The present application relates to vortex generators. In particular, the present application relates to vortex generators mounted to substantially continuous aerodynamic surfaces to energize boundary layer air to at least partially alleviate the onset of separated flow over the surfaces.
With proper design, streamwise vortex generators (SVGs), such as passive delta-shaped tabs, can generate longitudinal vortices that can be effective in maintaining attached flow over a surface, such as the wing of an aircraft. The disadvantage of passive devices like these is that such passive devices are always deployed, even when not needed. Under such circumstances passive SVGs add parasitic drag that lowers the efficiency of air vehicles on which they are used.
Hence, there is a need for improvements to vortex generator systems and processes.
Referring to
The first and second electrodes 115 and 120 can be formed of electrically conductive material, for example copper or gold, which can be relatively thin, such as a copper foil or gold foil. The dielectric layer 125 can be formed of electrically insulating material, for example Kapton® polyimide film, a glass-ceramic such as MACOR®, or a thermoplastic such as Polyetheretherketone (PEEK). The thickness of the dielectric layer 125 is dependent on the maximum voltage that will be applied to the PSVG 110. It is contemplated that the dielectric layer 125 can include multiple layers of different material, including, for example, multiple types of dielectric materials. Also, while a single second electrode 120 is shown extending opposite multiple first electrodes 115, alternative embodiments can include multiple second electrodes 120 opposite single and/or multiple respective first electrodes 115.
Referring now also to
Referring now also to
The surface 135 is preferably unswept; for example, surface 135 can be a portion of an unswept wing of an aircraft. The surface 135 is arranged such that air typically flows in the airflow direction indicated by arrows FL. For example, the surface 135 can be the upper surface of an aircraft wing where the aircraft is designed to fly in the direction indicated by arrow T, which results in the airflow direction indicated by arrows FL. The first electrodes 115 are somewhat rectangular, or at least have opposing lengthwise edges 115a and 115b that extend in a generally longitudinal direction that is at least somewhat parallel to the airflow direction indicated by arrows FL and the direction of travel indicated by arrow T. The widthwise edges 115c and 115d can be somewhat straight as shown, or can be more rounded. For reasons that will be better understood based on the description below, it is desirable to arrange the PSVGs 110 such that their first electrodes 115 extend in a direction that is at least somewhat parallel to expected airflow. For embodiments where a surface is expected to be subject to airflow in more than one direction, it is contemplated that a first group of PSVGs 110 can be arranged such that the first electrodes 115 extend in a direction parallel to a first expected airflow direction, a second group of PSVGs 110 can be arranged such that the first electrodes 115, or at least the lengthwise edges 115a and 115b, extend in a direction parallel to a second expected airflow direction, and so on for any number of groups of PSVGs 110 and respective airflow directions.
Referring now also to
The respective longitudinal axis of each first electrode 115 is oriented in the mean flow direction (indicated by arrow FL in
Finally, being actively controllable devices, the PSVGs 110 can be optimally operated as flow conditions change, providing better efficiency in all applications. For example, the PSVGs 110 can be automatically activated, adjusted, and/or otherwise controlled based on, for example, flight conditions and/or other detected conditions. For example, pressure sensors 150 on the surface 135 (which, in some embodiments, can coincide with the upper surface of dielectric 125 as shown in
The PSVGs 110 can be used, for example, to benefit the flow over the wings, wing fairings and fuselage of aircraft that are prone to flow separation.
The PSVGs 110 disclosed herein include a first electrode 115, which can be an exposed electrode, overlaying a second electrode 120, which can be common to multiple PSVGs 110, and which is covered by a dielectric layer 125. The electrodes are oriented so that the actuator body force vectors, Fb, are in the cross-flow direction away from each side of a first electrode 115. Each of the body force components induces a cross-flow velocity that, in combination with the mean flow, produces streamwise-oriented counter-rotating vortices. Further downstream, these develop into a pair of streamwise vortices with counter-rotating circulation that is identical to that produced by conventional delta tabs.
Turning next to
The vortex generator system 200 is similar to vortex generator system 100, but differs at least in that vortex generator system 200 includes at least one Plasma Wedge Vortex Generator (PWVG) 210 instead of PSVGs 110. It should be appreciated that embodiments of the vortex generator system 200 can include any number of PWVGs 210. The PWVG 210 differs from the PSVG 110 in that the PWSG 210 has a wedge-shaped first electrode 215 in place of the more rectangular first electrode 115 of the PSVG 110. Like PSVG 110, the PWVG 210 also comprises a second electrode 120 (shown in phantom in
The PWVGs 210 are shown disposed on a surface 235. PWVGs are desirable for applications where the surface 235 is “swept” (in contrast to the preferably unswept surface 135). For example, surface 235 can be a portion of a forward or rearward swept wing of an aircraft. The surface 235 has a generally downstream direction D, the exact angle of which will vary depending on the sweep angle of the wing (or other structure) that comprises surface 235. So, for example, if surface 235 is a portion of a wing, the arrow D points towards the rear of the wing.
Each wedge-shaped first electrode 215 has opposing lengthwise edges 215a and 215b that are some angle α from the longitudinal axis of the first electrode 215 as shown in
Although first electrodes 215 are shown in
The first and second electrodes 215 and 120 can be formed of electrically conductive material, for example copper or gold, which can be relatively thin, such as a copper foil or gold foil. The dielectric layer 125 can be formed of electrically insulating material, for example Kapton® polyimide film, a glass-ceramic such as MACOR®, or a thermoplastic such as Polyetheretherketone (PEEK). The thickness of the dielectric layer 125 is dependent on the maximum voltage that will be applied to the PWVG 210. It is contemplated that the dielectric layer 125 can include multiple layers of different material, including, for example, multiple types of dielectric materials. Also, while a single second electrode 120 is shown extending opposite multiple first electrodes 215, alternative embodiments can include multiple second electrodes 120 opposite single and/or multiple respective first electrodes 215.
Referring back to
Referring now to
With the PWVGs 210 located on the surface 235 over which a flow is passing, the cross-flow oriented body force causes the flow downstream to roll up into single co-rotating, or pairs of counter-rotating, streamwise-oriented vortices as indicated by arrows VL and VS in
Like PWVGs 110, the PWVGs 210 are actively controllable devices, and therefore the PWVGs 210 can be optimally operated as flow conditions change, providing better efficiency in all applications. For example, the PWVGs 210 can be automatically activated, adjusted, and/or otherwise controlled based on, for example, flight conditions and/or other detected conditions. For example, pressure sensors 150 on the surface 235 can be used to detect airflow separation from the surface 235 and the PWVGs 210 can be automatically activated by controller 160 when undesirable flow separation occurs, and automatically deactivated by controller 160 when not needed, for example once correction of flow separation ceases to be necessary. The controller 160 can be any type of control system, computer, processing system, or the like, capable of receiving information from one or more pressure sensors 150 and controlling voltage to the PWVGs 210 based on the information received from the pressure sensors 150. It should be appreciated that, while the controller 160 is shown in schematic view in
The PWVGs 110 can be used, for example, to benefit the flow over the wings, wing fairings and fuselage of aircraft that are prone to flow separation.
The PWVGs 210 disclosed herein include a first electrode 215, which can be an exposed electrode, overlaying a second electrode 120, which can be common to multiple PWVGs 210, and which is covered by a dielectric layer 125. The electrodes 215 are oriented so that the actuator body force vectors, Fb, are in the cross-flow direction away from each side of a first electrode 215. Each of the body force components induces a cross-flow velocity that, in combination with the mean flow, produces streamwise-oriented counter-rotating vortices that vary in size depending on the width of the electrode 215. Further downstream, these vortices develop into a pair of streamwise vortices with counter-rotating circulation.
It is apparent that an invention with significant advantages has been described and illustrated. Although the present application is shown in a limited number of forms, it is not limited to just these forms, but is amenable to various changes and modifications without departing from the spirit thereof.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2009/052442 | 7/31/2009 | WO | 00 | 1/26/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/014924 | 2/4/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3095163 | Hill | Jun 1963 | A |
3360220 | Meyer | Dec 1967 | A |
4914741 | Brown et al. | Apr 1990 | A |
5414324 | Roth et al. | May 1995 | A |
5669583 | Roth | Sep 1997 | A |
5938854 | Roth | Aug 1999 | A |
6200539 | Sherman et al. | Mar 2001 | B1 |
6247671 | Saeks et al. | Jun 2001 | B1 |
6570333 | Miller et al. | May 2003 | B1 |
6796532 | Malmuth et al. | Sep 2004 | B2 |
6805325 | Malmuth et al. | Oct 2004 | B1 |
7017863 | Scott et al. | Mar 2006 | B2 |
7066431 | Scott et al. | Jun 2006 | B2 |
7334394 | Samimy et al. | Feb 2008 | B2 |
7380756 | Enloe et al. | Jun 2008 | B1 |
7413149 | Minick et al. | Aug 2008 | B2 |
7637455 | Silkey et al. | Dec 2009 | B2 |
8006939 | McClure et al. | Aug 2011 | B2 |
8220754 | McClure et al. | Jul 2012 | B2 |
8226047 | Gupta et al. | Jul 2012 | B2 |
20040118973 | Malmuth | Jun 2004 | A1 |
20080023589 | Miles | Jan 2008 | A1 |
20080067283 | Thomas | Mar 2008 | A1 |
20080122252 | Corke et al. | May 2008 | A1 |
20100308177 | McClure et al. | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
1928216 | Jun 2008 | EP |
1937552 | Jul 2008 | EP |
1031925 | Jun 1953 | FR |
9935893 | Jul 1999 | WO |
02081304 | Oct 2002 | WO |
2007133239 | Nov 2007 | WO |
Entry |
---|
International Preliminary Report on Patentability in PCT/US09/52442, mailed Oct. 21, 2011. |
First Examination Report from Canadian Patent Office in related Canadian application No. 2,732,100, 2 pages, Dec. 10, 2012. |
Search Report and Written Opinion in PCT/US09/52442, mailed Sep. 15, 2009. |
Search Report and Written Opinion in PCT/US2006/032247, dated Oct. 25, 2007. |
Huang, Junhui, Separation Control Over Low Pressure Turbine Blades Using Plasma Actuators, A Dissertation submitted to the Graduate School of the University of Notre Dame, Department of Aerospace and Mechanical Engineering, Apr. 2005, Notre Dame, Indiana. |
Post, Martique L., Plasma Actuators for Separation Control on Stationary and Oscillating Airfoils, A Dissertation submitted to the Graduate School of the University of Notre Dame, Department of Aerospace and Mechanical Engineering, May 2004, Notre Dame, Indiana. |
Amendment and RCE filed in U.S. Appl. No. 11/519,770, dated Feb. 16, 2010. |
Amendment filed in U.S. Appl. No. 11/519,770, dated Aug. 24, 2010. |
Response to Final Office Action filed in U.S. Appl. No. 11/519,770, dated Jan. 15, 2010. |
Office Action in U.S. Appl. No. 11/519,770, dated Mar. 24, 2010. |
Advisory Action in U.S. Appl. No. 11/519,770, dated Jan. 27, 2010. |
Form PTOL-456 from Licensing and Review in U.S. Appl. No. 11/519,770, dated Oct. 13, 2006. |
Response in U.S. Appl. No. 11/519,770, dated Nov. 22, 2006. |
Office Action in U.S. Appl. No. 11/519,770, dated Mar. 30, 2009. |
Office Action in U.S. Appl. No. 11/519,770, dated Oct. 15, 2009. |
Office Action in U.S. Appl. No. 11/519,770, dated Nov. 17, 2010. |
Amendment in U.S. Appl. No. 11/519,770, dated Jun. 30, 2009. |
Amendment in U.S. Appl. No. 11/519,770, dated Feb. 17, 2011. |
Advisory Action in U.S. Appl. No. 11/519,770, dated Feb. 25, 2011. |
Martiqua L. Post, Plasma Actuators for Separation Control on Stationary and Oscillating Airfoils, a Dissertation submitted to the Graduate School of the University of Notre Dame, Department of Aerospace and Mechanical Engineering, May 2004, Notre Dame, Indiana; as submitted in related U.S. Appl. No. 11/519,770, filed Sep. 13, 2006. |
Separation Control Over Low Pressure Turbine Blades Using Plasma Actuator; Huang, Junhui, Apr. 2005 retrieved from; http://etd.nd.edu/ETD-db/theses/available/etd-04152005-095454/unrestricted/HuangJ042005.pdf; as submitted in related U.S. Appl. No. 11/519,770, filed Sep. 13, 2006. |
Partial European Search Report from the European Patent Office concerning related information in European Patent Application No. 2340995, Dec. 13, 2011. |
Office Action in U.S. Appl. No. 11/519,770, dated Apr. 29, 2011, eleven (11) pages. |
Supplementary European Search Report from the European Patent Office concerning related information in European Patent Application No. 09803664, Jan. 31, 2013. |
Number | Date | Country | |
---|---|---|---|
20110120980 A1 | May 2011 | US |
Number | Date | Country | |
---|---|---|---|
61085209 | Jul 2008 | US | |
60726648 | Oct 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11519770 | Sep 2006 | US |
Child | 13056042 | US |