A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the U.S. Patent and Trademark Office patent files or records, but otherwise reserves all copyright rights whatsoever. The following notice applies to the disclosure herein and to the drawings that form a part of this document: Copyright 2016-2017, TuSimple, All Rights Reserved.
This patent document pertains generally to tools (systems, apparatuses, methodologies, computer program products, etc.) for human driver modeling, trajectory generation and motion planning, vehicle control systems, autonomous driving systems, and autonomous driving simulation systems, and more particularly, but not by way of limitation, to a system and method for aerial video traffic analysis.
The control system of autonomous vehicles can sometimes be configured using a simulated human driver environment. The simulated human driver environment attempts to model the typical driving behavior of human drivers in various driving environments. However, the simulated human driver environment may be built based on the information gathered from the sensors and cameras on the autonomous vehicle or related probe vehicles. Because this information, including images from the vehicle cameras, can be subject to image occlusion and unreliable image reconstruction accuracy, the utility and effectiveness of the simulated human driver environment is degraded. Additionally, the image occlusion problem is further complicated by shadows cast by both the vehicles themselves and overhead objects such as trees, buildings, construction equipment, and the like. Classic color-based methods for shadow detection or removal do not work in this case; because of the diversity of vehicle types and colors. Because of these problems with the image data gathered for configuring the simulated human driver environment, the effectiveness of the control systems of autonomous vehicles based on the degraded simulated human driver environment can be compromised.
A system and method for aerial video traffic analysis is disclosed herein. Aerial video traffic analysis includes the task of extracting traffic information, including the shape, heading, and trajectories of ground vehicles, from aerial videos captured by aerial vehicles (e.g., UAVs) positioned directly above a road surface at a desired geographical location and altitude. Aerial video is an inexpensive way to collect traffic information. Aerial video traffic analysis as disclosed herein can provide important insights into human driving behaviors in real-world traffic environments and conditions. These human driving behavior insights can be used to train a human driving behavior model, which can be used with a simulation environment for configuring autonomous vehicle control systems. In the various example embodiments disclosed herein, solutions are presented for accomplishing aerial video traffic analysis by combining classic and deep computer vision methods with a specially tailored deep learning model. The example embodiments disclosed herein can achieve pixel-level accuracy in most conditions. The example embodiments also solve another challenging problem caused by the diversity of vehicles in typical traffic environments. The example embodiments disclosed herein can recognize all types of vehicles from tiny ones like motorcycles to huge ones like car carrier trailers. The disclosed example embodiments are insensitive to the size of vehicles, making the various embodiments suitable for all types of vehicles.
The various embodiments are illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings in which:
In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the various embodiments. It will be evident, however, to one of ordinary skill in the art that the various embodiments may be practiced without these specific details.
Referring now to
Referring still to
Referring still to
Referring now to
Referring now to
Referring still to
As part of the process for determining the centroid, heading, and rectangular shape of each identified vehicle, the example embodiment first removes noisy points in the segmentation results produced by the vehicle segmentation module 183. Then, the remaining connected pixel components corresponding to each vehicle can be used to represent the shape of the vehicle identified in the image data. The center-of-mass of the connected components corresponding to the vehicle can be used as the centroid of the vehicle. The heading of the vehicle can be determined by solving for the eigenvectors of a centered covariance matrix corresponding to the connected components of the vehicle. As a result, the example embodiment can generate the direction along which the variance of the shape as a distribution is maximized. This direction corresponds to the heading of the vehicle associated with the shape distribution. The rectangular shape of the vehicle is inferred by taking percentiles of the shape projected along and perpendicular to the heading direction. In this manner, geometric information of each vehicle in each video frame can be extracted. Similarly, the centroid, heading, and rectangular shape of each identified vehicle can be determined as described above.
Once the geometric information of each vehicle in each video frame is extracted as described above, vehicle tracking through a collection of image frames over time can be performed (operation block 130, shown in
Referring now to
In the offline training process of an example embodiment, in order to train the neural network of vehicle segmentation module 183 that separates vehicle objects from the background image, the offline training process includes collecting and labeling a training image dataset. In an example embodiment, a UAV is configured with a camera and positioned at a certain location to be monitored at an elevated position to record video of the traffic activity at the location within the UAV's field of vision. Referring to
Referring still to
Referring still to
Referring still to
As described above, a system of an example embodiment can provide aerial video traffic analysis. The example embodiment can include a corresponding method, which can be configured to:
Referring now to
A basic human driver model may be used to simulate or predict the behavior of an autonomous vehicle with a simulated driver in a simulation scenario. The basic human driver model represents a virtual world configured to be identical (as possible) to the real world where vehicles are operated by human drivers. The virtual world can be used to train and improve a control system for an autonomous vehicle. Thus, the simulation can be indirectly useful for configuring the control systems in autonomous vehicles. Such human driver models can be parameterized models, which may be configured using either real-world input or randomized variables. In one example, the basic human driver model may simulate the typical and atypical driver behaviors, such as steering or heading control, speed or throttle control, and stopping or brake control. In one example, the basic human driver model may use, for example, sensory-motor transport delay, dynamic capabilities, and preferred driving behaviors. In some implementations, the human driver model may include modeling of the transport time delay between a stimulus and the simulated driver's control response. In some implementations, this delay may represent the time necessary for the driver to sense a stimulus, process it, determine the best corrective action, and respond. The human driver model may also include a speed control model with an absolute maximum vehicle speed (e.g., the maximum speed of the vehicle, the speed a driver is not comfortable exceeding, etc.) and a cornering aggressiveness measure to reduce the speed based on the turning radius. In the example, this may replicate the tendency of drivers to slow down through a turn. In the example, once the turning radius drops below the cornering threshold in the scenario, the speed may be reduced in proportion to the tightness of the turn.
In various example embodiments, the human driver model can be configured to simulate more than the typical driving behaviors. To simulate an environment that is identical to the real world as much as possible, the human driver model needs data concerning typical driving behaviors, which represent average people, while atypical driving behaviors are equally needed. In other words, in reality, most human drivers drive vehicles in a pleasant and humble way, while other drivers drive aggressively and impatiently. Equivalently, the simulation system of the various example embodiments includes data related to the driving behaviors of impolite and impatient drivers in the virtual world. In all, the human driver model can be configured with data representing driving behaviors as varied as possible.
In some implementations, the dynamics of how a human may respond to stimuli may be included in the human driver model, which may include, for example, a metric of how aggressively the driver brakes and accelerates. In some implementations, an aggressive driver may be modeled as one who applies very high control inputs to achieve the desired vehicle speeds, while a conservative driver may use more gradual control inputs. In some implementations, this may be modelled using parameterized values, with the input being controlled to the desired value. In some implementations, by adjusting the parameterized values, the aggressiveness of the simulated driver may be increased or decreased.
Referring now to
The example computing system 700 can include a data processor 702 (e.g., a System-on-a-Chip (SoC), general processing core, graphics core, and optionally other processing logic) and a memory 704, which can communicate with each other via a bus or other data transfer system 706. The mobile computing and/or communication system 700 may further include various input/output (I/O) devices and/or interfaces 710, such as a touchscreen display, an audio jack, a voice interface, and optionally a network interface 712. In an example embodiment, the network interface 712 can include one or more radio transceivers configured for compatibility with any one or more standard wireless and/or cellular protocols or access technologies (e.g., 2nd (2G), 2.5, 3rd (3G), 4th (4G) generation, and future generation radio access for cellular systems, Global System for Mobile communication (GSM), General Packet Radio Services (GPRS), Enhanced Data GSM Environment (EDGE), Wideband Code Division Multiple Access (WCDMA), LTE, CDMA2000, WLAN, Wireless Router (WR) mesh, and the like). Network interface 712 may also be configured for use with various other wired and/or wireless communication protocols, including TCP/IP, UDP, SIP, SMS, RTP, WAP, CDMA, TDMA, UMTS, UWB, WiFi, WiMax, Bluetooth™, IEEE 802.11x, and the like. In essence, network interface 712 may include or support virtually any wired and/or wireless communication and data processing mechanisms by which information/data may travel between a computing system 700 and another computing or communication system via network 714.
The memory 704 can represent a machine-readable medium on which is stored one or more sets of instructions, software, firmware, or other processing logic (e.g., logic 708) embodying any one or more of the methodologies or functions described and/or claimed herein. The logic 708, or a portion thereof, may also reside, completely or at least partially within the processor 702 during execution thereof by the mobile computing and/or communication system 700. As such, the memory 704 and the processor 702 may also constitute machine-readable media. The logic 708, or a portion thereof, may also be configured as processing logic or logic, at least a portion of which is partially implemented in hardware. The logic 708, or a portion thereof, may further be transmitted or received over a network 714 via the network interface 712. While the machine-readable medium of an example embodiment can be a single medium, the term “machine-readable medium” should be taken to include a single non-transitory medium or multiple non-transitory media (e.g., a centralized or distributed database, and/or associated caches and computing systems) that store the one or more sets of instructions. The term “machine-readable medium” can also be taken to include any non-transitory medium that is capable of storing, encoding or carrying a set of instructions for execution by the machine and that cause the machine to perform any one or more of the methodologies of the various embodiments, or that is capable of storing, encoding or carrying data structures utilized by or associated with such a set of instructions. The term “machine-readable medium” can accordingly be taken to include, but not be limited to, solid-state memories, optical media, and magnetic media.
The Abstract of the Disclosure is provided to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment.
Number | Name | Date | Kind |
---|---|---|---|
6263088 | Crabtree | Jul 2001 | B1 |
6777904 | Degner | Aug 2004 | B1 |
7103460 | Breed | Sep 2006 | B1 |
7689559 | Canright | Mar 2010 | B2 |
7783403 | Breed | Aug 2010 | B2 |
7844595 | Canright | Nov 2010 | B2 |
8041111 | Wilensky | Oct 2011 | B1 |
8064643 | Stein | Nov 2011 | B2 |
8082101 | Stein | Dec 2011 | B2 |
8164628 | Stein | Apr 2012 | B2 |
8175376 | Marchesotti | May 2012 | B2 |
8271871 | Marchesotti | Sep 2012 | B2 |
8378851 | Stein | Feb 2013 | B2 |
8392117 | Dolgov | Mar 2013 | B2 |
8401292 | Park | Mar 2013 | B2 |
8412449 | Trepagnier | Apr 2013 | B2 |
8478072 | Aisaka | Jul 2013 | B2 |
8553088 | Stein | Oct 2013 | B2 |
8788134 | Litkouhi | Jul 2014 | B1 |
8908041 | Stein | Dec 2014 | B2 |
8917169 | Schofield | Dec 2014 | B2 |
8963913 | Baek | Feb 2015 | B2 |
8965621 | Urmson | Feb 2015 | B1 |
8981966 | Stein | Mar 2015 | B2 |
8993951 | Schofield | Mar 2015 | B2 |
9002632 | Emigh | Apr 2015 | B1 |
9008369 | Schofield | Apr 2015 | B2 |
9025880 | Perazzi | May 2015 | B2 |
9042648 | Wang | May 2015 | B2 |
9111444 | Kaganovich | Aug 2015 | B2 |
9117133 | Barnes | Aug 2015 | B2 |
9118816 | Stein | Aug 2015 | B2 |
9120485 | Dolgov | Sep 2015 | B1 |
9122954 | Srebnik | Sep 2015 | B2 |
9134402 | Sebastian | Sep 2015 | B2 |
9145116 | Clarke | Sep 2015 | B2 |
9147255 | Zhang | Sep 2015 | B1 |
9156473 | Clarke | Oct 2015 | B2 |
9176006 | Stein | Nov 2015 | B2 |
9179072 | Stein | Nov 2015 | B2 |
9183447 | Gdalyahu | Nov 2015 | B1 |
9185360 | Stein | Nov 2015 | B2 |
9191634 | Schofield | Nov 2015 | B2 |
9233659 | Rosenbaum | Jan 2016 | B2 |
9233688 | Clarke | Jan 2016 | B2 |
9248832 | Huberman | Feb 2016 | B2 |
9248835 | Tanzmeister | Feb 2016 | B2 |
9251708 | Rosenbaum | Feb 2016 | B2 |
9277132 | Berberian | Mar 2016 | B2 |
9280711 | Stein | Mar 2016 | B2 |
9286522 | Stein | Mar 2016 | B2 |
9297641 | Stein | Mar 2016 | B2 |
9299004 | Lin | Mar 2016 | B2 |
9315192 | Zhu | Apr 2016 | B1 |
9317033 | Ibanez-Guzman | Apr 2016 | B2 |
9317776 | Honda | Apr 2016 | B1 |
9330334 | Lin | May 2016 | B2 |
9342074 | Dolgov | May 2016 | B2 |
9355635 | Gao | May 2016 | B2 |
9365214 | Ben Shalom | Jun 2016 | B2 |
9399397 | Mizutani | Jul 2016 | B2 |
9428192 | Schofield | Aug 2016 | B2 |
9436880 | Bos | Sep 2016 | B2 |
9438878 | Niebla | Sep 2016 | B2 |
9443163 | Springer | Sep 2016 | B2 |
9446765 | Ben Shalom | Sep 2016 | B2 |
9459515 | Stein | Oct 2016 | B2 |
9466006 | Duan | Oct 2016 | B2 |
9476970 | Fairfield | Oct 2016 | B1 |
9483839 | Kwon | Nov 2016 | B1 |
9490064 | Hirosawa | Nov 2016 | B2 |
9531966 | Stein | Dec 2016 | B2 |
9535423 | Debreczeni | Jan 2017 | B1 |
9555803 | Pawlicki | Jan 2017 | B2 |
9568915 | Berntorp | Feb 2017 | B1 |
9587952 | Slusar | Mar 2017 | B1 |
9652860 | Maali | May 2017 | B1 |
9720418 | Stenneth | Aug 2017 | B2 |
9723097 | Harris | Aug 2017 | B2 |
9723099 | Chen | Aug 2017 | B2 |
9738280 | Rayes | Aug 2017 | B2 |
9746550 | Nath | Aug 2017 | B2 |
9953236 | Huang | Apr 2018 | B1 |
10147193 | Huang | Dec 2018 | B2 |
20030174773 | Comaniciu | Sep 2003 | A1 |
20070183661 | El-Maleh | Aug 2007 | A1 |
20070183662 | Wang | Aug 2007 | A1 |
20070230792 | Shashua | Oct 2007 | A1 |
20070286526 | Abousleman | Dec 2007 | A1 |
20080249667 | Horvitz | Oct 2008 | A1 |
20090040054 | Wang | Feb 2009 | A1 |
20090087029 | Coleman | Apr 2009 | A1 |
20100049397 | Lin | Feb 2010 | A1 |
20100111417 | Ward | May 2010 | A1 |
20100226564 | Marchesotti | Sep 2010 | A1 |
20100281361 | Marchesotti | Nov 2010 | A1 |
20110142283 | Huang | Jun 2011 | A1 |
20110206282 | Aisaka | Aug 2011 | A1 |
20120105639 | Stein | May 2012 | A1 |
20120140076 | Rosenbaum | Jun 2012 | A1 |
20120274629 | Baek | Nov 2012 | A1 |
20130083959 | Owechko | Apr 2013 | A1 |
20130266187 | Bulan | Oct 2013 | A1 |
20130329052 | Chew | Dec 2013 | A1 |
20140072170 | Zhang | Mar 2014 | A1 |
20140104051 | Breed | Apr 2014 | A1 |
20140145516 | Hirosawa | May 2014 | A1 |
20140198184 | Stein | Jul 2014 | A1 |
20140321704 | Partis | Oct 2014 | A1 |
20140334668 | Saund | Nov 2014 | A1 |
20150062304 | Stein | Mar 2015 | A1 |
20150310370 | Burry | Oct 2015 | A1 |
20150353082 | Lee | Dec 2015 | A1 |
20160037064 | Stein | Feb 2016 | A1 |
20160094774 | Li | Mar 2016 | A1 |
20160118080 | Chen | Apr 2016 | A1 |
20160129907 | Kim | May 2016 | A1 |
20160165157 | Stein | Jun 2016 | A1 |
20160210528 | Duan | Jul 2016 | A1 |
20160321381 | English | Nov 2016 | A1 |
20160375907 | Erban | Dec 2016 | A1 |
20180151063 | Pun | May 2018 | A1 |
20180158197 | Dasgupta | Jun 2018 | A1 |
20180260956 | Huang | Sep 2018 | A1 |
Number | Date | Country |
---|---|---|
1754179 | Feb 2007 | EP |
2448251 | May 2012 | EP |
2463843 | Jun 2012 | EP |
2463843 | Jul 2013 | EP |
2761249 | Aug 2014 | EP |
2463843 | Jul 2015 | EP |
2448251 | Oct 2015 | EP |
2946336 | Nov 2015 | EP |
2993654 | Mar 2016 | EP |
3081419 | Oct 2016 | EP |
WO2005098739 | Oct 2005 | WO |
WO2005098751 | Oct 2005 | WO |
WO2005098782 | Oct 2005 | WO |
WO2010109419 | Sep 2010 | WO |
WO2013045612 | Apr 2013 | WO |
WO2014111814 | Jul 2014 | WO |
WO2014111814 | Jul 2014 | WO |
WO2014201324 | Dec 2014 | WO |
WO2015083009 | Jun 2015 | WO |
WO2015103159 | Jul 2015 | WO |
WO2015125022 | Aug 2015 | WO |
WO2015186002 | Dec 2015 | WO |
WO2015186002 | Dec 2015 | WO |
WO2016135736 | Sep 2016 | WO |
WO2017013875 | Jan 2017 | WO |
Entry |
---|
Hou, Xiaodi and Zhang, Liqing, “Saliency Detection: A Spectral Residual Approach”, Computer Vision and Pattern Recognition, CVPR'07—IEEE Conference, pp. 1-8, 2007. |
Hou, Xiaodi and Harel, Jonathan and Koch, Christof, “Image Signature: Highlighting Sparse Salient Regions”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, No. 1, pp. 194-201, 2012. |
Hou, Xiaodi and Zhang, Liqing, “Dynamic Visual Attention: Searching For Coding Length Increments”, Advances in Neural Information Processing Systems, vol. 21, pp. 681-688, 2008. |
Li, Yin and Hou, Xiaodi and Koch, Christof and Rehg, James M. and Yuille, Alan L., “The Secrets of Salient Object Segmentation”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 280-287, 2014. |
Zhou, Bolei and Hou, Xiaodi and Zhang, Liqing, “A Phase Discrepancy Analysis of Object Motion”, Asian Conference on Computer Vision, pp. 225-238, Springer Berlin Heidelberg, 2010. |
Hou, Xiaodi and Yuille, Alan and Koch, Christof, “Boundary Detection Benchmarking: Beyond F-Measures”, Computer Vision and Pattern Recognition, CVPR'13, vol. 2013, pp. 1-8, IEEE, 2013. |
Hou, Xiaodi and Zhang, Liqing, “Color Conceptualization”, Proceedings of the 15th ACM International Conference on Multimedia, pp. 265-268, ACM, 2007. |
Hou, Xiaodi and Zhang, Liqing, “Thumbnail Generation Based on Global Saliency”, Advances in Cognitive Neurodynamics, ICCN 2007, pp. 999-1003, Springer Netherlands, 2008. |
Hou, Xiaodi and Yuille, Alan and Koch, Christof, “A Meta-Theory of Boundary Detection Benchmarks”, arXiv preprint arXiv:1302.5985, 2013. |
Li, Yanghao and Wang, Naiyan and Shi, Jianping and Liu, Jiaying and Hou, Xiaodi, “Revisiting Batch Normalization for Practical Domain Adaptation”, arXiv preprint arXiv:1603.04779, 2016. |
Li, Yanghao and Wang, Naiyan and Liu, Jiaying and Hou, Xiaodi, “Demystifying Neural Style Transfer”, arXiv preprint arXiv:1701.01036, 2017. |
Hou, Xiaodi and Zhang, Liqing, “A Time-Dependent Model of Information Capacity of Visual Attention”, International Conference on Neural Information Processing, pp. 127-136, Springer Berlin Heidelberg, 2006. |
Wang, Panqu and Chen, Pengfei and Yuan, Ye and Liu, Ding and Huang, Zehua and Hou, Xiaodi and Cottrell, Garrison, “Understanding Convolution for Semantic Segmentation”, arXiv preprint arXiv:1702.08502, 2017. |
Li, Yanghao and Wang, Naiyan and Liu, Jiaying and Hou, Xiaodi, “Factorized Bilinear Models for Image Recognition”, arXiv preprint arXiv:1611.05709, 2016. |
Hou, Xiaodi, “Computational Modeling and Psychophysics in Low and Mid-Level Vision”, California Institute of Technology, 2014. |
Spinello, Luciano, Triebel, Rudolph, Siegwart, Roland, “Multiclass Multimodal Detection and Tracking in Urban Environments”, Sage Journals, vol. 29 Issue 12, pp. 1498-1515 Article first published online: Oct. 7, 2010;Issue published: Oct. 1, 2010. |
Matthew Barth, Carrie Malcolm, Theodore Younglove, and Nicole Hill, “Recent Validation Efforts for a Comprehensive Modal Emissions Model”, Transportation Research Record 1750, Paper No. 01-0326, College of Engineering, Center for Environmental Research and Technology, University of California, Riverside, CA 92521, date anknown. |
Kyoungho Ahn, Hesham Rakha, “The Effects of Route Choice Decisions on Vehicle Energy Consumption and Emissions”, Virginia Tech Transportation Institute, Blacksburg, VA 24061, date unknown. |
Ramos, Sebastian, Gehrig, Stefan, Pinggera, Peter, Franke, Uwe, Rother, Carsten, “Detecting Unexpected Obstacles for Self-Driving Cars: Fusing Deep Learning and Geometric Modeling”, arXiv:1612.06573v1 [cs.CV] Dec. 20, 2016. |
Schroff, Florian, Dmitry Kalenichenko, James Philbin, (Google), “FaceNet: A Unified Embedding for Face Recognition and Clustering”, CVPR 2015. |
Dai, Jifeng, Kaiming He, Jian Sun, (Microsoft Research), “Instance-aware Semantic Segmentation via Multi-task Network Cascades”, CVPR 2016. |
Huval, Brody, Tao Wang, Sameep Tandon, Jeff Kiske, Will Song, Joel Pazhayampallil, Mykhaylo Andriluka, Pranav Rajpurkar, Toki Migimatsu, Royce Cheng-Yue, Fernando Mujica, Adam Coates, Andrew Y. Ng, “An Empirical Evaluation of Deep Learning on Highway Driving”, arXiv:1504.01716v3 [cs.RO] Apr. 17, 2015. |
Tian Li, “Proposal Free Instance Segmentation Based on Instance-aware Metric”, Department of Computer Science, Cranberry-Lemon University, Pittsburgh, PA., date unknown. |
Mohammad Norouzi, David J. Fleet, Ruslan Salakhutdinov, “Hamming Distance Metric Learning”, Departments of Computer Science and Statistics, University of Toronto, date unknown. |
Jain, Suyong Dutt, Grauman, Kristen, “Active Image Segmentation Propagation”, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, Jun. 2016. |
MacAodha, Oisin, Campbell, Neill D.F., Kautz, Jan, Brostow, Gabriel J., “Hierarchical Subquery Evaluation for Active Learning on a Graph”, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014. |
Kendall, Alex, Gal, Yarin, “What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision”, arXiv:1703.04977v1 [cs.CV] Mar. 15, 2017. |
Wei, Junqing, John M. Dolan, Bakhtiar Litkhouhi, “A Prediction- and Cost Function-Based Algorithm for Robust Autonomous Freeway Driving”, 2010 IEEE Intelligent Vehicles Symposium, University of California, San Diego, CA, USA, Jun. 21-24, 2010. |
Peter Welinder, Steve Branson, Serge Belongie, Pietro Perona, “The Multidimensional Wisdom of Crowds”; http://www.vision.caltech.edu/visipedia/papers/WelinderEtaINIPS10.pdf, 2010. |
Kai Yu, Yang Zhou, Da Li, Zhang Zhang, Kaiqi Huang, “Large-scale Distributed Video Parsing and Evaluation Platform”, Center for Research on Intelligent Perception and Computing, Institute of Automation, Chinese Academy of Sciences, China, arXiv:1611.09580v1 [cs.CV] Nov. 29, 2016. |
P. Guarneri, G. Rocca and M. Gobbi, “A Neural-Network-Based Model for the Dynamic Simulation of the Tire/Suspension System While Traversing Road Irregularities,” in IEEE Transactions on Neural Networks, vol. 19, No. 9, pp. 1549-1563, Sep. 2008. |
C. Yang, Z. Li, R. Cui and B. Xu, “Neural Network-Based Motion Control of an Underactuated Wheeled Inverted Pendulum Model,” in IEEE Transactions on Neural Networks and Learning Systems, vol. 25, No. 11, pp. 2004-2016, Nov. 2014. |
Stephan R. Richter, Vibhav Vineet, Stefan Roth, Vladlen Koltun, “Playing for Data: Ground Truth from Computer Games”, Intel Labs, European Conference on Computer Vision (ECCV), Amsterdam, the Netherlands, 2016. |
Thanos Athanasiadis, Phivos Mylonas, Yannis Avrithis, and Stefanos Kollias, “Semantic Image Segmentation and Object Labeling”, IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, No. 3, March 2007. |
Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele, “The Cityscapes Dataset for Semantic Urban Scene Understanding”, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, Nevada, 2016. |
Adhiraj Somani, Nan Ye, David Hsu, and Wee Sun Lee, “DESPOT: Online POMDP Planning with Regularization”, Department of Computer Science, National University of Singapore, date unknown. |
Adam Paszke, Abhishek Chaurasia, Sangpil Kim, and Eugenio Culurciello. Enet: A deep neural network architecture for real-time semantic segmentation. CoRR, abs/1606.02147, 2016. |
Szeliski, Richard, “Computer Vision: Algorithms and Applications” http://szeliski.org/Book/, 2010. |
Kyoungho Ahn, Hesham Rakha, “The Effects of Route Choice Decisions on Vehicle Energy Consumption and Emissions”, Virginia Tech Transportation Institute, date unknown. |
Number | Date | Country | |
---|---|---|---|
20190108384 A1 | Apr 2019 | US |