The present invention relates to a digital microphone that operates in one of a plurality of power modes based on an input signal.
In certain embodiments, the invention provides an adjustable digital microphone whose operation is adjusted based on a frequency of a clock signal.
In one embodiment, the invention provides an adjustable microphone. The microphone includes a MEMS microphone, a charge pump, a preamplifier, a first analog-to-digital converter, a root mean square (RMS) power detector, and a logic circuit. The MEMS microphone is configured to provide a signal indicative of sound detected by the MEMS microphone. The charge pump provides a bias voltage to the MEMS microphone. The preamplifier receives the signal from the MEMS microphone, and outputs an amplified signal indicative of sound detected by the MEMS microphone. The first analog-to-digital converter receives the amplified signal and converts the amplified signal to a digital signal. The root mean square power detector is configured to detect a power level of the amplified signal and output an indication of the power of the amplified signal. The logic circuit receives the RMS power detector output and a control input, and adjusts the operation of the microphone based on the control input.
Other aspects of the invention will become apparent by consideration of the detailed description and accompanying drawings.
In the embodiment shown in
The microphone 100 can be used in digital microphone platforms (e.g., digital recording devices, cell phones, tablet computers, etc.) to reduce overall power consumption.
The clock 160 can be supplied to the microphone 100 from a “codec” or a processor in the host device (e.g., the tablet computer). It should be understood that the microphone and codec may both be located within the host device. The input clock signal 160 is monitored and the functionality of the microphone is changed based on the detected frequency of the clock 160 as described in
If the clock signal 160 is within a second range (e.g., 1.2-1.8 mHz) (step 230), the logic circuit 130 controls the bias source 115 in a second low power mode (step 235), and continues to monitor the clock signal 160 (step 200). If the clock signal 160 is within a third range (e.g., 2.4-2.8 mHz) (step 240), the logic circuit 130 controls the bias source 115 in a normal power mode (step 245), and continues to monitor the clock signal 160 (step 200). If the clock signal 160 is within a fourth range (e.g., 3.7-4.8 mHz) (step 250), the logic circuit 130 controls the bias source 115 in a high power mode (step 255), and continues to monitor the clock signal 160 (step 200). If the clock signal 160 in not within any of the ranges (step 260), the logic circuit 130 makes no change to the bias and continues to monitor the clock signal 160 (step 200).
In some embodiments, the input signal 370 is a clock signal. The microphone 300 detects the clock frequency and, based on a detected frequency range, adjusts the analog and digital performance of the microphone 300. In other embodiments alternative input signals are used (e.g., the voltage level of VDD).
The microphone 300 can be used in digital microphone platforms (e.g., digital recording devices, cell phones, tablet computers, etc.) to reduce overall power consumption.
The input signal 370 can be supplied to the microphone 300 from a “codec” or a processor in the host device (e.g., the tablet computer). It should be understood that the microphone and codec may both be located within the host device. The input signal 370 is monitored and the functionality of the microphone is changed based on the detected input signal 370. The digital output streams 355 and 360 are processed in the “codec” as before, but since the “codec” is aware of the input signal 370 it supplied to the microphone 300, it can process the data accurately in various modes.
In some embodiments, the first ADC 325 is a high performance, high power ADC, the second ADC 330 is a lower performance, lower power ADC. Based on the input signal 370, the logic circuit 335 uses one of the first and second ADCs 325 and 330. For example, when the input signal 370 indicates the microphone 300 should operate in a low power mode, the logic circuit 335 uses the second ADC 330. Alternatively, when the input signal 370 calls for high performance, the logic circuit 335 uses the first ADC 325. In addition, the logic circuit 335 can also shut down both the first and second ADCs 325 and 330 until activity is detected (e.g., by analog RMS level detection).
In another embodiment, the microphone 300 includes a third ADC (e.g., for an ultrasonic mode).
In some embodiments, the logic circuit 335 changes the gain of the preamp 310 based on the input signal 370 to adjust the power/performance of the microphone 300. In some embodiments, the logic circuit 335 changes the charge pump 315 voltage based on the input signal 370 to adjust the power/performance of the microphone 300.
In some embodiments, the MEMS microphone 305 includes a pair of membranes 400 and 405. The logic circuit 335 can, based on the input signal 370, disable one of the membranes and alter the bias or gain settings for the other of the membrane to adjust the power/performance characteristics of the microphone 300.
In another embodiment, the microphone 300 includes an additional pin that outputs analog data in selected modes.
Thus, the invention provides, among other things, an adjustable digital microphone. Among other potential advantages, by using an input signal from a codec or a processor of the host device to control the microphone, there is no need for a more complicated or additional communication link between the two in order for the codec or processor to control the microphone.
The present patent application claims the benefit of prior filed U.S. Provisional Patent Application Nos. 61/882,125, filed on Sep. 25, 2013, and 62/033,857, filed Aug. 6, 2014, the entire content of each is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
6047073 | Norris | Apr 2000 | A |
8284958 | Suvanto et al. | Oct 2012 | B2 |
20070237343 | Schobben | Oct 2007 | A1 |
20130287231 | Kropfitsch | Oct 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20150086043 A1 | Mar 2015 | US |
Number | Date | Country | |
---|---|---|---|
61882125 | Sep 2013 | US | |
62033857 | Aug 2014 | US |