1. Field of the Invention
This invention relates generally to deceleration control systems for vehicles, and more particularly concerns an adaptive brake application and initial skid detection system for braking of one or more wheels of an aircraft during landing that prevents deep initial skids, and to thus allow rapid brake application in a controlled manner.
2. Description of the Related Art
Anti-skid and automatic braking systems commonly have been provided on commercial and large turbine aircraft to aid the deceleration of the aircraft upon landing. Modern anti-skid systems typically optimize braking efficiency by adapting to runway conditions and other factors affecting braking to maximize deceleration, corresponding to the level of brake pressure selected by the pilot. In conventional antiskid systems, brakes are typically applied mechanically via a metering valve by the pilot, and as soon as the wheel brake pressure approaches the skid level, such as when an initial skid is detected, a brake pressure value is used to initialize the antiskid control system. However, it has been found that the success of this method can be affected by such factors as the mode of aircraft operation, aircraft weight, tire/runway interfaces, and the like. It would therefore be desirable to provide an adaptive brake application system that can adjust brake pressure or torque application to account for such factors.
Furthermore, rapid pedal application by an aircraft pilot also can often create deep initial skids before an effective antiskidding brake pressure or brake torque is determined and skidding is effectively controlled by conventional antiskid and brake control systems. Eliminating or reducing initial skids would result in shorter aircraft stopping distances, which allow the aircraft to land on shorter runways, and can result in reduced tire wear. It would thus be desirable to provide an initial skid detection system to automatically anticipate initial skid conditions and adjust to prevent deep initial skids, to allow the pilot to depress the brake pedals at any rate, while still providing for rapid brake application in a controlled manner. The present invention provides an adaptive brake application and initial skid detection system that meets these needs.
Briefly, and in general terms, the present invention provides for an adaptive brake application and initial skid detection system that allows rapid brake application, while preventing deep initial skids, by implementation of a skid anticipation system that is initialized as soon as a wheel approaches a skid level to reduce brake application pressure or torque and to apply brakes in a controlled manner.
The invention accordingly provides for a “smart” brake application and initial skid detection system for braking of a wheel of an aircraft during landing. The system is applicable to one or more wheels having a wheel brake for applying brake torque to the wheel. A brake torque sensor generates brake torque signals that are a function of the braking torque applied to the wheel brake, and the brake torque signals are compared with a predetermined threshold brake torque. A wheel speed transducer produces wheel speed signals that are a function of the rotational speed of the wheel, and a wheel velocity signal is generated based upon the wheel speed signals. The wheel velocity is compared with a reference velocity signal for generating wheel velocity error signals indicative of the difference between the aircraft wheel velocity signals and the reference velocity signal. A torque bias modulator integrator is also provided that is responsive to brake torque signals for adjusting the wheel velocity error signals to provide an anti-skid control signal, and in one currently preferred embodiment the torque bias modulator integrator is initialized with the predetermined threshold brake torque plus a predetermined constant torque value. A command processor generates a command brake torque signal generated in response to a deceleration command, and brake torque comparison means are provided for comparing the brake torque signals with the command brake torque signal for generating brake torque difference signals indicative of the difference between the brake torque signals and the command brake torque signal. Control means provide an adjusted brake torque signal to the wheel brake to control the wheel brake independently of operator brake application, in response to the brake torque difference signals. In another presently preferred embodiment, the torque bias modulator integrator is initialized to the value of a measured brake torque when the wheel velocity error signal indicates the beginning of a skid.
In a currently preferred embodiment, means are also provided for adjusting the brake torque error signals by a proportional torque gain, an integral torque gain, and a differential torque gain. In another presently preferred embodiment, transient control means for providing a proportional control signal and compensation network means, both responsive to the velocity error signal, are also provided, and the outputs of the transient control means and compensation network means are summed with the output of the torque bias modulator integrator.
From the above, it can be seen that the present invention provides a system and method to initiate brake control after rapid application of the brake pedal, but before the onset of skidding occurs. These and other aspects and advantages of the invention will become apparent from the following detailed description and the accompanying drawings, which illustrate by way of example the features of the invention.
Effectiveness of conventional antiskid systems can be affected by the mode of aircraft operation, aircraft weight, tire/runway interfaces, and similar factors. Rapid aircraft brake pedal application, especially panic application, can also create deep initial skids before antiskid control is initiated, resulting in lengthening of aircraft stopping distances and increased tire wear.
The present invention provides a system and method for direction of the conditions for the onset of skidding, and the initiation of brake control to prevent deep skids prior to controlled deceleration. With reference to
The position of the aircraft brake pedal 32 operated by the pilot is typically read by a microcontroller 33 that generates a brake pedal command signal 34, from which a torque application profile is determined. The command processor 30 receives the brake pedal command signal, the anti-skid control signal 28 via feedback line 36, and preferably also receives a locked wheel protection signal 38 indicating whether a wheel is locked, and a touchdown/hydroplaning protection signal 40, to guard against hydroplaning of a wheel on touchdown at high speeds. In a currently preferred embodiment, the command processor operates on the lowest input of the locked wheel protection signal, the touchdown protection signal, the pedal signal, and the antiskid signal. The commanded brake torque signal output 42 of the command processor is compared with the brake torque feedback signal 44 from brake torque sensor 46 by comparator 48, which generates an output torque error signal 50.
In a currently preferred embodiment, the brake torque error signals are also adjusted by a proportional gain by proportional gain circuitry 52, an integral gain by integral gain circuitry 54, and a differential gain by differential gain circuitry 55 that together form a PID control loop, and the outputs of which are summed at summing junction 56 to provide an adjusted brake torque signal 57. The adjusted brake torque signal is also typically amplified by valve amplifier 58 to provide an amplified brake control signal applied to the brake control valve 60 that controls the application of pressurized brake fluid from system torque 62 to the wheel brake.
In a presently preferred embodiment, the functions of the elements in the block 63 are performed by one or more microprocessors under appropriate software control, although alternatively these or analogous functions may be performed by suitable hardware components. It will be appreciated by those skilled in the art that the component parameters and configurations will vary from aircraft to aircraft and that there is thus wide variability in how the system can be used.
“Smart” Brake Application:
Referring to
“Smart” Skid Detection:
When a wheel approaches the skid level, such as when Vs is detected to be greater than the preset wheel velocity limit, then the TBM integrator is initialized with the value of brake torque feedback at the time that Vs is greater than the preset limit. This method ensures correct initialization of the TBM integrator. The brake torque at the time of an initial skid is what the TBM integrator needs to be for the immediate control without multiple initial skids. Therefore a fast response of the TBM integrator is insured to an otherwise slow moving control function.
It should be apparent that this invention is not limited to velocity error type systems, and that the invention is also applicable to other brake control skid detection concepts, such as rate control/detection, as well as any system that monitors the brake application and pressure or torque.
From the above, it will be recognized by those skilled in the art that the present invention provides a new and novel method and apparatus to indicate brake control prior to the initialization of skids and to prevent overshoot and instability after brake control is begun.
It will also be apparent from the foregoing that while particular forms of the invention have been illustrated and described, various modifications can be made without departing from the spirit and scope of the invention. Accordingly, it is not intended that the invention be limited, except as by the appended claims.
This Application is a continuation of Ser. No. 11/157,384, filed Jun. 20, 2005, which is a continuation of Ser. No. 10/803,210, filed Mar. 17, 2004, now U.S. Pat. No. 6,916,075, which is a continuation of Ser. No. 10/225,092, filed Aug. 21, 2002, now U.S. Pat. No. 6,722,745, which is a continuation-in-part of Ser. No. 10/027,820, filed Dec. 21, 2001, now U.S. Pat. No. 6,527,350, which is a continuation of Ser. No. 09/887,581, filed Jun. 21, 2001, now U.S. Pat. No. 6,345,872 which is a divisional of Ser. No. 09/591,093, filed Jun. 8, 2000, now U.S. Pat. No. 6,299,262, which is a continuation of Ser. No. 08/850,680, filed May 2, 1997, now U.S. Pat. No. 6,132,016.
Number | Name | Date | Kind |
---|---|---|---|
3574417 | Howard et al. | Apr 1971 | A |
3578819 | Atkins | May 1971 | A |
3587798 | Schuman | Jun 1971 | A |
3604760 | Atkins | Sep 1971 | A |
3614174 | Romero | Oct 1971 | A |
3682512 | Malon et al. | Aug 1972 | A |
3702714 | Branson | Nov 1972 | A |
3711163 | Booher | Jan 1973 | A |
3724916 | Hirzel | Apr 1973 | A |
3829167 | Rouf et al. | Aug 1974 | A |
3955652 | Nilsson et al. | May 1976 | A |
4022513 | Hirzel et al. | May 1977 | A |
4033630 | Hubbard | Jul 1977 | A |
4043607 | Signorelli et al. | Aug 1977 | A |
4105258 | Bornfleth | Aug 1978 | A |
4269455 | Beck et al. | May 1981 | A |
4313616 | Howard | Feb 1982 | A |
4336592 | Beck | Jun 1982 | A |
4338668 | Cook | Jul 1982 | A |
4412291 | Amberg et al. | Oct 1983 | A |
4543633 | Cook | Sep 1985 | A |
4613190 | Johnson | Sep 1986 | A |
4720794 | Skarvada | Jan 1988 | A |
4768840 | Sullivan | Sep 1988 | A |
4822113 | Amberg et al. | Apr 1989 | A |
RE33486 | Hirzel et al. | Dec 1990 | E |
5312168 | Breen | May 1994 | A |
5333943 | Kashiwabara et al. | Aug 1994 | A |
5390990 | Cook et al. | Feb 1995 | A |
5390992 | Walenty et al. | Feb 1995 | A |
5507568 | Cook et al. | Apr 1996 | A |
5605387 | Cook et al. | Feb 1997 | A |
5700072 | Cook et al. | Dec 1997 | A |
5895100 | Ito et al. | Apr 1999 | A |
6015194 | Decker | Jan 2000 | A |
6036285 | Murphy | Mar 2000 | A |
6132016 | Salamat et al. | Oct 2000 | A |
6217131 | Schanzenbach | Apr 2001 | B1 |
6220676 | Rudd, III | Apr 2001 | B1 |
6299262 | Salamat et al. | Oct 2001 | B1 |
6345872 | Salamat et al. | Feb 2002 | B2 |
6435625 | Schwarz et al. | Aug 2002 | B1 |
6496768 | Yamamoto | Dec 2002 | B2 |
6513885 | Salamat et al. | Feb 2003 | B1 |
6527350 | Salamat et al. | Mar 2003 | B2 |
6655755 | Salamat et al. | Dec 2003 | B2 |
6722745 | Salamat et al. | Apr 2004 | B2 |
6820946 | Salamat et al. | Nov 2004 | B2 |
6916075 | Salamat et al. | Jul 2005 | B2 |
6951372 | Salamat et al. | Oct 2005 | B2 |
7128377 | Salamat et al. | Oct 2006 | B2 |
7387349 | Salamat et al. | Jun 2008 | B2 |
20030120413 | Park et al. | Jun 2003 | A1 |
Number | Date | Country |
---|---|---|
57110551 | Jul 1982 | JP |
62174971 | Jul 1987 | JP |
11-255091 | Sep 1999 | JP |
2000344072 | Dec 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20090115248 A1 | May 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09591093 | Jun 2000 | US |
Child | 09887581 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11157384 | Jun 2005 | US |
Child | 12350918 | US | |
Parent | 10803210 | Mar 2004 | US |
Child | 11157384 | US | |
Parent | 10225092 | Aug 2002 | US |
Child | 10803210 | US | |
Parent | 09887581 | Jun 2001 | US |
Child | 10027820 | US | |
Parent | 08850680 | May 1997 | US |
Child | 09591093 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10027820 | Dec 2001 | US |
Child | 10225092 | US |