The present disclosure relates to the field of interactive computer programs; in particular, systems and methods for adaptive configuration of user interfaces and program instances in computerized cognitive training systems.
Computerized cognitive training has emerged as a promising approach toward improving cognition and/or preventing cognitive decline. Computerized cognitive training methods have the benefits of being non-invasive, deliverable in multiple formats, and applicable across a range of participant demographics. Additionally, emerging evidence suggests that targeted cognitive training paradigms can have robust cognitive improvements in specific patient populations. However, the general applicability of computerized cognitive training approaches has been limited by the technical problem of low efficiency and varying degrees of efficacy during the course of a cognitive training regimen.
Prior art solutions have attempted to address the problems associated with efficiency and efficacy of cognitive training methods through various approaches to personalization of computerized cognitive training programs. For example, U.S. Pat. No. 10,559,221 to Martucci et al. provides for a processor-implemented method for enhancing cognitive abilities of a user by personalizing cognitive training regimens through difficulty progression, including performing a cognitive assessment of a user using a set of assessment tasks; estimating a maximal performance of the user related to the set of assessment tasks; determining a performance range based at least in part on the maximal performance of the user; dividing the performance range into a plurality of progress gates, the plurality of progress gates corresponding to a plurality of task difficulty levels; selecting a first progress gate within the performance range; generating a first set of training tasks associated with the first progress gate; and collecting the user's first training responses to the first set of training tasks. Another such prior art solution includes WIPO Pub. No. WO 2009/049404 A1 to Stephane Bergeron, which describes a method and system to optimize cognitive training in single individuals that employs computerized algorithms to tailor a task's difficulty level during its execution to achieve optimal training range for people with widely distributed baselines and/or with fluctuating levels of performance. While such solutions provide teachings and suggestions for personalizing cognitive training through adaptive difficulty of tasks, such solutions fail to suggest meaningful approaches for personalization of computerized cognitive training regimens as a whole.
Other prior art solutions have been proposed for providing adaptive presentation of training tasks/content according to a measured cognitive state of a participant. For example, US Publication No. 20160203726A1 to Hibbs et al. provides for a system and method for improving student learning includes learning material that is presented to a student and a device that is used to acquire physiological data from the student in real time during a learning session. A cognitive assessment algorithm determines a cognitive state of the student using the physiological data, and a learning action algorithm modifies the presentation of the learning material in response to the student's cognitive state. However, such solutions fail to suggest meaningful approaches for predicting participant response within the context of computerized cognitive training regimens.
Certain prior art solutions have been proposed approaches for predicting the efficacy of a course of treatment for a patient. For example, U.S. Pat. No. 8,655,817 to Hasey et al. provides for a medical digital expert system to predict a patient's response to a variety of treatments (using pre-treatment information). The system utilizes data fusion, advanced signal/information processing and machine learning/inference methodologies and technologies to integrate and explore diverse sets of attributes, parameters and information that are available to select the optimal treatment choice for an individual or for a subset of individuals suffering from any illness or disease including psychiatric, mental or neurological disorders and illnesses. The methodology and system can also be used to determine or confirm medical diagnosis, estimate the level, index, severity or critical medical parameters of the illness or condition, or provide a list of likely diagnoses for an individual suffering/experiencing any illness, disorder or condition. However, such solutions fail to suggest meaningful approaches for adaptive personalization of treatment regimens to optimize treatment efficacy through predictive modification of therapeutic interactions.
Through applied effort, ingenuity, and innovation, Applicant has identified deficiencies of prior art solutions and has developed a solution that is embodied by the present disclosure, which is described in detail below.
In order to provide a basic understanding of the invention, the following is a simplified summary of certain embodiments thereof. This summary is not extensive and is not intended to identify key/critical elements of the invention or to delineate the scope of the invention. Its sole purpose is to present embodiments of the invention in a simplified form as a prelude to the more detailed description that is further below.
Certain aspects of the present disclosure provide for a method for configuring a user interface within a computerized cognitive training regimen, comprising: presenting, with a processor communicably engaged with a computing device, one or more instances of the cognitive training regimen to a user, the cognitive training regimen comprising one or more computerized cognitive training tasks presented via a graphical user interface, wherein the one or more computerized cognitive training tasks are configured to target one or more cognitive abilities of the user; receiving, with the processor via the computing device, a plurality of user input data in response to the one or more computerized cognitive training tasks, wherein the plurality of user input data comprises cohort data corresponding to the one or more instances of the cognitive training regimen; processing, with the processor, the plurality of user input data according to a cognitive assessment model to determine a quantified measure of the one or more cognitive abilities of the user for each instance in the one or more instances of the cognitive training regimen, wherein the cognitive assessment model comprises a hierarchical statistical model; processing, with the processor, the plurality of user input data according to the cognitive assessment model to determine a predicted measure of efficacy for each instance in the one or more instances of the cognitive training regimen, wherein the predicted measure of efficacy comprises a posterior probability distribution in the hierarchical statistical model; configuring, with the processor, one or more subsequent instances of the cognitive training regimen according to the cognitive assessment model, wherein configuring the one or more subsequent instances comprises configuring or modifying the one or more computerized cognitive training tasks according to the predicted measure of efficacy, wherein the predicted measure of efficacy comprises an expected measure of improvement in the one or more cognitive abilities of the user; and presenting, with the processor via the computing device, the one or more subsequent instances of the cognitive training regimen to the user, wherein the graphical user interface for each subsequent instance in the one or more subsequent instances of the cognitive training regimen is configured to present the one or more computerized cognitive training tasks according to the predicted measure of efficacy.
In accordance with certain aspects of the present disclosure, the method for configuring a user interface within a computerized cognitive training regimen may further comprise estimating, with the processor, an incremental measure of improvement in the one or more cognitive abilities of the user in response to presenting each subsequent instance in the one or more subsequent instances of the cognitive training regimen. In certain embodiments, the method may further comprise determining, with the processor, a target measure of the one or more cognitive abilities of the user according to the cognitive assessment model, wherein the target measure comprises an asymptotic maximum or marginal output value for the incremental measure of improvement in the one or more cognitive abilities of the user. In certain embodiments, the method may further comprise receiving, with the processor via the computing device, a subsequent plurality of user input data in response to the one or more subsequent instances of the cognitive training regimen. In certain embodiments, the method may further comprise processing, with the processor, the subsequent plurality of user input data according to the cognitive assessment model to determine an actual measure of improvement in the one or more cognitive abilities of the user. In certain embodiments, the method may further comprise processing, with the processor, the subsequent plurality of user input data according to the cognitive assessment model to determine an updated predicted measure of efficacy for the one or more computerized cognitive training tasks and/or for the one or more subsequent instances of the cognitive training regimen. In certain embodiments, the method may further comprise configuring, with the processor, the one or more subsequent instances of the cognitive training regimen according to the updated predicted measure of efficacy for each instance in the one or more instances of the cognitive training regimen.
In accordance with further aspects of the method for configuring a user interface within a computerized cognitive training regimen, the predicted measure of efficacy may comprise an argmax for each instance in the one or more instances of the cognitive training regimen according to the cognitive assessment model. In accordance with further aspects of the method for configuring the one or more subsequent instances of the cognitive training regimen according to the updated predicted measure of efficacy. In certain embodiments, the method may further comprise configuring, with the processor, the one or more subsequent instances of the cognitive training regimen according to the argmax for each instance in the one or more instances of the cognitive training regimen.
Further aspects of the present disclosure provide for a system for configuring a user interface within a computerized cognitive training regimen, comprising a processor; and a non-transitory computer readable storage medium communicably engaged with the processor and encoded with processor-executable instructions that, when executed, cause the processor to perform one or more operations comprising presenting one or more instances of the cognitive training regimen, wherein each instance in the one or more instances comprises a graphical user interface configured to present one or more computerized cognitive training tasks comprising one or more computerized stimuli or interactions configured to prompt a targeted response from a user within a specified response window; receiving a plurality of user input data in response to the one or more computerized cognitive training tasks, wherein the plurality of user input data comprises cohort data corresponding to the one or more instances of the cognitive training regimen; processing the plurality of user input data according to a cognitive assessment model to determine a quantified measure of one or more cognitive abilities of the user for each instance in the one or more instances of the cognitive training regimen, wherein the cognitive assessment model comprises a hierarchical statistical model; processing the plurality of user input data according to the cognitive assessment model to determine a predicted measure of efficacy for the cognitive training regimen, wherein the predicted measure of efficacy comprises a posterior probability distribution in the hierarchical statistical model; configuring one or more subsequent instances of the cognitive training regimen according to the cognitive assessment model, wherein configuring the one or more subsequent instances comprises configuring or modifying the one or more computerized cognitive training tasks according to the predicted measure of efficacy, wherein the predicted measure of efficacy comprises an expected measure of improvement in the one or more cognitive abilities of the user; and presenting the one or more subsequent instances of the cognitive training regimen to the user, wherein the graphical user interface for each subsequent instance in the one or more subsequent instances of the cognitive training regimen is configured to present the one or more computerized cognitive training tasks according to the predicted measure of efficacy.
In accordance with certain aspects of the present disclosure, the one or more operations of the processor may further comprise estimating an incremental measure of improvement in the one or more cognitive abilities of the user in response to presenting each subsequent instance in the one or more subsequent instances of the cognitive training regimen. In certain embodiments, the one or more operations of the processor may further comprise determining a target measure of the one or more cognitive abilities of the user according to the cognitive assessment model, wherein the target measure comprises an asymptotic maximum or marginal output value for the incremental measure of improvement in the one or more cognitive abilities of the user. In certain embodiments, the one or more operations of the processor may further comprise receiving a subsequent plurality of user input data in response to the one or more subsequent instances of the cognitive training regimen. In certain embodiments, the one or more operations of the processor may further comprise processing the subsequent plurality of user input data according to the cognitive assessment model to determine an actual measure of improvement in the one or more cognitive abilities of the user. In certain embodiments, the one or more operations of the processor may further comprise processing the subsequent plurality of user input data according to the cognitive assessment model to determine an updated predicted measure of efficacy for the one or more computerized cognitive training tasks. In certain embodiments, the one or more operations of the processor may further comprise configuring the one or more subsequent instances of the cognitive training regimen according to the updated predicted measure of efficacy for each instance in the one or more instances of the cognitive training regimen. In certain embodiments, the one or more operations of the processor may further comprise calculating an argmax for each instance in the one or more instances of the cognitive training regimen according to the cognitive assessment model. In certain embodiments, the one or more operations of the processor may further comprise configuring the one or more subsequent instances of the cognitive training regimen according to the argmax for each instance in the one or more instances of the cognitive training regimen. In certain embodiments, the one or more operations of the processor may further comprise modifying or configuring one or more interface elements of the graphical user interface according to the argmax, wherein the one or more interface elements comprise at least one interface element for the one or more computerized cognitive training tasks.
Still further aspects of the present disclosure provide for a non-transitory computer-readable medium encoded with instructions for commanding one or more processors to execute operations for configuring a user interface within a computerized cognitive training regimen, the operations comprising presenting one or more instances of the cognitive training regimen, wherein each instance in the one or more instances comprises a graphical user interface configured to present one or more computerized cognitive training tasks comprising one or more computerized stimuli or interactions configured to prompt a targeted response from a user within a specified response window; receiving a plurality of user input data in response to the one or more computerized cognitive training tasks, wherein the plurality of user input data comprises cohort data corresponding to the one or more instances of the cognitive training regimen; processing the plurality of user input data according to a cognitive assessment model to determine a quantified measure of one or more cognitive abilities of the user for each instance in the one or more instances of the cognitive training regimen, wherein the cognitive assessment model comprises a hierarchical statistical model; processing the plurality of user input data according to the cognitive assessment model to determine a predicted measure of efficacy for the cognitive training regimen, wherein the predicted measure of efficacy comprises a posterior probability distribution in the hierarchical statistical model; configuring one or more subsequent instances of the cognitive training regimen according to the cognitive assessment model, wherein configuring the one or more subsequent instances comprises configuring or modifying the one or more computerized cognitive training tasks according to the predicted measure of efficacy, wherein the predicted measure of efficacy comprises an expected measure of improvement in the one or more cognitive abilities of the user; and presenting the one or more subsequent instances of the cognitive training regimen to the user, wherein the graphical user interface for each subsequent instance in the one or more subsequent instances of the cognitive training regimen is configured to present the one or more computerized cognitive training tasks according to the predicted measure of efficacy.
The foregoing has outlined rather broadly the more pertinent and important features of the present invention so that the detailed description of the invention that follows may be better understood and so that the present contribution to the art can be more fully appreciated. Additional features of the invention will be described hereinafter which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and the disclosed specific methods and structures may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should be recognized by those skilled in the art that such equivalent structures do not depart from the spirit and scope of the invention.
The skilled artisan will understand that the figures, described herein, are for illustration purposes only. It is to be understood that in some instances various aspects of the described implementations may be shown exaggerated or enlarged to facilitate an understanding of the described implementations. In the drawings, like reference characters generally refer to like features, functionally similar and/or structurally similar elements throughout the various drawings. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the teachings. The drawings are not intended to limit the scope of the present teachings in any way. The system and method may be better understood from the following illustrative description with reference to the following drawings in which:
It should be appreciated that all combinations of the concepts discussed in greater detail below (provided such concepts are not mutually inconsistent) are contemplated as being part of the inventive subject matter disclosed herein. It also should be appreciated that terminology explicitly employed herein that also may appear in any disclosure incorporated by reference should be accorded a meaning most consistent with the particular concepts disclosed herein.
Following below are more detailed descriptions of various concepts related to, and embodiments of, inventive methods, devices, systems and computer platform products for analyzing user activity data from one or more sessions of a computerized cognitive training program according to a cognitive assessment model to quantify a relative value to a user in performing computerized cognitive training on each of a set of training tasks and predict a future expected efficacy within a computerized cognitive training program.
It should be appreciated that various concepts introduced above and discussed in greater detail below may be implemented in any of numerous ways, as the disclosed concepts are not limited to any particular manner of implementation. Examples of specific implementations and applications are provided primarily for illustrative purposes. The present disclosure should in no way be limited to the exemplary implementation and techniques illustrated in the drawings and described below.
Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range is encompassed by the invention. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges, and are also encompassed by the invention, subject to any specifically excluded limit in a stated range. Where a stated range includes one or both of the endpoint limits, ranges excluding either or both of those included endpoints are also included in the scope of the invention.
As used herein, “exemplary” means serving as an example or illustration and does not necessarily denote ideal or best.
As used herein, the term “includes” means includes but is not limited to, the term “including” means including but not limited to. The term “based on” means based at least in part on.
As used herein, the term “stimulus,” refers to a sensory event configured to evoke a specified functional response from an individual. The degree and type of response can be quantified based on the individual's interactions with a measuring component (including using sensor devices or other measuring components).
As used in certain examples herein, the term “user activity data” refers to data collected from measures of an interaction of a user with a software program, product and/or platform.
As used herein, the term “computerized stimuli or interaction” or “CSI” refers to a computerized element that is presented to a user to facilitate the user's interaction with a stimulus or other interaction. As non-limiting examples, the computing device can be configured to present auditory stimulus (presented, e.g., as an auditory computerized adjustable element or an element of a computerized auditory task) or initiate other auditory-based interaction with the user, and/or to present vibrational stimuli (presented, e.g., as a vibrational computerized adjustable element or an element of a computerized vibrational task) or initiate other vibrational-based interaction with the user, and/or to present tactile stimuli (presented, e.g., as a tactile computerized adjustable element or an element of a computerized tactile task) or initiate other tactile-based interaction with the user, and/or to present visual stimuli or initiate other visual-based interaction with the user.
In an example where the computing device is configured to present visual CSI, the CSI can be rendered as at least one user interface to be presented to a user. In some examples, the at least one user interface is configured for measuring responses as the user interacts with a CSI computerized element rendered at the at least one user interface. In a non-limiting example, the user interface can be configured such that the CSI computerized element(s) are active, and may require at least one response from a user, such that the user interface is configured to measure data indicative of the type or degree of interaction of the user with the platform product. In another example, the user interface can be configured such that the CSI computerized element(s) are a passive and are presented to the user using the at least one user interface but may not require a response from the user. In this example, the at least one user interface can be configured to exclude the recorded response of an interaction of the user, to apply a weighting factor to the data indicative of the response (e.g., to weight the response to lower or higher values), or to measure data indicative of the response of the user with the platform product as a measure of a misdirected response of the user (e.g., to issue a notification or other feedback to the user of the misdirected response).
As used in certain examples herein, the term “user” means an individual participating in a computerized cognitive training regimen and/or an individual interacting with an instance of a computerized cognitive assessment or computerized cognitive training program.
As used herein the terms “digital health intervention (DHI)” and “software as a medical device (SaMD)” may be used interchangeably and encompass any software program, product, or platform, including any software/hardware combination, being designed and/or utilized for any general or targeted medical or personal wellness purpose, including but not limited to the treatment, diagnosis, management, prevention, cure, or generation or provision of clinical, health, and/or wellness insights or recommendations to one or more users for one or more medial, health or personal wellness purpose; including any software program, product, or platform, including any software/hardware combination, being designed and/or utilized to promote healthy behaviors, improve outcomes in people with long term conditions such as cardiovascular disease, diabetes and mental health conditions and provide remote access to effective treatments; for example, computerized cognitive behavioral therapy for mental health and somatic problems; and may further encompass one or more software program, product or platform, including any product(s), program(s) and/or platform(s) that incorporate any combination of hardware and software, that is/are directly therapeutically active in treating and/or targeting one or more neurological circuits related to one or more neurological, psychological and/or somatic conditions, diseases, and/or disorders, rather than just being a component of overall treatment.
The term “task” refers to a goal and/or objective to be accomplished by an individual who provides a response to a particular stimulus. For example, the individual would have been instructed to perform a specific goal. The “task” can serve as the baseline cognitive function that is being performed and measured, and to which interference is added. Thus, a “task” often refers to the main goal that an individual is instructed to perform in either the presence or absence of interference.
All definitions, as defined and used herein, should be understood to control over dictionary definitions, definitions in documents incorporated by reference, and/or ordinary meanings of the defined terms. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present invention, exemplary methods and materials are now described. All publications mentioned herein are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited.
An exemplary system, method, and computer platform product according to the principles herein provides for an adaptive cognitive training platform configured to quantify the relative value to a user of performing additional cognitive training on each of a set of training tasks on-the-fly by predicting the future expected efficacy of such tasks according to one or more cognitive assessment model. In accordance with various aspects of the present disclosure, an adaptive cognitive training platform is configured to process user activity data from one or more instances of a computerized cognitive training program according to the cognitive assessment model to determine a baseline cognitive assessment for one or more cognitive abilities of a user. The cognitive assessment model may be configured to further process the user activity data to predict a relative value or measure of efficacy for one or more computerized stimuli or interactions within the computerized cognitive training program. In accordance with various aspects of the present disclosure, an adaptive cognitive training platform is configured to configure, modify and/or present one or more interface elements of a graphical user interface for one or more subsequent instances of the computerized cognitive training program according to the predicted relative value or measure of efficacy for the one or more computerized stimuli or interactions.
An exemplary system, method, and computer platform product according to the principles herein provides for an adaptive cognitive training platform configured to process user activity data from one or more instances of a computerized cognitive training program according to the cognitive assessment model to determine and/or predict one or more of (1) a baseline cognitive assessment for one or more cognitive abilities of a user, (2) a relative value or measure of efficacy for one or more computerized stimuli or interactions within the computerized cognitive training program, and (3) a personalized cognitive training regimen for the computerized cognitive training program.
Certain aspects of the present disclosure provide for a method, system and computer platform product for analyzing user activity data according within a computerized cognitive training program according to a cognitive assessment model. According to various aspects of the present disclosure, the cognitive assessment model may be configured to predict a measure of efficacy in improving one or more cognitive abilities of a user across one or more instances of the computerized cognitive training program. According to various aspects of the present disclosure, the cognitive assessment model may be configured to predict the relative value of presenting one or more tasks to the user across one or more instances of the computerized cognitive training program. In certain embodiments, the cognitive assessment model may comprise a hierarchical statistical model comprising a Bayesian hierarchical model.
Turning now descriptively to the drawings, in which similar reference characters denote similar elements throughout the several views,
Referring now to
In use, the processing system 100 is adapted to allow data or information to be stored in and/or retrieved from, via wired or wireless communication means, at least one database 116. The interface 112 may allow wired and/or wireless communication between the processing unit 102 and peripheral components that may serve a specialized purpose. In general, the processor 102 can receive instructions as input data 118 via input device 106 and can display processed results or other output to a user by utilizing output device 108. More than one input device 106 and/or output device 108 can be provided. It should be appreciated that the processing system 100 may be any form of terminal, server, specialized hardware, or the like.
It is to be appreciated that the processing system 100 may be a part of a networked communications system. Processing system 100 could connect to a network, for example the Internet or a WAN. Input data 118 and output data 120 could be communicated to other devices via the network. The transfer of information and/or data over the network can be achieved using wired communications means or wireless communications means. A server can facilitate the transfer of data between the network and one or more databases. A server and one or more databases provide an example of an information source.
Thus, the processing computing system environment 100 illustrated in
It is to be further appreciated that the logical connections depicted in
In the description that follows, certain embodiments may be described with reference to acts and symbolic representations of operations that are performed by one or more computing devices, such as the computing system 100 of
Embodiments of the present invention can be implemented with numerous other general-purpose or special-purpose computing devices, systems or configurations. Examples of well-known computing systems, environments, and configurations suitable for use in embodiment of the invention include, personal computers, handheld or laptop devices, personal digital assistants, multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics, network, minicomputers, server computers, game server computers, web server computers, mainframe computers, and distributed computing environments that include any of the above systems or devices.
Various embodiments of the invention will be described herein in a general context of computer-executable instructions, such as program modules, being executed by a computer. Generally, program modules include routines, programs, objects, components, data structures, and the like, that perform particular tasks or implement particular abstract data types. In certain embodiments, distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network may also be employed. In distributed computing environments, program modules may be located in both local and remote computer storage media including memory storage devices.
With the general computing system environment 100 of
Referring now to
In some embodiments, cognitive training engine 206 may be communicably engaged with application database 204 to communicate data thereto and receive data therefrom. Cognitive training engine 206 may comprise a plurality of instructions for execution by a processor of cognitive training application server 202 to command one or more data processing operations for one or more computerized stimuli or interactions or tasks within a computerized cognitive training application 216. In certain embodiments, cognitive training engine 206 may comprise one or more data processing algorithms and/or other encapsulated software functionality configured to control one or more functions, graphical elements or parameters of one or more cognitive training tasks according to one or more clinically validated stimulus-response patterns. For example, cognitive training engine 206 may comprise one or more algorithm configured to render one or more graphical user interface elements and process user-generated inputs for one or more CSIs and/or tasks according to one or more clinically validated stimulus-response patterns designed to target neural systems involved in attentional control, including focus, interference processing and multitasking (fronto-parietal areas of the brain); attention, impulsivity, working memory, and goal management (fronto-parieto-cerebellar areas of the brain); spatial navigation, memory, and planning and organization (extended hippocampal system in the brain). In accordance with various embodiments, cognitive training engine 206 may comprise an encapsulated block of functionality configured to drive one or more user-prompts, response-deadlines procedures, task difficulty level and/or graphical elements of one or more CSIs or tasks within computerized cognitive training application 216. In accordance with various aspects of the present disclosure, computerized cognitive training application 216 may comprise two or more distinct cognitive training engines 206 associated with different clinically validated stimulus-response patterns designed to target different target neural systems. In accordance with said embodiments, computerized cognitive training application 216 may comprise a multi-engine cognitive training program configured to render/present two or more types of CSIs or tasks designed to target different neural systems of user 222. In accordance with said embodiments, computerized cognitive training application 216 may be configured to render/present two or more types of CSIs via client-side instance of cognitive training application 216′ and receive, in response thereto, a plurality of user-generated inputs from user 222 via user device 218. Cognitive training application 216′ may comprise one or more protocols for communicating the plurality of user-generated input data to cognitive training application server 202. Cognitive training application server 202 may be configured to store the plurality of user-generated input data in application database 204 for each session instance of cognitive training application 216′.
In accordance with certain aspects of the present disclosure, adaptive cognitive assessment and training system 200 may further comprise an adaptive cognitive assessment engine 210 executing on cognitive assessment server 208. Adaptive cognitive assessment engine 210 may comprise one or more instructions for commanding a processor of cognitive assessment server 208 to perform one or more operations of a cognitive assessment model. The cognitive assessment model may be configured to process the user-generated input data to determine a quantified measure of cognitive skills for user 222 based on performance on one or more cognitive training tasks presented within session instance of cognitive training application 216′. In certain embodiments, the cognitive assessment model may be configured as a hierarchical statistical model; for example, a Bayesian hierarchical model comprising multiple levels (hierarchical form) that estimates the parameters of the posterior distribution using the Bayesian method. In certain embodiments, the one or more operations may comprise operations for processing a plurality of user input data to determine a quantified measure of one or more cognitive abilities of user 222. In certain embodiments, the one or more operations may comprise operations for processing the plurality of user input data according to the cognitive assessment model to determine a predicted measure of efficacy for the computerized cognitive training regimen, wherein the predicted measure of efficacy comprises a posterior probability distribution in the hierarchical statistical model; for example, as described in more detail in
Referring now to
As shown in
As shown in
Referring now to
As shown in
In accordance with certain aspects of the present disclosure, the adaptive cognitive assessment and training system may be configured to continuously monitor user performance data across one or more instances of the computerized cognitive training program and/or across one or more computerized cognitive assessments. In certain embodiments, the adaptive cognitive assessment and training system may continuously monitor user performance data across one or more individual users, one or more user cohorts, one or more user groups (as defined by one or more relationships between user data and model variable), and/or all users in an application database (e.g., application database 204 of
Referring now to
Referring now to
Referring now to
In accordance with certain embodiments, routine 800 may be initiated to adaptively/dynamically configure one or more computerized cognitive training tasks by executing one or more operations to initialize one or more cognitive assessment models with group priors (Step 802). In accordance with certain aspects of the disclosure, a cognitive assessment model may comprise the cognitive assessment model as described in
T=argmax(T1vbv,T2v, . . . )
where
Tnv=(Tnx+1−Tnx)/Tnsd pooled
Step 810 may additionally comprise one or more steps or operations for selection or configuring one or more graphical user interface elements, task difficulty level, cognitive engine (or combination of cognitive engines), and/or response-deadline procedure for the one or more therapeutically active CSIs/cognitive training tasks having the highest cognitive training value to the user of the computerized cognitive training program. Routine 800 may proceed further by executing one or more operations for configuring a subsequent instance of the computerized cognitive training program to render/present the modified/configured CSIs and/or cognitive training tasks having the highest expected value to the user of the computerized cognitive training program, based on the output of Step 810, within a successive session of the computerized cognitive training regimen (Step 812). In certain embodiments, routine 800 may proceed by executing one or more operations for determining whether the user performance data is reflective of a target cognitive performance level, and/or satisfies one or more stopping criteria, for the user within the computerized cognitive training regimen (Step 814). Step 814 may further comprise one or more steps or operations for ending a session of the computerized cognitive training program and/or terminating the computerized cognitive training regimen in response to determining the user has reached the target cognitive performance level and/or satisfied the one or more stopping criteria for the computerized cognitive training regimen. In certain embodiments, routine 800 may be configured to continuously execute Steps 804-812 across successive instances/sessions of the computerized cognitive training program until the output of Step 814 is indicative of the user having reached the target cognitive performance level and/or satisfied the one or more stopping criteria.
Referring now to
In certain embodiments, user interface screen 902 may be configured to render/present a first type of computerized task (e.g., a visuo-motor tracking task/navigation task) to assess user proficiency in a first cognitive skill/domain (e.g., focus) and user interface screen 904 may be configured to render/present a second type of computerized task (e.g., target discrimination) to assess user proficiency in a second cognitive skill/domain (e.g., attention). Computerized cognitive assessment 900 may be configured to continuously receive and process user-generated inputs comprising user responses to the cognitive tasks presented in user interface screen 902 and user interface screen 904. In various embodiments, computerized cognitive assessment 900 is configured to present the cognitive tasks to the user via user interface screen 902 and user interface screen 904 until sufficient user response data has been collected to perform a baseline cognitive assessment of the user's proficiency in the first cognitive skill/domain and the second cognitive skill/domain. Computerized cognitive assessment 900 may be configured to determine whether sufficient user response data has been received according to one or more static assessment criteria (e.g., task duration or number of user responses received) and/or adaptive procedures (e.g., task duration during which the user was applying effortful engagement or number of user responses received which conform to a designated stimulus-response pattern). In accordance with various aspects of the present disclosure, computerized cognitive assessment 900 may be configured to determine whether sufficient user response data has been received according to a cognitive assessment model. Upon determining that sufficient user response data has been received, and/or reaching some other stopping criteria, computerized cognitive assessment 900 may be configured to render/present user interface screen 906 at the graphical user interface to indicate that a session for computerized cognitive assessment 900 has ended.
Referring now to
In accordance with certain aspects of the present disclosure, the adaptive cognitive assessment and training system may be configured to initialize an instance of computerized cognitive training program 1000 comprising a training session for the user. Computerized cognitive training program 1000 may be configured to render user interface screen 1002 to display a current performance/progress level of the user for the computerized cognitive training regimen. The adaptive cognitive assessment and training system may be further configured to compute efficacy predictions for the cognitive training tasks based on the output from the cognitive assessment model to determine the task(s) having the highest expected value to the user (i.e., task(s) with the greatest expected impact on the user's cognitive skills). Computerized cognitive training program 1000 may be configured to render user interface screen 1004 comprising an instance of a training session in which one or more CSIs and/or graphical elements for the cognitive training tasks are modified and/or configured according to the efficacy predictions. In accordance with various embodiments, computerized cognitive training program 1000 may collect user performance data comprising user-generated inputs received in response to the cognitive training tasks presented/rendered during the training session comprising user interface screen 1004. In accordance with various aspects of the present disclosure, computerized cognitive training program 1000 is configured to process the user performance data to determine an updated performance level for the user and render/present a quantified graphical representation of the updated performance level via user interface screen 1006. In accordance with certain embodiments, the adaptive cognitive assessment and training system may be further configured to process the user performance data according to the cognitive assessment model (e.g., the cognitive assessment model as described in
Referring now to
Referring now to
As will be appreciated by one of skill in the art, the present invention may be embodied as a method (including, for example, a computer-implemented process, a business process, and/or any other process), apparatus (including, for example, a system, machine, device, computer program product, and/or the like), or a combination of the foregoing. Accordingly, embodiments of the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, and the like), or an embodiment combining software and hardware aspects that may generally be referred to herein as a “system.” Furthermore, embodiments of the present invention may take the form of a computer program product on a computer-readable medium having computer-executable program code embodied in the medium.
Any suitable transitory or non-transitory computer readable medium may be utilized. The computer readable medium may be, for example but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device. More specific examples of the computer readable medium include, but are not limited to, the following: an electrical connection having one or more wires; a tangible storage medium such as a portable computer diskette, a hard disk, a random-access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), a compact disc read-only memory (CD-ROM), or other optical or magnetic storage device.
In the context of this document, a computer readable medium may be any medium that can contain, store, communicate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device. The computer usable program code may be transmitted using any appropriate medium, including but not limited to the Internet, wireline, optical fiber cable, radio frequency (RF) signals, or other mediums.
Computer-executable program code for carrying out operations of embodiments of the present invention may be written in an object oriented, scripted or unscripted programming language such as Java, Perl, Smalltalk, C++, or the like. However, the computer program code for carrying out operations of embodiments of the present invention may also be written in conventional procedural programming languages, such as the “C” programming language or similar programming languages.
Embodiments of the present invention are described above with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products. It will be understood that each block of the flowchart illustrations and/or block diagrams, and/or combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer-executable program code portions. These computer-executable program code portions may be provided to a processor of a general-purpose computer, special purpose computer, or other programmable data processing apparatus to produce a particular machine, such that the code portions, which execute via the processor of the computer or other programmable data processing apparatus, create mechanisms for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
These computer-executable program code portions (i.e., computer-executable instructions) may also be stored in a computer-readable memory that can direct a computer or other programmable data processing apparatus to function in a particular manner, such that the code portions stored in the computer readable memory produce an article of manufacture including instruction mechanisms which implement the function/act specified in the flowchart and/or block diagram block(s). Computer-executable instructions may be in many forms, such as program modules, executed by one or more computers or other devices. Generally, program modules include routines, programs, objects, components, data structures, and the like that perform particular tasks or implement particular abstract data types. Typically, the functionality of the program modules may be combined or distributed as desired in various embodiments.
The computer-executable program code may also be loaded onto a computer or other programmable data processing apparatus to cause a series of operational phases to be performed on the computer or other programmable apparatus to produce a computer-implemented process such that the code portions which execute on the computer or other programmable apparatus provide phases for implementing the functions/acts specified in the flowchart and/or block diagram block(s). Alternatively, computer program implemented phases or acts may be combined with operator or human implemented phases or acts in order to carry out an embodiment of the invention.
As the phrases are used herein, a processor may be “operable to” or “configured to” perform a certain function in a variety of ways, including, for example, by having one or more general-purpose circuits perform the function by executing particular computer-executable program code embodied in computer-readable medium, and/or by having one or more application-specific circuits perform the function.
The terms “program” or “software” are used herein in a generic sense to refer to any type of computer code or set of computer-executable instructions that can be employed to program a computer or other processor to implement various aspects of the present technology as discussed above. Additionally, it should be appreciated that according to one aspect of this embodiment, one or more computer programs that when executed perform methods of the present technology need not reside on a single computer or processor, but may be distributed in a modular fashion amongst a number of different computers or processors to implement various aspects of the present technology.
All definitions, as defined and used herein, should be understood to control over dictionary definitions, definitions in documents incorporated by reference, and/or ordinary meanings of the defined terms.
The indefinite articles “a” and “an,” as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean “at least one.” As used herein, the terms “right,” “left,” “top,” “bottom,” “upper,” “lower,” “inner” and “outer” designate directions in the drawings to which reference is made.
The phrase “and/or,” as used herein in the specification and in the claims, should be understood to mean “either or both” of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases. Multiple elements listed with “and/or” should be construed in the same fashion, i.e., “one or more” of the elements so conjoined. Other elements may optionally be present other than the elements specifically identified by the “and/or” clause, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, a reference to “A and/or B”, when used in conjunction with open-ended language such as “comprising” can refer, in one embodiment, to A only (optionally including elements other than B); in another embodiment, to B only (optionally including elements other than A); in yet another embodiment, to both A and B (optionally including other elements); and the like
As used herein in the specification and in the claims, “or” should be understood to have the same meaning as “and/or” as defined above. For example, when separating items in a list, “or” or “and/or” shall be interpreted as being inclusive, i.e., the inclusion of at least one, but also including more than one, of a number or list of elements, and, optionally, additional unlisted items. Only terms clearly indicated to the contrary, such as “only one of” or “exactly one of,” or, when used in the claims, “consisting of,” will refer to the inclusion of exactly one element of a number or list of elements. In general, the term “or” as used herein shall only be interpreted as indicating exclusive alternatives (i.e. “one or the other but not both”) when preceded by terms of exclusivity, such as “either,” “one of,” “only one of,” or “exactly one of.” “Consisting essentially of” when used in the claims, shall have its ordinary meaning as used in the field of patent law.
As used herein in the specification and in the claims, the phrase “at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements. This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase “at least one” refers, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, “at least one of A and B” (or, equivalently, “at least one of A or B,” or, equivalently “at least one of A and/or B”) can refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including elements other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including elements other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other elements); and the like
In the claims, as well as in the specification above, all transitional phrases such as “comprising,” “including,” “carrying,” “having,” “containing,” “involving,” “holding,” “composed of,” and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases “consisting of” and “consisting essentially of” shall be closed or semi-closed transitional phrases, respectively, as set forth in the United States Patent Office Manual of Patent Examining Procedures, Section 2111.03.
The present disclosure includes that contained in the appended claims as well as that of the foregoing description. Although this invention has been described in its exemplary forms with a certain degree of particularity, it is understood that the present disclosure of has been made only by way of example and numerous changes in the details of construction and combination and arrangement of parts may be employed without departing from the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
6678692 | Hyatt | Jan 2004 | B1 |
7389288 | Chickering et al. | Jun 2008 | B2 |
8538778 | Neville | Sep 2013 | B2 |
9558452 | Guiver et al. | Jan 2017 | B2 |
9672193 | Macaro et al. | Jun 2017 | B2 |
10853520 | Wille | Dec 2020 | B2 |
10874355 | Vaughan et al. | Dec 2020 | B2 |
20030129574 | Ferriol et al. | Jul 2003 | A1 |
20100204920 | Dranitsaris et al. | Aug 2010 | A1 |
20140227670 | Sternberg et al. | Aug 2014 | A1 |
20140279746 | De Bruin et al. | Sep 2014 | A1 |
20180286272 | McDermott et al. | Oct 2018 | A1 |
20200008725 | Bach | Jan 2020 | A1 |
20200380882 | Alailima et al. | Dec 2020 | A1 |
20200402643 | Trees et al. | Dec 2020 | A1 |
20210161430 | Mirelman et al. | Jun 2021 | A1 |
Number | Date | Country |
---|---|---|
2008109508 | Sep 2008 | WO |
2015179522 | Nov 2015 | WO |
WO-2016145372 | Sep 2016 | WO |
2018039610 | Mar 2018 | WO |
2018081134 | May 2018 | WO |
2018132483 | Jul 2018 | WO |
2018148365 | Aug 2018 | WO |
2020081609 | Apr 2020 | WO |
2020223033 | Nov 2020 | WO |
Entry |
---|
Carelli, Laura, et al. “Brain-computer interface for clinical purposes: cognitive assessment and rehabilitation.” BioMed research international 2017 (2017). (Year: 2017). |
International Search Report, International application No. PCT/US22/33736. Date of mailing: Sep. 21, 2022. ISA/US, Alexandria, VA. |
Written Opinion of the International Searching Authority, International application No. PCT/US22/33736. Date of mailing: Sep. 21, 2022. ISA/US, Alexandria, VA. |
Number | Date | Country | |
---|---|---|---|
20220406439 A1 | Dec 2022 | US |