This disclosure relates generally to devices that produce ink images on media, and more particularly, to adjustment of the printhead to media gap in such devices.
Inkjet imaging devices eject liquid ink from printheads to form images on an image receiving surface. The printheads include a plurality of inkjets that are arranged in some type of array. Each inkjet has a thermal or piezoelectric actuator that is coupled to a printhead controller. The printhead controller generates firing signals that correspond to digital data for images. Actuators in the printheads respond to the firing signals by expanding into an ink chamber to eject ink drops onto an image receiving member and form an ink image that corresponds to the digital image data used to generate the firing signals. The image receiving member can be a continuous web of media material or a series of media sheets.
A distance between the printheads in the printhead array and the surface of the image receiving member is carefully selected to optimize the imaging process. If the gap is too small, the image receiving member can burnish the face of the printheads. Burnishing not only reduces the life of the printheads, but results in poor image quality, unintentional markings, and increased downtime of the printer during maintenance. If the gap is too large, image quality suffers, particularly in high speed printers, since a large gap can affect the accuracy of the ejected ink drops landing on the image receiving member to form the printed image. Thus, the setting of a gap distance between a printhead and an image receiving member is an important parameter affecting image quality in an inkjet printer. A nominal gap distance between printheads and an image receiving surface for typically used media can be, for example, about 1 mm or less. As used in this document, the term “nominal printhead/media gap distance” means the smallest distance between a printhead and an upper surface of media being printed without causing print job faults arising from media issues.
Some types of media have a tendency to wrinkle when they are printed with high ink coverage areas because the amount of solvent that they absorb from the ejected ink distends the media surface. The threshold for what constitutes a high ink coverage area is lower for thinner media than it is thicker media. Coatings on papers also alter the response of the media to ink absorption. Additionally, the types of ink used for printing affect the amount of solvent absorbed by media. Distended media has an unpredictable effect on printhead face to media gap during a print job.
Previously known printers have included a sheet height sensor that generates a signal when a height of the media exceeds a height for a currently set printhead/media surface gap. The printhead array, the media transport, or both can be repositioned with actuators in response to height sensor signal to maintain a sufficient gap distance so that distended media does not impact the printhead. Adjusting the printhead/media surface gap in response to a real time height sensor signal, however, is extremely difficult in high speed printers. Therefore, being able to evaluate the probability of gap distances occurring during a print job that could have adverse impacts on the printheads and the image quality before a print job commences would be beneficial.
An inkjet printer is configured to evaluate the probability of gap distances occurring during a print job that could have adverse impacts on the printheads and the image quality and to adjust the gap distance between printheads and the ink receiving surface of media being printed to compensate for high probability adverse impacts. The printer includes a database in which records corresponding to previously performed print jobs by the inkjet printer are stored, at least one printhead, a media transport path that is configured to carry media past the at least one printhead for printing ink images on the media, and a controller operatively connected to the database. The controller is configured to: receive print job parameters for a print job to be printed by the inkjet printer, compare the received print job parameters with print job parameters stored in the records of the database, retrieve records from the database that have at least one print job parameter that corresponds to at least one of the received print job parameters, and adjust a gap between at least one printhead and a media transport path in the printer using a printhead/media gap distance stored in the retrieved record.
A method of operating an inkjet printer evaluates the probability of gap distances occurring during a print job that could have adverse impacts on the printheads and the image quality and adjusts the gap distance between printheads and the ink receiving surface of media being printed to compensate for high probability adverse impacts. The method includes receiving print job parameters for a print job with a controller, comparing with the controller the received print job parameters with print job parameters stored in records corresponding to previously performed print jobs that are stored in a database, retrieving records from the database that have at least one print job parameter that corresponds to at least one of the received print job parameters, and adjusting a gap between at least one printhead and a media transport path in the printer using a printhead/media gap distance stored in the retrieved record.
The foregoing aspects and other features of a printer and printer operational method that evaluates the probability of media problems during a print job and adjusts the gap distance between printheads and the ink receiving surface of media being printed to compensate for high probability adverse impacts are explained in the following description, taken in connection with the accompanying drawings.
For a general understanding of the environment for the printer and printer operational method disclosed herein as well as the details for the printer and the printer operational method, reference is made to the drawings. In the drawings, like reference numerals have been used throughout to designate like elements. As used herein, the word “printer” encompasses any apparatus that ejects ink drops onto different types of media to form ink images. The term “process direction” means the direction in which media sheets move past the printheads as the inkjets eject ink onto the sheets and the term “cross-process direction” means an axis that is perpendicular to the process direction in the plane of a media sheet passing the printheads.
The print zone PZ is shown in
As shown in
A duplex path 72 is provided to receive a sheet from the transport system 42 after a substrate has been printed and move it by the rotation of rollers in an opposite direction to the direction of movement past the printheads. At position 76 in the duplex path 72, the substrate is turned over so it can merge into the job stream being carried by the media transport system 42. Movement of pivoting member 88 provides access to the duplex path 72. Rotation of pivoting member 88 is controlled by controller 80 selectively operating an actuator 40 operatively connected to the pivoting member 88. When pivoting member 88 is rotated counterclockwise as shown in
As further shown in
Operation and control of the various subsystems, components and functions of the machine or printer 10 are performed with the aid of a controller or electronic subsystem (ESS) 80. The ESS or controller 80 is operably connected to the components of the printhead modules 34A-34D (and thus the printheads), the actuators 40, and the dryer 30. The ESS or controller 80, for example, is a self-contained, dedicated mini-computer having a central processor unit (CPU) with electronic data storage, and a display or user interface (UI) 50. The ESS or controller 80, for example, includes a sensor input and control circuit as well as a pixel placement and control circuit. In addition, the CPU reads, captures, prepares, and manages the image data flow between image input sources, such as a scanning system or an online or a work station connection (not shown), and the printhead modules 34A-34D. As such, the ESS or controller 80 is the main multi-tasking processor for operating and controlling all of the other machine subsystems and functions, including the printing process.
The controller 80 can be implemented with general or specialized programmable processors that execute programmed instructions. The instructions and data required to perform the programmed functions can be stored in memory associated with the processors or controllers. The processors, their memories, and interface circuitry configure the controllers to perform the operations described below. These components can be provided on a printed circuit card or provided as a circuit in an application specific integrated circuit (ASIC). Each of the circuits can be implemented with a separate processor or multiple circuits can be implemented on the same processor. Alternatively, the circuits can be implemented with discrete components or circuits provided in very large scale integrated (VLSI) circuits. Also, the circuits described herein can be implemented with a combination of processors, ASICs, discrete components, or VLSI circuits.
In operation, image data for an image to be produced are sent to the controller 80 from either a scanning system or an online or work station connection for processing and generation of the printhead control signals output to the printhead modules 34A-34D. Along with the image data, the controller receives print job parameters that identify the media weight, media dimensions, print speed, media type, ink area coverage to be produced on each side of each sheet, location of the image to be produced on each side of each sheet, media color, media fiber orientation for fibrous media, print zone temperature and humidity, media moisture content, and media manufacturer. These print job parameters and the image data, denoted as job content, are shown in
Database 92 (
In addition to print job parameters stored in a record, the controller 80 analyzes the image content data for the current job to determine whether media issues arise from the printing of any of the sheets in the print job. If media issues arise from the image data content, an alternative printhead/media gap distance for those sheets is identified and used to alter the printhead/media gap distance immediately prior to the printing of those sheets. The controller 80 can display a message that the printer is adjusting the printhead/media gap to avoid the likely media issue based on the print job parameters and that the gap will be further adjusted during the print job to attenuate the adverse effects that may be caused by printing some of the pages in the print job. The operator can select an adjustment override option if the operator wants to run the job using the nominal gap distance or the print job parameter media issue alone.
As noted previously with respect to
An alternative embodiment of a carrier plate configured for gap adjustment movement is shown in
The process 700 of operating the printer 10 begins with the controller receiving the parameters for a print job (block 704). The print job parameters are compared to records in database 92 to identify records in the database having a majority of job print parameters that correspond to the print job parameters of the current job (block 708). If no records correspond to the print job parameters, then the printhead/media gap is set to the nominal distance for the printer (712) and the image data content for the print job is evaluated for media issues (716). If pages of the print job are evaluated as presenting media issues (block 720), then printhead/media gap distances are selected for each page having media issues (block 724). If no pages presenting media issues are detected, then the print job is performed (block 728) with either the nominal gap distance alone or nominal gap distance for most of the print job and the selected printhead/media gap distances for the pages having media issues. If corresponding records were identified in the database, then the process determines if more than one record was identified (block 732). If more than one record was identified, then the record having the most print job parameters in common with the current print job is selected (block 736). The printhead/media gap distance stored in the selected record is used to set the printhead/media gap distance (block 740). The process then evaluates each page of the image data content for media issues (block 716) and sets the printhead/media gap distance for those pages presenting media issues (blocks 720 and 724). The print job is performed (block 728) with either the gap distance corresponding to the media issue code alone or the media issue code gap distance for most of the print job and the selected printhead/media gap distances for the pages having media issues. In an alternative embodiment of the process, a message is displayed on user interface 50 making the operator aware that the printer will adjust the printhead/media gap distance to one corresponding to a media issue code or for particular pages in the print job unless the operator overrides it before performing the processing of block 728.
It will be appreciated that variants of the above-disclosed and other features, and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Various presently unforeseen or unanticipated alternatives, modifications, variations, or improvements therein may be subsequently made by those skilled in the art, which are also intended to be encompassed by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
6076909 | Saeki | Jun 2000 | A |
6561606 | Yoshida | May 2003 | B1 |
6721070 | Lee et al. | Apr 2004 | B1 |
8757746 | Wing et al. | Jun 2014 | B2 |
8888212 | MacKenzie et al. | Nov 2014 | B2 |
9248645 | Mandel et al. | Feb 2016 | B1 |
9309074 | Bonino et al. | Apr 2016 | B1 |
9440459 | Fromm et al. | Sep 2016 | B1 |
9527320 | Shelhart et al. | Dec 2016 | B2 |
20170305145 | Kyoso | Oct 2017 | A1 |