkevich et al. | Jun 2002 | A1 |
20020082962 | Farris et al. | Jun 2002 | A1 |
20020087894 | Foley et al. | Jul 2002 | A1 |
20020112157 | Doyle et al. | Aug 2002 | A1 |
20020112170 | Foley et al. | Aug 2002 | A1 |
20020174344 | Ting | Nov 2002 | A1 |
20020174348 | Ting | Nov 2002 | A1 |
20020190124 | Piotrowski | Dec 2002 | A1 |
20030021283 | See | Jan 2003 | A1 |
20030055792 | Kinoshita et al. | Mar 2003 | A1 |
20030065805 | Barnes et al. | Apr 2003 | A1 |
20030084300 | Koike | May 2003 | A1 |
20030087629 | Juitt et al. | May 2003 | A1 |
20030115142 | Brickell et al. | Jun 2003 | A1 |
20030135740 | Talmor et al. | Jul 2003 | A1 |
20030152252 | Kondo et al. | Aug 2003 | A1 |
20030226036 | Bivens et al. | Dec 2003 | A1 |
20030236991 | Letsinger | Dec 2003 | A1 |
20040039909 | Cheng | Feb 2004 | A1 |
20040101170 | Tisse et al. | May 2004 | A1 |
20040123153 | Wright et al. | Jun 2004 | A1 |
20050021964 | Bhatnagar et al. | Jan 2005 | A1 |
20050080716 | Belyi et al. | Apr 2005 | A1 |
20050097320 | Golan et al. | May 2005 | A1 |
20050100166 | Smetters | May 2005 | A1 |
20050125295 | Tidwell et al. | Jun 2005 | A1 |
20050160052 | Schneider et al. | Jul 2005 | A1 |
20050187883 | Bishop et al. | Aug 2005 | A1 |
20050223217 | Howard et al. | Oct 2005 | A1 |
20050223236 | Yamada et al. | Oct 2005 | A1 |
20050278253 | Meek et al. | Dec 2005 | A1 |
20060026671 | Potter et al. | Feb 2006 | A1 |
20060029062 | Rao et al. | Feb 2006 | A1 |
20060064582 | Teal et al. | Mar 2006 | A1 |
20060101136 | Akashika et al. | May 2006 | A1 |
20060149580 | Helsper et al. | Jul 2006 | A1 |
20060156385 | Chiviendacz et al. | Jul 2006 | A1 |
20060161435 | Atef et al. | Jul 2006 | A1 |
20060161672 | Jolley et al. | Jul 2006 | A1 |
20060174037 | Bernardi et al. | Aug 2006 | A1 |
20060177061 | Orsini et al. | Aug 2006 | A1 |
20060195689 | Blecken et al. | Aug 2006 | A1 |
20060213978 | Geller et al. | Sep 2006 | A1 |
20060282670 | Karchov | Dec 2006 | A1 |
20070005988 | Zhang et al. | Jan 2007 | A1 |
20070038568 | Greene et al. | Feb 2007 | A1 |
20070077915 | Black et al. | Apr 2007 | A1 |
20070087756 | Hoffberg | Apr 2007 | A1 |
20070088950 | Wheeler et al. | Apr 2007 | A1 |
20070094165 | Gyorfi et al. | Apr 2007 | A1 |
20070100756 | Varma | May 2007 | A1 |
20070101138 | Camenisch et al. | May 2007 | A1 |
20070106895 | Huang et al. | May 2007 | A1 |
20070107048 | Halls et al. | May 2007 | A1 |
20070118883 | Potter et al. | May 2007 | A1 |
20070165625 | Eisner et al. | Jul 2007 | A1 |
20070168677 | Kudo et al. | Jul 2007 | A1 |
20070169182 | Wolfond et al. | Jul 2007 | A1 |
20070198435 | Siegal et al. | Aug 2007 | A1 |
20070217590 | Loupia et al. | Sep 2007 | A1 |
20070234417 | Blakley, III et al. | Oct 2007 | A1 |
20070239980 | Funayama | Oct 2007 | A1 |
20070278291 | Rans et al. | Dec 2007 | A1 |
20070286130 | Shao et al. | Dec 2007 | A1 |
20070288380 | Starrs | Dec 2007 | A1 |
20080005562 | Sather et al. | Jan 2008 | A1 |
20080024302 | Yoshida | Jan 2008 | A1 |
20080025234 | Zhu | Jan 2008 | A1 |
20080028453 | Nguyen et al. | Jan 2008 | A1 |
20080034207 | Cam-Winget et al. | Feb 2008 | A1 |
20080046334 | Lee et al. | Feb 2008 | A1 |
20080046984 | Bohmer et al. | Feb 2008 | A1 |
20080049983 | Miller et al. | Feb 2008 | A1 |
20080072054 | Choi | Mar 2008 | A1 |
20080086759 | Colson | Apr 2008 | A1 |
20080134311 | Medvinsky et al. | Jun 2008 | A1 |
20080141339 | Gomez et al. | Jun 2008 | A1 |
20080172725 | Fujii et al. | Jul 2008 | A1 |
20080184351 | Gephart et al. | Jul 2008 | A1 |
20080189212 | Kulakowski et al. | Aug 2008 | A1 |
20080209545 | Asano | Aug 2008 | A1 |
20080232565 | Kutt et al. | Sep 2008 | A1 |
20080235801 | Soderberg et al. | Sep 2008 | A1 |
20080271150 | Boerger et al. | Oct 2008 | A1 |
20080289019 | Lam | Nov 2008 | A1 |
20080289020 | Cameron et al. | Nov 2008 | A1 |
20080313719 | Kaliski, Jr. et al. | Dec 2008 | A1 |
20080320308 | Kostiainen et al. | Dec 2008 | A1 |
20090025084 | Siourthas et al. | Jan 2009 | A1 |
20090049510 | Zhang et al. | Feb 2009 | A1 |
20090055322 | Bykov et al. | Feb 2009 | A1 |
20090064292 | Carter et al. | Mar 2009 | A1 |
20090083850 | Fadell et al. | Mar 2009 | A1 |
20090089870 | Wahl | Apr 2009 | A1 |
20090100269 | Naccache | Apr 2009 | A1 |
20090116651 | Liang et al. | May 2009 | A1 |
20090119221 | Weston et al. | May 2009 | A1 |
20090133113 | Schneider | May 2009 | A1 |
20090138724 | Chiou et al. | May 2009 | A1 |
20090138727 | Campello de Souza | May 2009 | A1 |
20090158425 | Chan et al. | Jun 2009 | A1 |
20090164797 | Kramer et al. | Jun 2009 | A1 |
20090183003 | Haverinen | Jul 2009 | A1 |
20090187988 | Hulten et al. | Jul 2009 | A1 |
20090193508 | Brenneman et al. | Jul 2009 | A1 |
20090196418 | Tkacik et al. | Aug 2009 | A1 |
20090199264 | Lang | Aug 2009 | A1 |
20090204964 | Foley et al. | Aug 2009 | A1 |
20090235339 | Mennes et al. | Sep 2009 | A1 |
20090240624 | James et al. | Sep 2009 | A1 |
20090245507 | Vuillaume et al. | Oct 2009 | A1 |
20090271618 | Camenisch et al. | Oct 2009 | A1 |
20090271635 | Liu et al. | Oct 2009 | A1 |
20090300714 | Ahn | Dec 2009 | A1 |
20090300720 | Guo et al. | Dec 2009 | A1 |
20090307139 | Mardikar et al. | Dec 2009 | A1 |
20090327131 | Beenau et al. | Dec 2009 | A1 |
20090328197 | Newell et al. | Dec 2009 | A1 |
20100010932 | Law et al. | Jan 2010 | A1 |
20100023454 | Exton et al. | Jan 2010 | A1 |
20100029300 | Chen | Feb 2010 | A1 |
20100042848 | Rosener | Feb 2010 | A1 |
20100242102 | Cross et al. | Feb 2010 | A1 |
20100062744 | Ibrahim | Mar 2010 | A1 |
20100070424 | Monk | Mar 2010 | A1 |
20100082484 | Erhart et al. | Apr 2010 | A1 |
20100083000 | Kesanupalli | Apr 2010 | A1 |
20100094681 | Almen et al. | Apr 2010 | A1 |
20100105427 | Gupta | Apr 2010 | A1 |
20100107222 | Glasser | Apr 2010 | A1 |
20100114776 | Weller et al. | May 2010 | A1 |
20100121855 | Dalia et al. | May 2010 | A1 |
20100169650 | Brickell et al. | Jul 2010 | A1 |
20100175116 | Gum | Jul 2010 | A1 |
20100186072 | Kumar | Jul 2010 | A1 |
20100191612 | Raleigh | Jul 2010 | A1 |
20100192209 | Steeves et al. | Jul 2010 | A1 |
20100205658 | Griffin | Aug 2010 | A1 |
20100211792 | Ureche et al. | Aug 2010 | A1 |
20100223663 | Morimoto et al. | Sep 2010 | A1 |
20100242088 | Thomas | Sep 2010 | A1 |
20100266128 | Asokan et al. | Oct 2010 | A1 |
20100274677 | Florek et al. | Oct 2010 | A1 |
20100287369 | Monden | Nov 2010 | A1 |
20100299265 | Walters et al. | Nov 2010 | A1 |
20100299738 | Wahl | Nov 2010 | A1 |
20100325427 | Ekberg et al. | Dec 2010 | A1 |
20100325664 | Kang | Dec 2010 | A1 |
20100325684 | Grebenik et al. | Dec 2010 | A1 |
20100325711 | Etchegoyen | Dec 2010 | A1 |
20110004918 | Chow et al. | Jan 2011 | A1 |
20110004933 | Dickinson et al. | Jan 2011 | A1 |
20110022835 | Schibuk | Jan 2011 | A1 |
20110047608 | Levenberg | Feb 2011 | A1 |
20110071841 | Fomenko et al. | Mar 2011 | A1 |
20110078443 | Greenstein et al. | Mar 2011 | A1 |
20110082801 | Baghdasaryan et al. | Apr 2011 | A1 |
20110083016 | Kesanupalli et al. | Apr 2011 | A1 |
20110093942 | Koster et al. | Apr 2011 | A1 |
20110099361 | Shah et al. | Apr 2011 | A1 |
20110107087 | Lee et al. | May 2011 | A1 |
20110138450 | Kesanupalli et al. | Jun 2011 | A1 |
20110157346 | Zyzdryn et al. | Jun 2011 | A1 |
20110167154 | Bush et al. | Jul 2011 | A1 |
20110167472 | Evans et al. | Jul 2011 | A1 |
20110184838 | Winters et al. | Jul 2011 | A1 |
20110191200 | Bayer et al. | Aug 2011 | A1 |
20110197267 | Gravel et al. | Aug 2011 | A1 |
20110219427 | Hito et al. | Sep 2011 | A1 |
20110225431 | Stufflebeam, Jr. et al. | Sep 2011 | A1 |
20110225643 | Faynberg et al. | Sep 2011 | A1 |
20110228330 | Nogawa | Sep 2011 | A1 |
20110231911 | White et al. | Sep 2011 | A1 |
20110246766 | Orsini et al. | Oct 2011 | A1 |
20110265159 | Ronda et al. | Oct 2011 | A1 |
20110279228 | Kumar et al. | Nov 2011 | A1 |
20110280402 | Ibrahim et al. | Nov 2011 | A1 |
20110296518 | Faynberg et al. | Dec 2011 | A1 |
20110307706 | Fielder | Dec 2011 | A1 |
20110307949 | Ronda et al. | Dec 2011 | A1 |
20110313872 | Carter et al. | Dec 2011 | A1 |
20110314549 | Song et al. | Dec 2011 | A1 |
20110320823 | Saroiu et al. | Dec 2011 | A1 |
20120018506 | Hammad et al. | Jan 2012 | A1 |
20120023567 | Hammad | Jan 2012 | A1 |
20120023568 | Cha et al. | Jan 2012 | A1 |
20120030083 | Newman et al. | Feb 2012 | A1 |
20120046012 | Forutanpour et al. | Feb 2012 | A1 |
20120047555 | Xiao et al. | Feb 2012 | A1 |
20120066757 | Vysogorets et al. | Mar 2012 | A1 |
20120075062 | Osman et al. | Mar 2012 | A1 |
20120084566 | Chin et al. | Apr 2012 | A1 |
20120102553 | Hsueh et al. | Apr 2012 | A1 |
20120124639 | Shaikh et al. | May 2012 | A1 |
20120124651 | Ganesan et al. | May 2012 | A1 |
20120130898 | Snyder et al. | May 2012 | A1 |
20120137137 | Brickell et al. | May 2012 | A1 |
20120144461 | Rathbun | Jun 2012 | A1 |
20120159577 | Belinkiy et al. | Jun 2012 | A1 |
20120191979 | Feldbau | Jul 2012 | A1 |
20120203906 | Jaudon | Aug 2012 | A1 |
20120204032 | Wilkins et al. | Aug 2012 | A1 |
20120210135 | Panchapakesan et al. | Aug 2012 | A1 |
20120239950 | Davis et al. | Sep 2012 | A1 |
20120249298 | Sovio et al. | Oct 2012 | A1 |
20120272056 | Ganesan | Oct 2012 | A1 |
20120278873 | Calero et al. | Nov 2012 | A1 |
20120291114 | Poliashenko et al. | Nov 2012 | A1 |
20120313746 | Rahman et al. | Dec 2012 | A1 |
20120317297 | Bailey | Dec 2012 | A1 |
20120323717 | Kirsch | Dec 2012 | A1 |
20130013931 | O'Hare et al. | Jan 2013 | A1 |
20130042115 | Sweet et al. | Feb 2013 | A1 |
20130042327 | Chow | Feb 2013 | A1 |
20130046976 | Rosati et al. | Feb 2013 | A1 |
20130046991 | Lu et al. | Feb 2013 | A1 |
20130047200 | Radhakrishnan et al. | Feb 2013 | A1 |
20130054336 | Graylin | Feb 2013 | A1 |
20130054967 | Davoust et al. | Feb 2013 | A1 |
20130055370 | Goldberg et al. | Feb 2013 | A1 |
20130061055 | Schibuk | Mar 2013 | A1 |
20130067546 | Thavasi et al. | Mar 2013 | A1 |
20130073859 | Carlson et al. | Mar 2013 | A1 |
20130086669 | Sondhi et al. | Apr 2013 | A1 |
20130090939 | Robinson | Apr 2013 | A1 |
20130097682 | Zeljkovic et al. | Apr 2013 | A1 |
20130104187 | Weidner | Apr 2013 | A1 |
20130104190 | Simske | Apr 2013 | A1 |
20130119130 | Braams | May 2013 | A1 |
20130124285 | Pravetz et al. | May 2013 | A1 |
20130124422 | Hubert et al. | May 2013 | A1 |
20130125197 | Pravetz et al. | May 2013 | A1 |
20130125222 | Pravetz et al. | May 2013 | A1 |
20130133049 | Peirce | May 2013 | A1 |
20130133054 | Davis et al. | May 2013 | A1 |
20130144785 | Karpenko et al. | Jun 2013 | A1 |
20130159413 | Davis et al. | Jun 2013 | A1 |
20130159716 | Buck et al. | Jun 2013 | A1 |
20130160083 | Schrix et al. | Jun 2013 | A1 |
20130160100 | Langley | Jun 2013 | A1 |
20130167196 | Spencer et al. | Jun 2013 | A1 |
20130191884 | Leicher et al. | Jul 2013 | A1 |
20130212637 | Guccione et al. | Aug 2013 | A1 |
20130219456 | Sharma et al. | Aug 2013 | A1 |
20130227646 | Haggerty et al. | Aug 2013 | A1 |
20130239173 | Dispensa | Sep 2013 | A1 |
20130246272 | Kirsch | Sep 2013 | A1 |
20130262305 | Jones et al. | Oct 2013 | A1 |
20130276060 | Wiedmann et al. | Oct 2013 | A1 |
20130282589 | Shoup et al. | Oct 2013 | A1 |
20130308778 | Fosmark et al. | Nov 2013 | A1 |
20130318343 | Bjarnason et al. | Nov 2013 | A1 |
20130326215 | Leggette et al. | Dec 2013 | A1 |
20130337777 | Deutsch et al. | Dec 2013 | A1 |
20130346176 | Alolabi et al. | Dec 2013 | A1 |
20130347064 | Aissi et al. | Dec 2013 | A1 |
20140002238 | Taveau et al. | Jan 2014 | A1 |
20140006776 | Scott-Nash et al. | Jan 2014 | A1 |
20140007215 | Romano et al. | Jan 2014 | A1 |
20140013422 | Janus et al. | Jan 2014 | A1 |
20140033271 | Barton et al. | Jan 2014 | A1 |
20140037092 | Bhattacharya et al. | Feb 2014 | A1 |
20140040987 | Haugsnes | Feb 2014 | A1 |
20140044265 | Kocher et al. | Feb 2014 | A1 |
20140047510 | Belton et al. | Feb 2014 | A1 |
20140066015 | Aissi | Mar 2014 | A1 |
20140068746 | Gonzalez et al. | Mar 2014 | A1 |
20140075516 | Chermside | Mar 2014 | A1 |
20140089243 | Oppenheimer | Mar 2014 | A1 |
20140090039 | Bhow | Mar 2014 | A1 |
20140090088 | Bjones et al. | Mar 2014 | A1 |
20140096182 | Smith | Apr 2014 | A1 |
20140101439 | Pettigrew et al. | Apr 2014 | A1 |
20140109174 | Barton et al. | Apr 2014 | A1 |
20140114857 | Griggs et al. | Apr 2014 | A1 |
20140115702 | Li et al. | Apr 2014 | A1 |
20140130127 | Toole et al. | May 2014 | A1 |
20140137191 | Goldsmith | May 2014 | A1 |
20140164776 | Hook et al. | Jun 2014 | A1 |
20140173754 | Barbir | Jun 2014 | A1 |
20140188770 | Agrafioti et al. | Jul 2014 | A1 |
20140189350 | Baghdasaryan | Jul 2014 | A1 |
20140189360 | Baghdasaryan | Jul 2014 | A1 |
20140189779 | Baghdasaryan | Jul 2014 | A1 |
20140189791 | Lindemann | Jul 2014 | A1 |
20140189807 | Cahill et al. | Jul 2014 | A1 |
20140189808 | Mahaffey et al. | Jul 2014 | A1 |
20140189828 | Baghdasaryan | Jul 2014 | A1 |
20140189835 | Umerley | Jul 2014 | A1 |
20140201809 | Choyi et al. | Jul 2014 | A1 |
20140230032 | Duncan | Aug 2014 | A1 |
20140245391 | Adenuga | Aug 2014 | A1 |
20140250011 | Weber | Sep 2014 | A1 |
20140250523 | Savvides et al. | Sep 2014 | A1 |
20140258125 | Gerber et al. | Sep 2014 | A1 |
20140258711 | Brannon | Sep 2014 | A1 |
20140279516 | Rellas et al. | Sep 2014 | A1 |
20140282868 | Sheller et al. | Sep 2014 | A1 |
20140282945 | Smith et al. | Sep 2014 | A1 |
20140282965 | Sambamurthy et al. | Sep 2014 | A1 |
20140289116 | Polivanyi et al. | Sep 2014 | A1 |
20140289117 | Baghdasaryan | Sep 2014 | A1 |
20140289820 | Lindemann et al. | Sep 2014 | A1 |
20140289821 | Wilson | Sep 2014 | A1 |
20140289833 | Briceno et al. | Sep 2014 | A1 |
20140289834 | Lindemann | Sep 2014 | A1 |
20140298419 | Boubez et al. | Oct 2014 | A1 |
20140304505 | Dawson | Oct 2014 | A1 |
20140325239 | Ghose | Oct 2014 | A1 |
20140333413 | Kursun et al. | Nov 2014 | A1 |
20140335824 | Abraham | Nov 2014 | A1 |
20140337948 | Hoyos | Nov 2014 | A1 |
20150019220 | Talhami et al. | Jan 2015 | A1 |
20150046340 | Dimmick | Feb 2015 | A1 |
20150058931 | Miu et al. | Feb 2015 | A1 |
20150095999 | Toth et al. | Apr 2015 | A1 |
20150096002 | Shuart et al. | Apr 2015 | A1 |
20150121068 | Lindemann et al. | Apr 2015 | A1 |
20150134330 | Baldwin et al. | May 2015 | A1 |
20150142628 | Suplee et al. | May 2015 | A1 |
20150180869 | Verma | Jun 2015 | A1 |
20150193781 | Dave et al. | Jul 2015 | A1 |
20150242605 | Du et al. | Aug 2015 | A1 |
20150244525 | McCusker et al. | Aug 2015 | A1 |
20150244696 | Ma | Aug 2015 | A1 |
20150269050 | Filimonov et al. | Sep 2015 | A1 |
20150326529 | Morita | Nov 2015 | A1 |
20150373039 | Wang | Dec 2015 | A1 |
20150381580 | Graham, III et al. | Dec 2015 | A1 |
20160034892 | Carpenter et al. | Feb 2016 | A1 |
20160036588 | Thackston | Feb 2016 | A1 |
20160071105 | Groarke et al. | Mar 2016 | A1 |
20160072787 | Balabine et al. | Mar 2016 | A1 |
20160078869 | Syrdal et al. | Mar 2016 | A1 |
20160087952 | Tartz et al. | Mar 2016 | A1 |
20160087957 | Shah et al. | Mar 2016 | A1 |
20160134421 | Chen et al. | May 2016 | A1 |
20160188958 | Martin | Jun 2016 | A1 |
20160292687 | Kruglick et al. | Oct 2016 | A1 |
20170004487 | Hagen et al. | Jan 2017 | A1 |
20170011406 | Tunnell et al. | Jan 2017 | A1 |
20170048070 | Gulati et al. | Feb 2017 | A1 |
20170085587 | Turgeman | Mar 2017 | A1 |
20170109751 | Dunkelberger et al. | Apr 2017 | A1 |
20170195121 | Frei et al. | Jul 2017 | A1 |
20170221068 | Krauss et al. | Aug 2017 | A1 |
20170317833 | Smith et al. | Nov 2017 | A1 |
20170330174 | Demarinis et al. | Nov 2017 | A1 |
20170330180 | Song et al. | Nov 2017 | A1 |
20170331632 | Leoutsarakos et al. | Nov 2017 | A1 |
20170352116 | Pierce et al. | Dec 2017 | A1 |
20180039990 | Lindemann et al. | Feb 2018 | A1 |
20180191501 | Lindemann | Jul 2018 | A1 |
20180191695 | Lindemann | Jul 2018 | A1 |
20190139005 | Piel | May 2019 | A1 |
20190164156 | Lindemann | May 2019 | A1 |
20190205885 | Lim et al. | Jul 2019 | A1 |
20190222424 | Lindemann | Jul 2019 | A1 |
20190251234 | Liu et al. | Aug 2019 | A1 |
Number | Date | Country |
---|---|---|
1705925 | Dec 2005 | CN |
101394283 | Mar 2009 | CN |
101495956 | Jul 2009 | CN |
102077546 | May 2011 | CN |
102187701 | Sep 2011 | CN |
102246455 | Nov 2011 | CN |
102713922 | Oct 2012 | CN |
102763111 | Oct 2012 | CN |
103793632 | May 2014 | CN |
103888252 | Jun 2014 | CN |
103945374 | Jul 2014 | CN |
103999401 | Aug 2014 | CN |
1376302 | Jan 2004 | EP |
2357754 | Aug 2011 | EP |
06-195307 | Jul 1994 | JP |
09-231172 | Sep 1997 | JP |
2001-325469 | Nov 2001 | JP |
2002152189 | May 2002 | JP |
2003143136 | May 2003 | JP |
2003-219473 | Jul 2003 | JP |
2003-223235 | Aug 2003 | JP |
2003-274007 | Sep 2003 | JP |
2003-318894 | Nov 2003 | JP |
2004-118456 | Apr 2004 | JP |
2004348308 | Dec 2004 | JP |
2005-092614 | Apr 2005 | JP |
2005-316936 | Nov 2005 | JP |
2006-144421 | Jun 2006 | JP |
2007-148470 | Jun 2007 | JP |
2007220075 | Aug 2007 | JP |
2007-249726 | Sep 2007 | JP |
2008-017301 | Jan 2008 | JP |
2008065844 | Mar 2008 | JP |
2009223452 | Oct 2009 | JP |
2010-015263 | Jan 2010 | JP |
2010-505286 | Feb 2010 | JP |
2012-503243 | Feb 2012 | JP |
2013016070 | Jan 2013 | JP |
2013-122736 | Jun 2013 | JP |
2013-522722 | Jun 2013 | JP |
200701120 | Jan 2007 | TW |
201121280 | Jun 2011 | TW |
03017159 | Feb 2003 | WO |
2005003985 | Jan 2005 | WO |
2007023756 | Mar 2007 | WO |
2007094165 | Aug 2007 | WO |
2009158530 | Dec 2009 | WO |
2010032216 | Mar 2010 | WO |
2010067433 | Jun 2010 | WO |
2013082190 | Jun 2013 | WO |
2014011997 | Jan 2014 | WO |
2014105994 | Jul 2014 | WO |
2015130734 | Sep 2015 | WO |
2017219007 | Dec 2017 | WO |
Entry |
---|
Requirement for Restriction/Election from U.S. Appl. No. 14/218,504 dated Aug. 16, 2016, 11 pages. |
Roberts C., “Biometric Attack Vectors and Defences,” Sep. 2006, 25 pages. Retrieved from the Internet: URL: http://otago.ourarchive.ac.nz/bitstream/handle/10523/1243/BiometricAttackVectors.pdf. |
Rocha A., et al., “Vision of the Unseen: Current Trends and Challenges in Digital Image and Video Forensics,” ACM Computing Surveys, 2010, 47 pages. Retrieved from the Internet: URL: http://www.wjscheirer.com/papers/wjscsur2011forensics.pdf. |
Rodrigues R.N., et al., “Robustness of Multimodal Biometric Fusion Methods Against Spoof Attacks,” Journal of Visual Language and Computing. 2009. 11 pages, doi:10.1016/j.jvlc.2009.01.010; Retrieved from the Internet: URL: http://cubs.buffalo.edu/govind/papers/visual09.pdf. |
Ross A., et al., “Multimodal Biometrics: An Overview,” Proceedings of 12th European Signal Processing Conference (EUSIPCO), Sep. 2004, pp. 1221-1224. Retrieved from the Internet: URL: http://www.csee.wvu.edu/-ross/pubs/RossMultimodaiOverview EUSIPC004.pdf. |
Schneier B., Biometrics: Uses and Abuses. Aug. 1999. Inside Risks 110 (CACM 42, Aug. 8, 1999), Retrieved from the Internet: URL: http://www.schneier.com/essay-019.pdf, 3 pages. |
Schuckers, “Spoofing and Anti-Spoofing Measures,” Information Security Technical Report, 2002, vol. 2002, pp. 56-62. |
Schwartz et al., “Face Spoofing Detection Through Partial Least Squares and Low-Level Descriptors,” International Conference on Biometrics, 2011, vol. 2011, pp. 1-8. |
Smiatacz M., et al., Gdansk University of Technology. Liveness Measurements Using Optical Flow for Biometric Person Authentication. Metrology and Measurement Systems. 2012, vol. XIX, 2. pp. 257-268. |
Supplementary Partial European Search Report for Application No. 13867269 dated Aug. 3, 2016, 7 pages. |
T. Weigold et al., “The Zurich Trusted Information Channel—An Efficient Defence against Man-in-the-Middle and Malicious Software Attacks,” P. Lipp, A.R. Sadeghi, and K.M. Koch, eds., Proc. Trust Conf. (Trust 2008), LNCS 4968, Springer-Verlag, 2008, pp. 75-91. |
Tan et al., “Face Liveness Detection from a Single Image with Sparse Low Rank Bilinear Discriminative Model,” European Conference on Computer Vision, 2010, vol. 2010, pp. 1-14. |
The Extended M2VTS Database, [retrieved on Sep. 29, 2012], Retrieved from the Internet: URL: http://www.ee.surrey.ac.uk/CVSSP/xm2vtsdb/, 1 page. |
The Online Certificate Status Protocol, OCSP, RFC2560, 22 pages. |
The source for Linux information, Linux.com, [online], [retrieved on Jan. 28, 2015], 2012, 3 pages. |
Transmittal of International Preliminary Report on Patentability for Patent Application No. PCT/US2013/077888 dated Jul. 9, 2015, 7 pages. |
Transmittal of International Preliminary Report on Patentability from foreign counterpart PCT Patent Application No. PCT/US2014/031344 dated Oct. 1, 2015, 9 pages. |
Tresadern P., et al., “Mobile Biometrics (MoBio): Joint Face and Voice Verification for a Mobile Platform”, 2012, 7 pages. Retrieved from the Internet: URL: http://personal.ee.surrey.ac.uk/Personai/Norman.Poh/data/tresadern_PervComp2012draft.pdf. |
Tronci R., et al., “Fusion of Multiple Clues for Photo-Attack Detection in Face Recognition Systems,” International Joint Conference on Biometrics, 2011. pp. 1-6. |
Uludag, Umut, and Anil K. Jain. “Attacks on biometric systems: a case study in fingerprints.” Electronic Imaging 2004. International Society for Optics and Photonics, 2004, 12 pages. |
Unobtrusive User-Authentication on Mobile Phones using Biometric Gait Recognition, 2010, 6 pages. |
Validity, OSTP Framework, 24 pages, 2010. |
Vassilev, A.T.; du Castel, B.; Ali, A.M., “Personal Brokerage of Web Service Access,” Security & Privacy, IEEE, vol. 5, No. 5, pp. 24-31, Sep.-Oct. 2007. |
WikiPedia article for Eye Tracking, 15 pages, Last Modified Jun. 21, 2014, en.wikipedia.org/wiki/Eye_tracking. |
Willis N., Linux.com. Weekend Project: Take a Tour of Open Source Eye-Tracking Software. [Online] Mar. 2, 2012. [Cited: Nov. 1, 2012.], 4 pages. Retrieved from the Internet: URL: https://www.linux.com/learn/tutorials/550880-weekend-project-take-a-tour-of-opensource-eye-tracking-software. |
Wilson R., “How to Trick Google's New Face Unlock on Android 4.1 Jelly Bean,” Aug. 6, 2012, 5 pages, [online], [retrieved Aug. 13, 2015]. |
World Wide Web Consortium, W3C Working Draft: Media Capture and Streams, 2013, 36 pages. |
Zhang, “Security Verification of Hardware-enabled Attestation Protocols,” IEEE, 2012, pp. 47-54. |
Zhao W., et al., “Face Recognition: A Literature Survey,” ACM Computing Surveys, 2003, vol. 35 (4), pp. 399-458. |
Zhou et al., “Face Recognition from Still Images and Videos”. University of Maryland, College Park, MD 20742. Maryland : s.n., Nov. 5, 2004.pp. 1-23, Retrieved from the Internet: http://citeseerx.ist.psu.edu/viewdoc/download?doi=1 0.1.1.77.1312&rep=rep1 &type=pdf. |
Kollreider K., et al., “Non-Instrusive Liveness Detection by Face Images,” Image and Vision Computing, 2007, vol. 27 (3), pp. 233-244. |
Kong S., et al. “Recent Advances in Visual and Infrared Face Recognition: A Review,” Journal of Computer Vision and Image Understanding, 2005, vol. 97 (1), pp. 103-135. |
Li J., et al., “Live Face Detection Based on the Analysis of Fourier Spectra,” Biometric Technology for Human Identification, 2004, pp. 296-303. |
Lubin, G., et al., “16 Heatmaps That Reveal Exactly Where People Look,” Business Insider, [online], May 21, 2012, [Cited: Nov. 1, 2012], Retrieved from the Internet: URL: http://www.businessinsider.com/eye-tracking-heatmaps-2012-5?pp=1, pp. 1-21. |
Maatta J., et al., “Face Spoofing Detection From Single Images Using Micro-Texture Analysis,” Machine Vision Group, University of Oulu, Finland, Oulu, IEEE, [online], 2011, Retrieved from the Internet: URL: http://www.ee.oulu.fi/research/mvmp/mvg/files/pdf/131.pdf., pp. 1-7. |
Marcialis G.L., et al. “First International Fingerprint Liveness Detection Competition-Livdet 2009,” Image Analysis and Processing—ICIAP, Springer Berlin Heidelberg, 2009. pp. 12-23. |
Mobile Device Security Using Transient Authentication, IEEE Transactions on Mobile Computing, 2006, vol. 5 (11), pp. 1489-1502. |
National Science & Technology Council's Subcommittee on Biometrics. Biometrics Glossary. 33 pages, Last updated Sep. 14, 2006. NTSC. http://www.biometrics.gov/documents/glossary.pdf. |
Nielsen, Jakib. useit.com. Jakob Nielsen's Alertbox—Horizontal Attention Leans Left. [Online] Apr. 6, 2010. [Cited: Nov. 1, 2012.] 4 pages. http://www.useit.com/alertbox/horizontal-attention.html. |
Nielsen, Jakob. useit.com. Jakob Nielsen's Alertbox—Scrolling and Attention. [Online] Mar. 22, 2010. [Cited: Nov. 1, 2012.] 6 pages. http://www.useit.com/alertbox/scrolling-attention.html. |
Non-Final Office Action from U.S. Appl. No. 13/730,761 dated Feb. 27, 2014, 24 pages. |
Non-Final Office Action from U.S. Appl. No. 13/730,761 dated Sep. 9, 2014, 36 pages. |
Non-Final Office Action from U.S. Appl. No. 13/730,776 dated Jul. 15, 2014, 16 pages. |
Non-Final Office Action from U.S. Appl. No. 13/730,780 dated Aug. 4, 2014, 30 pages. |
Non-Final Office Action from U.S. Appl. No. 13/730,780 dated Mar. 12, 2014, 22 pages. |
Non-Final Office Action from U.S. Appl. No. 13/730,791 dated Jun. 27, 2014, 17 pages. |
Non-Final Office Action from U.S. Appl. No. 13/730,795 dated Jan. 5, 2015, 19 pages. |
Non-Final Office Action from U.S. Appl. No. 13/730,795 dated Jun. 11, 2014, 14 pages. |
Non-Final Office Action from U.S. Appl. No. 14/066,273 dated Jun. 16, 2016, 43 pages. |
Non-Final Office Action from U.S. Appl. No. 14/066,273 dated May 8, 2015, 31 pages. |
Non-Final Office Action from U.S. Appl. No. 14/066,384 dated Jan. 7, 2015, 24 pages. |
Non-Final Office Action from U.S. Appl. No. 14/066,384 dated Mar. 17, 2016, 40 pages. |
Non-Final Office Action from U.S. Appl. No. 14/145,439 dated Feb. 12, 2015, 18 pages. |
Non-Final Office Action from U.S. Appl. No. 14/145,466 dated Sep. 9, 2016, 13 pages. |
Non-Final Office Action from U.S. Appl. No. 14/145,533 dated Jan. 26, 2015, 13 pages. |
Non-Final Office Action from U.S. Appl. No. 14/145,607 dated Mar. 20, 2015, 22 pages. |
Non-Final Office Action from U.S. Appl. No. 14/218,551 dated Apr. 23, 2015, 9 pages. |
Non-Final Office Action from U.S. Appl. No. 14/218,551 dated Jan. 21, 2016, 11 pages. |
Non-Final Office Action from U.S. Appl. No. 14/218,551 dated May 12, 2016, 11 pages. |
Non-Final Office Action from U.S. Appl. No. 14/218,575 dated Feb. 10, 2015, 17 pages. |
Non-Final Office Action from U.S. Appl. No. 14/218,575 dated Jan. 29, 2016, 25 pages. |
Non-Final Office Action from U.S. Appl. No. 14/218,611 dated Jun. 16, 2016, 13 pages. |
Non-Final Office Action from U.S. Appl. No. 14/218,677 dated Aug. 2, 2016, 15 pages. |
Non-Final Office Action from U.S. Appl. No. 14/218,692 dated Nov. 4, 2015, 16 pages. |
Non-Final Office Action from U.S. Appl. No. 14/218,692 dated Oct. 25, 2016, 33 pages. |
Non-Final Office Action from U.S. Appl. No. 14/218,743 dated Aug. 19, 2016, 11 pages. |
Non-Final Office Action from U.S. Appl. No. 14/218,743 dated Jan. 21, 2016, 12 pages. |
Non-Final Office Action from U.S. Appl. No. 14/268,619 dated Aug. 24, 2015, 17 pages. |
Non-Final Office Action from U.S. Appl. No. 14/268,619 dated Mar. 21, 2016, 7 pages. |
Non-Final Office Action from U.S. Appl. No. 14/268,733 dated Jul. 16, 2015, 13 pages. |
Non-Final Office Action from U.S. Appl. No. 14/448,641 dated Nov. 9, 2015, 21 pages. |
Non-Final Office Action from U.S. Appl. No. 14/448,747 dated Aug. 19, 2016, 21 pages. |
Non-Final Office Action from U.S. Appl. No. 14/448,814 dated Aug. 4, 2015, 13 pages. |
Non-Final Office Action from U.S. Appl. No. 14/448,868 dated Dec. 31, 2015, 12 pages. |
Non-Final Office Action from U.S. Appl. No. 14/487,992 dated Dec. 3, 2015, 15 pages. |
Non-Final Office Action from U.S. Appl. No. 14/859,328 dated Sep. 15, 2016, 39 pages. |
Notice of Allowance from U.S. Appl. No. 14/487,992 dated May 12, 2016, 11 pages. |
Notice of Allowance from U.S. Appl. No. 13/730,761 dated Jun. 10, 2015, 15 pages. |
Notice of Allowance from U.S. Appl. No. 13/730,761 dated Sep. 28, 2015, 5 pages. |
Notice of Allowance from U.S. Appl. No. 13/730,776 dated Feb. 13, 2015, 16 pages. |
Notice of Allowance from U.S. Appl. No. 13/730,776 dated Mar. 24, 2015, 3 pages. |
Notice of Allowance from U.S. Appl. No. 13/730,780 dated Aug. 13, 2015, 13 pages. |
Notice of Allowance from U.S. Appl. No. 13/730,791 dated Mar. 10, 2015, 17 pages. |
Notice of Allowance from U.S. Appl. No. 13/730,795 dated Jan. 14, 2016, 11 pages. |
Notice of Allowance from U.S. Appl. No. 13/730,795 dated May 15, 2015, 8 pages. |
Notice of Allowance from U.S. Appl. No. 13/730,795 dated Sep. 17, 2015, 11 pages. |
Notice of Allowance from U.S. Appl. No. 14/066,384 dated Sep. 27, 2016, 19 pages. |
Notice of Allowance from U.S. Appl. No. 14/145,439 dated Jul. 6, 2015, 6 pages. |
Notice of Allowance from U.S. Appl. No. 14/145,439 dated Mar. 14, 2016, 17 pages. |
Notice of Allowance from U.S. Appl. No. 14/145,439 dated Oct. 28, 2015, 12 pages. |
Notice of Allowance from U.S. Appl. No. 14/145,533 dated Jan. 20, 2016, 12 pages. |
Notice of Allowance from U.S. Appl. No. 14/145,533 dated May 11, 2015, 5 pages. |
Notice of Allowance from U.S. Appl. No. 14/145,533 dated Sep. 14, 2015, 13 pages. |
Notice of Allowance from U.S. Appl. No. 14/145,607 dated Feb. 1, 2016, 28 pages. |
Notice of Allowance from U.S. Appl. No. 14/145,607 dated Sep. 2, 2015, 19 pages. |
Notice of Allowance from U.S. Appl. No. 14/268,619 dated Oct. 3, 2016, 65 pages. |
Notice of Allowance from U.S. Appl. No. 14/268,619 dated Jul. 19, 2016, 5 pages. |
Notice of Allowance from U.S. Appl. No. 14/268,686 dated Apr. 18, 2016, 16 pages. |
Notice of Allowance from U.S. Appl. No. 14/268,686 dated Jul. 8, 2016, 4 pages. |
Notice of Allowance from U.S. Appl. No. 14/268,686 dated Mar. 30, 2016, 38 pages. |
Notice of Allowance from U.S. Appl. No. 14/268,686 dated Nov. 5, 2015, 23 pages. |
Notice of Allowance from U.S. Appl. No. 14/268,733 dated Sep. 23, 2016, 8 pages. |
Notice of Allowance from U.S. Appl. No. 14/448,641 dated Jun. 7, 2016, 13 pages. |
Notice of Allowance from U.S. Appl. No. 14/448,697 dated Jan. 14, 2016, 23 pages. |
Notice of Allowance from U.S. Appl. No. 14/448,697 dated May 20, 2016, 14 pages. |
Notice of Allowance from U.S. Appl. No. 14/448,697 dated Sep. 1, 2016, 3 pages. |
Notice of Allowance from U.S. Appl. No. 14/448,697 dated Sep. 15, 2015, 14 pages. |
Notice of Allowance from U.S. Appl. No. 14/487,992 dated Dec. 27, 2016, 28 pages. |
Notice of Allowance from U.S. Appl. No. 14/487,992 dated Sep. 6, 2016, 26 pages. |
Notification Concerning Transmittal of International Preliminary Report on Patentability for Application No. PCT/US14/39627, dated Dec. 10, 2015, 8 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion from counterpart Patent Cooperation Treaty Application No. PCT/US13/77888, dated Aug. 4, 2014, 10 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion from counterpart Patent Cooperation Treaty Application No. PCT/US14/31344, dated Nov. 3, 2014, 16 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion from counterpart Patent Cooperation Treaty Application No. PCT/US14/39627, dated Oct. 16, 2014, 10 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion from counterpart Patent Cooperation Treaty Application No. PCT/US15/50348, dated Dec. 22, 2015, 9 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion from counterpart Patent Cooperation Treaty Application No. PCT/US2015/042786, dated Oct. 16, 2015, 8 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion from counterpart Patent Cooperation Treaty Application No. PCT/US2015/042799, dated Oct. 16, 2015, 8 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion from counterpart Patent Cooperation Treaty Application No. PCT/US2015/042870, dated Oct. 30, 2015, 9 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion from counterpart Patent Cooperation Treaty Application No. PCT/US2015/42783, dated Oct. 19, 2015, 13 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion from counterpart Patent Cooperation Treaty Application No. PCT/US2015/42827, dated Oct. 30, 2015, 9 pages. |
Notification of Transmittal or International Search Report and Written Opinion from PCT/US2015/028927, dated Jul. 30, 2015, 12 pages. |
Pan G., et al., “Liveness Detection for Face Recognition” in: Recent Advances in Face Recognition, 2008, pp. 109-124, Vienna : I-Tech, 2008, Ch. 9, ISBN: 978-953-7619-34-3. |
Pan G., et al., “Monocular Camera-based Face Liveness Detection by Combining Eyeblink and Scene Context,” pp. 215-225, s.l. : Springer Science+Business Media, LLC, Aug. 4, 2010. Retrieved from the Internet: URL: http://www.cs.zju.edu.cn/-gpan/publication/2011-TeleSysliveness.pdf. |
Peng Y., et al., “RASL: Robust Alignment by Sparse and Low-Rank Decomposition for Linearly Correlated Images”, IEEE Conference on Computer Vision and Pattern Recognition, 2010, pp. 763-770. Retrieved from the Internet: URL: http://yima.csl.illinois.edu/psfile/RASL CVPR10.pdf. |
Phillips P. J., et al., “Biometric Image Processing and Recognition,” Chellappa, 1998, Eusipco, 8 pages. |
Phillips P.J., et al., “Face Recognition Vendor Test 2002: Evaluation Report,” s.l. : NISTIR 6965, 2002, 56 pages. Retrieved from the Internet: URL: http://www.facerec.org/vendors/FRVT2002_Evaluation_Report.pdf. |
Phillips P.J., et al., “FRVT 2006 and ICE 2006 Large-Scale Results”, NIST IR 7408, Gaithersburg, NIST, 2006, Mar. 29, 2007, pp. 1-55. |
Pinto A., et al., “Video-Based Face Spoofing Detection through Visual Rhythm Analysis,” Los Alamitos : IEEE Computer Society Conference Publishing Services, 2012, Conference on Graphics, Patterns and Images, 8 pages.(SIBGRAPI). Retrieved from the Internet: URL: http://sibgrapi.sid.inpe.br/rep/sid.inpe.br/sibgrapi/2012/07.13.21.16?mirror=sid.inpe.br/ banon/2001/03.30.15.38.24&metadatarepository=sid.inpe.br/sibgrapi/2012/07.13.21.1 6.53. |
Quinn G.W., et al., “Performance of Face Recognition Algorithms on Compressed Images”, NIST Inter Agency Report 7830, NIST, Dec. 4, 2011, 35 pages. |
Ratha N.K., et al., “An Analysis of Minutiae Matching Strength,” Audio-and Video-Based Biometric Person Authentication, Springer Berlin Heidelberg, 2001, 7 pages. |
Ratha N.K., et al., “Enhancing Security and Privacy in Biometrics-Based Authentication Systems,” IBM Systems Journal, 2001, vol. 40 (3), pp. 614-634. |
Communication pursuant to Rules 161(2) and 162 EPC for EP Application No. 15826364.0, dated Mar. 7, 2017, 2 pages. |
Extended European Search Report from European Patent Application No. 14770682.4, dated Jan. 17, 2017, 14 pages. |
Final Office Action from U.S. Appl. No. 14/145,466, dated Apr. 13, 2017, 61 pages. |
Final Office Action from U.S. Appl. No. 14/218,611, dated Jan. 27, 2017, 14 pages. |
Final Office Action from U.S. Appl. No. 14/218,692, dated Feb. 28, 2017, 27 pages. |
Final Office Action from U.S. Appl. No. 14/218,743, dated Mar. 3, 2017, 67 pages. |
Final Office Action from U.S. Appl. No. 14/448,747, dated Feb. 13, 2017, 74 pages. |
Final Office Action from U.S. Appl. No. 14/859,328, dated Mar. 6, 2017, 26 pages. |
Kim et al., “Secure User Authentication based on the Trusted Platform for Mobile Devices,” EURASIP Journal on Wireless Communications and Networking, pp. 1-15. |
Non-Final Office Action from U.S. Appl. No. 14/066,273 dated May 18, 2017, 46 pages. |
Non-Final Office Action from U.S. Appl. No. 14/218,504, dated Feb. 27, 2017, 12 pages. |
Non-Final Office Action from U.S. Appl. No. 14/218,575, dated May 4, 2017, 88 pages. |
Non-Final Office Action from U.S. Appl. No. 14/218,677, dated Feb. 10, 2017, 18 pages. |
Non-final Office Action from U.S. Appl. No. 14/268,563, dated Apr. 21, 2017, 83 pages. |
Non-Final Office Action from U.S. Appl. No. 14/448,814, dated Apr. 5, 2017, 57 pages. |
Notice of Allowance from U.S. Appl. No. 14/066,384, dated May 23, 2017, 50 pages. |
Notice of Allowance from U.S. Appl. No. 14/218,551, dated Feb. 8, 2017, 56 pages. |
Notice of Allowance from U.S. Appl. No. 14/218,551, dated Mar. 1, 2017, 7 pages. |
Notice of Allowance from U.S. Appl. No. 14/268,733, dated Jan. 20, 2017, 62 pages. |
Notice of Allowance from U.S. Appl. No. 14/448,868, dated Apr. 27, 2017, 62 pages. |
Notice of Allowance from U.S. Appl. No. 14/448,868, dated Mar. 23, 2017, 57 pages. |
Notice of Allowance from U.S. Appl. No. 14/487,992, dated Apr. 12, 2017, 14 pages. |
Office Action from foreign counterpart Taiwan Patent Application No. 102148853, dated Feb. 17, 2017, 9 pages. |
Partial Supplementary European Search Report from European Patent Application No. 14770682.4, dated Oct. 14, 2016, 8 pages. |
TechTarget, What is network perimeter? Definition from Whatls.com downloaded from http://searchnetworking.techtarget.com/definition/network-perimeter on Apr. 14, 2017, 5 pages. |
Abate A., et al.,“2D and 3D face recognition: A survey”, 2007, pp. 1885-1906. |
Advisory Action from U.S. Appl. No. 13/730,791 dated Jan. 23, 2015, 4 pages. |
Akhtar Z., et al., “Spoof Attacks on Multimodal Biometric Systems”, International Conference on Information and Network Technology, 2011, vol. 4, pp. 46-51. |
Bao, W., et al., “A liveness detection method for face recognition based on optical flow field”, 2009, pp. 233-236, http://ieexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5054589&isnumber=5054562. |
Barker E., et al., “Recommendation for key management Part 3: Application—Specific Key Management Guidance”, NIST Special Publication 800-57, 2009, pp. 1-103. |
BehavioSec, “Measuring FAR/FRR/EER in Continuous Authentication,” Stockholm, Sweden (2009), 8 pages. |
Brickell, E., et al., Intel Corporation; Jan Camenish, IBM Research; Liqun Chen, HP Laboratories. “Direct Anonymous Attestation”. Feb. 11, 2004, pp. 1-28 [online]. Retrieved from the Internet: URL:https://eprint.iacr.org/2004/205.pdf. |
Chakka M., et al., “Competition on Counter Measures to 2-D Facial Spoofing Attacks”. 6 pages .2011. http://www.csis.pace.edu/-ctappert/dps/IJCB2011/papers/130.pdf. 978-1-4577-1359-0/11. |
Chen L., et al., “Flexible and scalable digital signatures in TPM 2.0.” Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security. ACM, 2013, 12 pages. |
Chetty G. School of ISE University of Canberra Australia. “Multilevel liveness verification for face-voice biometric authentication”. BYSM-2006 Symposium. Baltimore: BYSM-Symposium 9 pages. Sep. 19, 2006. http://www.biometrics.org/bc2006/presentations/Tues_Sep_19/BSYM/19_Chetty_research.pdf. |
Continuous User Authentication Using Temporal Information, http://www.cse.msu.edu/biometrics/Publications/Face/NiinumaJain_ContinuousAuth_SPIE10.pdf, 11 pages. |
Crazy Egg Heatmap Shows Where People Click on Your Website, 2012, 3 pages, www.michaelhartzell.com/Blog/bid/92970/Crazy-Egg-Heatmap-shows-where-people-click-on-your-website). |
Dawei Zhang; Peng Hu, “Trusted e-commerce user agent based on USB Key”, Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 vol. I, IMECS 2008, Mar. 19-21, 2008, Hong Kong, 7 pages. |
Delac K. et al., Eds., InTech, Jun. 1, 2008, Retrieved from the Internet:, ISBN 978-953-7619-34-3, Uploaded as individual Chapters 1-15, 15 pages. |
Doherty, et al., Internet Engineering Task Force (IETF), “Dynamic Symmetric Key Provisioning Protocol (DSKPP)”, Dec. 2010, 105 pages. |
Edited by Kresimir Delac, Mislay Grgic and Marian Stewart Bartlett. s.l. : InTech Jun. 1, 2008. http://cdn.intechopen.com/finals/81/InTech-Recent_advances_in_face_recognition.zip. ISBN 978-953-7619-34-3. Uploaded as Chapters 1-15. |
Extended European Search Report for Application No. 13867269, dated Nov. 4, 2016, 10 pages. |
Extended European Search Report for Application No. 14803988.6, dated Dec. 23, 2016, 10 pages. |
Final Office Action from U.S. Appl. No. 13/730,761 dated Jan. 15, 2015, 31 pages. |
Final Office Action from U.S. Appl. No. 13/730,761 dated Jul. 8, 2014, 36 pages. |
Final Office Action from U.S. Appl. No. 13/730,776 dated Nov. 3, 2014, 20 pages. |
Final Office Action from U.S. Appl. No. 13/730,780 dated Jan. 27, 2015, 30 pages. |
Final Office Action from U.S. Appl. No. 13/730,780 dated May 12, 2014, 34 pages. |
Final Office Action from U.S. Appl. No. 13/730,791 dated Nov. 13, 2014, 22 pages. |
Final Office Action from U.S. Appl. No. 13/730,795 dated Aug. 14, 2014, 20 pages. |
Final Office Action from U.S. Appl. No. 14/066,273 dated Feb. 11, 2016, 29 pages. |
Final Office Action from U.S. Appl. No. 14/066,273 dated Jan. 10, 2017, 24 pages. |
Final Office Action from U.S. Appl. No. 14/066,384 dated Aug. 20, 2015, 23 pages. |
Final Office Action from U.S. Appl. No. 14/218,551 dated Sep. 9, 2015, 15 pages. |
Final Office Action from U.S. Appl. No. 14/218,551 dated Sep. 16, 2016, 11 pages. |
Final Office Action from U.S. Appl. No. 14/218,575 dated Aug. 7, 2015, 19 pages. |
Final Office Action from U.S. Appl. No. 14/218,575 dated Jul. 7, 2016, 29 pages. |
Final Office Action from U.S. Appl. No. 14/218,692 dated Mar. 2, 2016, 24 pages. |
Final Office Action from U.S. Appl. No. 14/268,619 dated Dec. 14, 2015, 10 pages. |
Final Office Action from U.S. Appl. No. 14/268,733 dated Jan. 15, 2016, 14 pages. |
Final Office Action from U.S. Appl. No. 14/448,814 dated Feb. 16, 2016, 14 pages. |
Final Office Action from U.S. Appl. No. 14/448,814 dated Jun. 14, 2016, 17 pages. |
Final Office Action from U.S. Appl. No. 14/448,868 dated Aug. 19, 2016, 11 pages. |
Grother, P.J., et al., NIST. Report on the Evaluation of 2D Still-Image Face Recognition Algorithms, NIST IR 7709. s.l, NIST, 2011, Jun. 22, 2010, pp. 1-58. |
GSM Arena. [Online] Nov. 13, 2011, [Cited: Sep. 29, 2012.], 2 pages, [retrieved on Aug. 18, 2015]. Retrieved from the Internet: URL: http://www.gsmarena.com/ice_cream_sandwichs_face_unlock_duped_using_a_photograph-news-3377.php. |
Heikkila M., et al., “A Texture-Based Method for Modeling the Background and Detecting Moving Objects”, Oulu : IEEE , Jun. 22 2005, Draft, Retrieved from the Internet: URL: , 16 pages. |
Hernandez, T., “But What Does It All Mean? Understanding Eye-Tracking Results (Part 3)”, Sep. 4, 2007, 2 pages. EyeTools. Part III: What is a heatmap . . . really? [Online] [Cited: Nov. 1, 2012.] Retrieved from the Internet: URL:http://eyetools.com/articles/p3- understanding-eye-tracking-what-is-a-heatmap-really. |
Himanshu, et al., “A Review of Face Recognition”. International Journal of Research in Engineering & Applied Sciences. Feb. 2012, vol. 2, pp. 835-846. Retrieved from the Internet: URL:http://euroasiapub.org/IJREAS/Feb2012/81.pdf. |
Huang L., et al., “Clickjacking: Attacks and Defenses”. S.I. : Usenix Security 2012, pp. 1-16, 2012 [online]. Retrieved from the Internet: URL:https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-fina139.pdf. |
International Preliminary Report on Patentability for Application No. PCT/US2015/028924 dated Nov. 17, 2016, 9 pages. |
International Preliminary Report on Patentability for Application No. PCT/US2015/028927 dated Nov. 17, 2016, 10 pages. |
International Search Report and Written Opinion for Application No. PCT/US2015/028924 dated Jul. 30, 2015, 10 pages. |
Jafri R., et al. “A Survey of Face Recognition Techniques,” Journal of Information Processing Systems, 2009, vol. 5 (2), pp. 41-68. |
Julian J., et al., “Biometric Enabled Portable Trusted Computing Platform,” Trust Security and Privacy in Computing and Communications (TRUSTCOM), 2011 IEEE 10th International Conference on Nov. 16, 2011, pp. 436-442, XP032086831, DOI:10.1109/TRUSTCOM.2011.56, ISBN: 978-1-4577-2135-9. |
Kollreider K., et al., “Evaluating Liveness by Face Images and the Structure Tensor,” Halmstad, Sweden: s.n., Halmstad University, SE-30118, Sweden, [online], 2005, Retrieved from the Internet: URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.62.6534&rep=rep1 &type=pdf, pp. 75-80. |
Extended European Search Report for Application No. 15786487.7, dated Oct. 23, 2017, 8 pages. |
Extended European Search Report for Application No. 15786796.1, dated Nov. 3, 2017, 9 pages. |
Extended European Search Report for Application No. 15826660.1, dated Nov. 16, 2017, 9 pages. |
Extended European Search Report for Application No. 15827334.2, dated Nov. 17, 2017, 8 pages. |
Final Office Action from U.S. Appl. No. 14/066,273, dated Sep. 8, 2017, 30 pages. |
Final Office Action from U.S. Appl. No. 14/218,504, dated Sep. 12, 2017, 83 pages. |
Final Office Action from U.S. Appl. No. 14/218,575, dated Jul. 31, 2017, 42 pages. |
Final Office Action from U.S. Appl. No. 14/218,677, dated Sep. 28, 2017, 16 pages. |
Final Office Action from U.S. Appl. No. 14/268,563, dated Nov. 3, 2017, 46 pages. |
Final Office Action from U.S. Appl. No. 14/448,814 dated Oct. 6, 2017, 24 pages. |
First Office Action and Search Report from foreign counterpart China Patent Application No. 201380068869.3, dated Sep. 19, 2017, 17 pages. |
First Office Action and Search Report from foreign counterpart China Patent Application No. 201480025959.9, dated Jul. 7, 2017, 10 pages. |
International Preliminary Report on Patentability for Application No. PCT/US2015/042786, dated Feb. 9, 2017, 7 pages. |
International Preliminary Report on Patentability for Application No. PCT/US2015/042799, dated Feb. 9, 2017, 7 pages. |
International Preliminary Report on Patentability for Application No. PCT/US2015/042870, dated Feb. 9, 2017, 8 pages. |
International Preliminary Report on Patentability for Application No. PCT/US2015/050348, dated Mar. 30, 2017, 7 pages. |
International Preliminary Report on Patentability for Application No. PCT/US2015/42783, dated Feb. 9, 2017, 12 pages. |
International Preliminary Report on Patentability for Application No. PCT/US2015/42827, dated Feb. 9, 2017, 6 pages. |
International Search Report and Written Opinion for Application No. PCT/U52017/045534, dated Nov. 27, 2017, 14 pages. |
Kim H.C., et al., “A Design of One-Time Password Mechanism Using Public Key Infrastructure,” Networked Computing and Advanced Information Management, 2008, NCM'08, 4th International Conference on IEEE, Sep. 2, 2008, pp. 18-24. |
Martins R A., et al., “A Potpourri of Authentication Mechanisms the Mobile Device Way,” CISTI, Jan. 2013, pp. 843-848. |
Non-Final Office Action from U.S. Appl. No. 14/218,611, dated Sep. 19, 2017, 76 pages. |
Non-Final Office Action from U.S. Appl. No. 14/218,692, dated Sep. 19, 2017, 37 pages. |
Non-Final Office Action from U.S. Appl. No. 14/218,743, dated Aug. 2, 2017, 24 pages. |
Non-Final Office Action from U.S. Appl. No. 14/859,328, dated Jul. 14, 2017, 29 pages. |
Non-Final Office Action from U.S. Appl. No. 15/396,452 dated Oct. 13, 2017, 76 pages. |
Non-Final Office action from U.S. Appl. No. 15/595,460, dated Jul. 27, 2017, 09 pages. |
Notice of Allowance from U.S. Appl. No. 14/066,384, dated Dec. 1, 2017, 23 pages. |
Notice of Allowance from U.S. Appl. No. 14/066,384, dated Jul. 26, 2017, 20 pages. |
Notice of Allowance from U.S. Appl. No. 14/218,551, dated Aug. 16, 2017, 24 pages. |
Notice of Allowance from U.S. Appl. No. 14/218,551, dated Dec. 13, 2017, 13 pages. |
Notice of Allowance from U.S. Appl. No. 14/448,747, dated Jun. 20, 2017, 14 pages. |
Notice of Allowance from U.S. Appl. No. 14/448,868, dated Jun. 26, 2017, 14 pages. |
Notice of Allowance from U.S. Appl. No. 14/448,868, dated Nov. 17, 2017, 15 pages. |
Notice of Allowance from U.S. Appl. No. 14/487,992, dated Jul. 17, 2017, 8 pages. |
Notice of Allowance from U.S. Appl. No. 14/487,992, dated Jun. 14, 2017, 14 pages. |
Office Action and Search Report from foreign counterpart Chinese Patent Application No. 201480031042.X, dated Dec. 4, 2017, 20 pages. |
Starnberger G., et al., “QR-TAN: Secure Mobile Transaction Authentication,” Availability, Reliability and Security, 2009, ARES'09, International Conference on IEEE, Mar. 16, 2009, pp. 578-585. |
Uymatiao M.L.T., et al., “Time-based OTP authentication via secure tunnel (TOAST); A mobile TOTP scheme using TLS seed exchage and encrypted offline keystore,” 2014 4th IEEE International Conference on Information Science and Technology, IEEE, Apr. 26, 2014, pp. 225-229. |
Office Action and Search Report from foreign counterpart Taiwan Patent Application No. 106125986, dated Mar. 19, 2018, 6 pages. |
Office Action from foreign counterpart Japanese Patent Application No. 2015-550778, dated Feb. 7, 2018, 14 pages. |
“OpenID Connect Core 1.0—draft 17,” Feb. 3, 2014, 70 pages. |
Watanabe H., et al., “The Virtual Wearable Computing System Assumed Widely Movement,” the multimedia, distribution and cooperation which were taken into consideration, mobile (DICOMO2009) symposium collected-papers [CD-ROM], Japan, Information Processing Society of Japan, Jul. 1, 2009, and vol. 2009 (1), pp. 1406-1414. (Abstract only in English). |
Chen L., “Direct Anonymous Attestation,” Oct. 12, 2005, retrieved from https://trustedcomputinggroup.org/wp-content/uploads/051012_DAA-slides.pdf on Apr. 2, 2018, 27 pages. |
Communication pursuant to Article 94(3) EPC for Application No. 15786796.1, dated Oct. 23, 2018, 4 pages. |
Communication Pursuant to Rules 70(2) and 70a(2) EPC for European Application No. 15786487.7, dated Nov. 9, 2017, 1 page. |
Communication Pursuant to Rules 70(2) and 70a(2) EPC for European Application No. 15827363.7, dated Mar. 13, 2018, 1 page. |
Corrected Notice of Allowance from U.S. Appl. No. 15/396,452, dated Aug. 30, 2018, 17 pages. |
Corrected Notice of Allowability from U.S. Appl. No. 15/595,460, dated Nov. 20, 2018, 38 pages. |
Corrected Notice of Allowance from U.S. Appl. No. 14/066,273, dated Feb. 8, 2018, 4 pages. |
Corrected Notice of Allowance from U.S. Appl. No. 15/396,454, dated Sep. 28, 2018, 24 pages. |
Corrected Notice of Allowance from U.S. Appl. No. 15/595,460, dated Dec. 11, 2018, 70 pages. |
Decision to Grant from foreign counterpart Japanese Patent Application No. 2015-550778, dated Jul. 25, 2018, 6 pages. |
Extended European Search Report for Application No. 15826364.0, dated Feb. 20, 2018, 6 pages. |
Extended European Search Report for Application No. 15827363.1, dated Feb. 22, 2018, 7 pages. |
Extended European Search Report for Application No. 15828152.7, dated Feb. 20, 2018, 8 pages. |
Extended European Search Report for Application No. 15841530.7, dated Mar. 26, 2018, 8 pages. |
Final Office Action from U.S. Appl. No. 14/145,466, dated Nov. 20, 2018, 28 pages. |
Final Office Action from U.S. Appl. No. 14/218,677, dated May 31, 2018, 16 pages. |
Final Office Action from U.S. Appl. No. 15/229,254, dated Aug. 23, 2018, 16 pages. |
Final Office Action from U.S. Appl. No. 14/218,575 dated Sep. 5, 2018, 19 pages. |
Final Office Action from U.S. Appl. No. 14/218,611, dated May 3, 2018, 20 pages. |
Final Office Action from U.S. Appl. No. 14/218,692, dated Apr. 17, 2018, 99 pages. |
Final Office Action from U.S. Appl. No. 14/218,743, dated Feb. 7, 2018, 27 pages. |
Final Office Action from U.S. Appl. No. 15/396,452, dated Feb. 27, 2018, 24 pages. |
Final Office Action from U.S. Appl. No. 15/595,460, dated Jan. 11, 2018, 19 pages. |
Monden A., et al., “Remote Authentication Protocol,” Multimedia, Distributed, Cooperative and Mobile Symposium (DICOM02007), Information Processing Society of Japan, Jun. 29, 2007, pp. 1322-1331. |
Non-Final Office Action from U.S. Appl. No. 14/218,692, dated Jul. 31, 2018, 40 pages. |
Non-Final Office Action from U.S. Appl. No. 14/145,466, dated May 11, 2018, 33 pages. |
Non-Final Office Action from U.S. Appl. No. 14/268,563, dated Jun. 28, 2018, 56 pages. |
Non-Final Office Action from U.S. Appl. No. 15/881,522, dated Jun. 6, 2018, 87 pages. |
Non-Final Office Action from U.S. Appl. No. 15/900,620, dated Oct. 19, 2018, 66 pages. |
Non-Final Office Action from U.S. Appl. No. 14/218,575, dated Mar. 8, 2018, 29 pages. |
Non-Final Office Action from U.S. Appl. No. 14/218,677, dated Feb. 2, 2018, 25 pages. |
Non-Final Office Action from U.S. Appl. No. 15/229,254, dated Feb. 14, 2018, 75 pages. |
Non-Final Office Action from U.S. Appl. No. 15/595,460, dated May 3, 2018, 20 pages. |
Non-Final Office Action from U.S. Appl. No. 15/954,188, dated Sep. 7, 2018, 41 pages. |
Notice of Allowance from U.S. Appl. No. 15/396,454, dated Nov. 16, 2018, 34 pages. |
Notice of Allowance from foreign counterpart Chinese Patent Application No. 201480031042.X, dated Jul. 23, 2018, 5 pages. |
Notice of Allowance from foreign counterpart Taiwan Patent Application No. 106125986, dated Jul. 6, 2018, 7 pages. |
Notice of Allowance from U.S. Appl. No. 14/218,743, dated Aug. 1, 2018, 18 pages. |
Notice of Allowance from U.S. Appl. No. 14/448,814, dated May 9, 2018, 42 pages. |
Notice of Allowance from U.S. Appl. No. 15/396,452, dated Jul. 2, 2018, 23 pages. |
Notice of Allowance from U.S. Appl. No. 14/066,273, dated Jan. 18, 2018, 26 pages. |
Notice of Allowance from U.S. Appl. No. 14/218,504, dated May 31, 2018, 95 pages. |
Notice of Allowance from U.S. Appl. No. 14/218,692, dated Dec. 5, 2018, 13 pages. |
Notice of Allowance from U.S. Appl. No. 14/859,328, dated Feb. 1, 2018, 18 pages. |
Notice of Allowance from U.S. Appl. No. 15/396,454, dated Sep. 18, 2018, 79 pages. |
Notice of Allowance from U.S. Appl. No. 15/595,460, dated Oct. 9, 2018, 8 pages. |
Notification for Granting Patent Right and Search Report from foreign counterpart Chinese Patent Application No. 201380068869.3, dated May 4, 2018, 10 pages. |
Notification of Reason for Rejection from foreign counterpart Japanese Patent Application No. 2016-505506, dated Feb. 13, 2018, 6 pages. |
Notification of Reasons for Rejection from foreign counterpart Japanese Patent Application No. 2016-0516743, dated Apr. 23, 2018, 12 pages. |
OASIS Standard, “Authentication Context for the OASIS Security Assertion Markup Language (SAML) V2.0,” Mar. 15, 2005, 70 pages. |
Communication pursuant to Article 94(3) EPC for Application No. 15841530.7, dated Feb. 8, 2019, 4 pages. |
International Search Report and Written Opinion for PCT Application No. PCT/US2018/062608, dated Mar. 28, 2019, 12 pages. |
Non-Final Office Action from U.S. Appl. No. 14/268,563, dated May 13, 2019, 47 pages. |
Non-Final Office Action from U.S. Appl. No. 15/229,233, dated Apr. 18, 2019, 87 pages. |
Notice of Allowance from U.S. Appl. No. 14/218,575, dated Apr. 10, 2019, 32 pages. |
Notice of Allowance from U.S. Appl. No. 15/595,460, dated Mar. 14, 2019, 32 pages. |
Notice of Allowance from U.S. Appl. No. 15/954,188, dated Apr. 26, 2019, 5 pages. |
Office Action from foreign counterpart Japanese Patent Application No. 2017-505504, dated Apr. 15, 2019, 3 pages. |
RF 6749: Hardt D, “The OAuth 2.0 Authorization Framework,” Internet Engineering Task Force(IETF), Request for Comments: 6749, retrieved from https://tools.ietf.org/pdf/rfc6749.pdf, Oct. 2012, pp. 1-76. |
Babich A., “Biometric Authentication. Types of Biometric Identifiers,” Haaga-Helia, University of Applied Sciences, 2012, retrieved from https://www.theseus.fi/bitstream/handle/10024/44684/Babich_Aleksandra.pdf, 56 pages. |
Final Office Action from U.S. Appl. No. 14/268,563, dated Dec. 27, 2018, 47 pages. |
Final Office Action from U.S. Appl. No. 15/881,522, dated Feb. 6, 2019, 21 pages. |
Final Office Action from U.S. Appl. No. 15/954,188, dated Feb. 25, 2019, 8 pages. |
International Preliminary Report on Patentability for Application No. PCT/US2017/045534, dated Feb. 14, 2019, 11 pages. |
Non-Final Office Action from U.S. Appl. No. 14/218,677, dated Dec. 26, 2018, 32 pages. |
Non-Final Office Action from U.S. Appl. No. 14/218,611, dated Feb. 7, 2019, 27 pages. |
Non-Final Office Action from U.S. Appl. No. 15/229,254, dated Feb. 26, 2019, 46 pages. |
Notice of Allowance from U.S. Appl. No. 15/396,454, dated Jan. 28, 2019, 23 pages. |
Notice of Allowance from U.S. Appl. No. 15/900,620, dated Feb. 15, 2019, 20 pages. |
Notice of Reasons for Rejection from foreign counterpart Japanese Patent Application No. 2017-505513, dated Oct. 22, 2018, 6 pages. |
“Analysis of Advertising Effectiveness with Eye Tracking” —Theuner et al, Department of Marketing, Ludwigshafen University, Aug. 2008 http://www.noldus.com/mb2008/individual_papers/FPS_eye_tracking/FPS_eye_tracking_Theuner.pdf. |
Communication pursuant to Article 94(3) EPC, EP App. No. 13867269.6, dated Aug. 30, 2019, 6 pages. |
Communication Pursuant to Article 94(3) EPC, EP App. No. 14770682.4, dated Jun. 6, 2019, 5 pages. |
Communication pursuant to Article 94(3) EPC, EP App. No. 157867961, dated May 31, 2019, 5 pages. |
Communication pursuant to Article 94(3) EPC, EP App. No. 158266601, dated Jul. 4, 2019, 6 pages. |
Communication Pursuant to Article 94(3) EPC, EP App. No. 158273342, dated Apr. 30, 2019, 9 pages. |
Communication Pursuant to Article 94(3) EPC, EP App. No. 15828152.7, dated Jan. 31, 2019, 7 pages. |
Communication pursuant to Article 94(3) EPC, EP. App. No. 14803988.6, dated Oct. 25, 2019, 5 pages. |
Corrected Notice of Allowance, U.S. Appl. No. 14/218,575, dated Jun. 24, 2019, 16 pages. |
Decision to Grant a Patent, JP App. No. 2016-516743 dated Jan. 10, 2019, 5 pages. |
Final Office Action, U.S. Appl. No. 14/218,611, dated Aug. 2, 2019, 26 pages. |
Final Office Action, U.S. Appl. No. 14/218,677, dated Jun. 10, 2019, 15 pages. |
Final Office Action, U.S. Appl. No. 14/268,563, dated Nov. 8, 2019, 36 pages. |
Final Office Action, U.S. Appl. No. 15/229,233, dated Sep. 24, 2019, 18 pages. |
First Office Action and Search Report, CN App. No. 201580040813.6, dated Jun. 28, 2019, 19 pages. |
First Office Action and Search Report, CN App. No. 201580040814, dated Jul. 10, 2019, 10 pages. (Translation available only for the office action). |
Fourth Office Action, CN App. No. 201480025959.9, dated Apr. 12, 2019, 10 pages. |
Hebbes L, et al., “2-Factor Authentication with 2D Barcodes,” Proceedings of the Fifth International Symposium on Human Aspects of Information Security & Assurance (Haisa 2011), 2011, pp. 86-96. |
IEEE P802.11ah/D5.0: “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Amendment 2: Sub 1 GHz License Exempt Operation,” IEEE Draft Standard for Information technology-Telecommunications and information exchange between systems, Local and metropolitan area networks-Specific requirements, Mar. 2015, 632 pages. |
IEEE Std 802.11-2012: “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,” IEEE Standard for Information technology-Telecommunicationsand information exchange between systems, Local and metropolitan area networks-Specific requirements, Mar. 29, 2012, 2793 pages. |
IEEE Std 802.11ac-2013 “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Amendment 4: Enhancements for Very High Throughput for Operation in Bands below 6 GHz,” IEEE Standard for Information technology-Telecommunicationsand information exchange between systems, Local and metropolitan area networks-Specific requirements, Dec. 18, 2013, 425 pages. |
International Search Report and Written Opinion, PCT App. No. PCT/US2019/013199, dated Apr. 1, 2019, 12 pages. |
Non-Final Office Action, U.S. Appl. No. 14/218,677, dated Oct. 30, 2019, 5 pages. |
Non-Final Office Action, U.S. Appl. No. 15/881,522, dated Jul. 16, 2019, 39 pages. |
Notice of Abandonment, U.S. Appl. No. 16/209,838, dated Sep. 4, 2019, 2 pages. |
Notice of Allowance, TW App. No. 102148853, dated Jul. 6, 2017, 3 pages. |
Notice of Allowance, U.S. Appl. No. 15/229,254, dated Sep. 11, 2019, 8 pages. |
Notice of Allowance, U.S. Appl. No. 15/595,460, dated May 17, 2019, 10 pages. |
Notice of Reasons for Refusal, JP App. No. 2018-153218, dated Jun. 5, 2019, 7 pages. |
Notice of Reasons for Rejection, JP App. No. 2016-566924, dated Mar. 7, 2019, 23 pages. |
Notification of Reasons for Refusal, JP App. No. 2017-505072, dated Apr. 15, 2019, 8 paegs. |
Notification of Reasons for Refusal, JP App. No. 2017-514840, dated Apr. 1, 2019, 10 pages. |
Notification of Reasons for Rejection, JP App. No. 2016-566912, dated Jan. 31, 2019, 11 pages. |
Office Action and Search Report, TW App. No. 107127837, dated Jun. 26, 2019, 4 pages. |
Rejection Judgment, JP App. No. 2017-505513, dated Jun. 17, 2019, 4 pages. |
Requirement for Restriction/Election, U.S. Appl. No. 15/822,531, dated Oct. 16, 2019, 6 pages. |
Saito T., “Mastering TCP/IP, Information Security,” Ohmsha Ltd., dated Sep. 1, 2013, pp. 77-80 (7 pages). |
Schmidt et al., “Trusted Platform Validation and Management,” International Journal of Dependable and Trustworth Information Systems, vol. 1, No. 2, Apr.-Jun. 2010, pp. 1-31. |
Decision to Grant, JP App. No. 2016-566912, dated Dec. 26, 2019, 3 pages (2 pages of English Translation and 1 pages of Original Document). |
Delac K. et al., Eds., Image Compression in Face Recognition-a Literature Survey, InTech, Jun. 1, 2008, ISBN 978-953-7619-34-3, Uploaded as individual Chapters 1-15, downloaded from https://www.intechopen.com/books/recent_advances_inface_recognition/image_compression_in_face_recognition_-_a_literature_survey, 15 pages. |
First Office Action, CN App. No. 201580022332.2, dated Aug. 5, 2019, 14 pages (7 pages of English Translation and 7 pages of Original Document). |
Manabe et al., “Person Verification using Handwriting Gesture”, Proceedings of the 26th Annual Conference of Japanese Society for Artifical Intelligence, 2012, 9 pages (English Abstract Submitted). |
Non-Final Office Action, U.S. Appl. No. 15/229,233, dated Jan. 31, 2020, 18 pages. |
Non-Final Office Action, U.S. Appl. No. 15/822,531, dated Dec. 11, 2019, 19 pages. |
Notice of Allowance, U.S. Appl. No. 14/145,466, dated Feb. 12, 2020, 12 pages. |
Notice of Allowance, U.S. Appl. No. 15/881,522, dated Dec. 31, 2019, 10 pages. |
Notice of Allowance, U.S. Appl. No. 15/229,254, dated Jan. 15, 2020, 9 pages. |
Notice of Reasons for Refusal, JP App. No. 2018-209608, dated Oct. 7, 2019, 11 pages (7 pages of English Translation and 4 pages of Original Document). |
Crowley et al., “Online Identity and Consumer Trust: Assessing Online Risk”, Available Online at <https://www.brookings.eduiwp-content/uploads/2016/06/0111_online_identity_trust.pdf>, Jan. 11, 2011, 15 pages. |
Final Office Action, U.S. Appl. No. 15/822,531, dated Apr. 7, 2020, 22 pages. |
Notice of Allowance, U.S. Appl. No. 14/218,677, dated May 8, 2020, 10 pages. |
Notice of Allowance, U.S. Appl. No. 15/229,254, dated Mar. 17, 2020, 3 pages. |
Notice of Allowance, U.S. Appl. No. 15/881,522, dated Apr. 20, 2020, 10 pages. |
Communication pursuant to Article 94(3) EPC, EP App. No. 15786487.7, dated Feb. 20, 2020, 6 pages. |
Decision of Final Rejection, JP App. No. 2016-566924, dated Feb. 27, 2020, 8 pages (5 pages of English Translation and 3 pages of Original Document). |
First Office Action CN App. No. 201580040831.4, dated Mar. 3, 2020, 31 pages (18 pages of English Translation and 13 pages of Office Action). |
Intention to Grant a Patent, EP App. No. 15826364.0, dated Feb. 18, 2020, 6 pages. |
Second Office Action, CN App. No. 201580040813.6, dated Mar. 24, 2020, 19 pages (11 pages of English Translation and 8 pages of Original Document). |
Intention to Grant under Rule 71(3) EPC, EP App. No. 15826660.1, dated Apr. 28, 2020, 6 pages. |
Intention to Grant under Rule 71(3) EPC, EP App. No. 15828152.7, dated Apr. 1, 2020, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20140289790 A1 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
61804568 | Mar 2013 | US |