The present invention relates to delivery of goods or services, and to a system and method for aggregating delivery of the goods or services.
In the distribution of goods and services, multi-channel distribution networks may be established. A multi-channel distribution network may provide multiple channels for distribution from a producer to a consumer. Separate distribution channels may, for example, extend through local distributors, retailers, packaging contractors, etc. The cost of delivery of the goods or services through the respective channels in the multi-channel distribution network may vary, thereby resulting in a cost to the consumer that varies depending on the distribution channel through which the goods or services are purchased. Likewise, the revenue obtained through sale of goods or services may vary depending in a multi-channel distribution network, depending on the delivery channel to the consumer.
One disadvantage of known systems is a lack of systemic visibility. Consumers may not be able to obtain visibility into supply sources upstream of their local retailer (e.g. other distribution intermediaries and producers), and producers and distribution intermediaries may not have visibility into demand downstream of their retail affiliates. Another disadvantage of known systems are limitations in responding to local needs, where a host of products and services may be available on a nationwide basis, but consumers, producers and distribution intermediaries may not have visibility to the most appropriate local options for addressing their needs.
These and other features and advantages will be better understood by reading the following detailed description, taken together with the drawings wherein:
Aspects of the present disclosure may relate to facilitating business transactions in a multi-channel distribution network.
A “multi-channel distribution network” as used herein refers to a network including a plurality of at least partially separate channels of distribution from a producer of goods or services to a consumer. A distribution channel in a multi-channel distribution network may be at least partially separate from another distribution channel in the multi-channel distribution network if it includes at least one distribution intermediary not present in the other distribution channel. A “distribution intermediary” as used herein refers to a person or entity other than the producer or consumer that sells, distributes, or contracts for sale or distribution of goods or services in the multi-channel distribution network, and includes, for example, agents selling directly on behalf of a producer, packagers that package goods received from producers, distributors or wholesalers that sell to retailers, storage and handling locations, contract shipping entities, financial agents that agree to contracts to purchase and/or sell at a future date and retailers or dealers that sell to consumers. One or more channels in a multi-channel distribution network may be a multi-level channel. A “multi-level channel” as used herein refers to a distribution channel including at least two distribution intermediaries. A distribution network may be a “multi-level distribution network” if the distribution network includes sales to both end-consumers and redistributors, for example including both wholesale and retail sales.
For simplicity of explanation, the various exemplary embodiments disclosed herein may be described in the context of a multi-channel distribution network associated with specific goods. In particular, exemplary embodiments may be described in connection with goods, such as heating fuels, bulk landscaping products, building materials, etc., where delivery costs may be considered as a factor in the purchase decision, or where specialized equipment may be necessary for delivery of the product. It is to be understood, however, that the embodiments described herein are presented by way of illustration, not of limitation. For example, a system and method consistent with the present disclosure is not limited to any specific goods or distribution networks for distributing goods alone, and may be equally useful in connection with moving a service from a producer to consumer.
Referring to
The analysis tool may thus connect a wide range of consumers, producers and distribution intermediaries for streamlining the sale and/or distribution of goods by analyzing a distribution network to generate and present a set of options to a user. For example, the system may allow consumers to obtain visibility to both regional product availability and delivery charges to that consumer's specific location from a plurality of at least partially separate distribution channels in a multi-channel distribution network. The system may also or alternatively allow producers and distribution intermediaries in a multi-channel distribution network to gain visibility to demand distributions in a distribution system in order to increase the value obtained for a fixed supply of a delivered product.
The analysis tool may provide a valuable benefit of prioritizing and filtering solutions sets presented to a user. A consumer wishing to buy product may be presented with a set of options representing the lowest cost set of product or service options available in the consumer's location and/or a set of options representing the most readily available options. A producer may be presented with a set of options representing the subset of consumers that will net the producer the highest value for his products or services, net of costs of distributing the products or services. A distribution intermediary may be presented with a set of options for connecting a subset of producers with a subset of consumers through paths that may include a subset of other distribution intermediaries, in a manner that meets the specified goals of the distribution intermediary acting as a user of the system, for example in a manner that maximizes his profitability.
The analysis tool 130a may be used to generate one or solution sets 238 (e.g. price quotations or sales opportunity lists) for a consumer or a producer or distribution intermediary using supply parameter and distribution parameters provided by producers and/or distribution intermediaries and consumer inquiry information provided by consumers. The solution sets 238 may be accessed via any one or more of the web sites 222, 224 that provide access to the analysis tool 130a. In connection with generating solution sets using the analysis tool 130a, the analysis system 200 may use stored analysis data 236, such as stored consumer inquires, supply parameters, distribution parameters, etc., as will be described in greater detail below.
The system 200 may reside on and may be executed by a computer 240 that is connected to computer network 242 (e.g., a global computer network, such as the Internet). Computer 240 may be a web server running a network operating system, such as Microsoft Windows XP Server™, Novell Netware™, or Redhat Linux™. Computer 240 may also execute a web server application, such as Microsoft IIS™, Novell Webserver™, or Apache Webserver™, that allows for HTTP (i.e., HyperText Transfer Protocol) access to computer 240 via network 242. The system 200 may also use the Microsoft .NET™ Framework as the overall technology platform. Network 242 may be connected to one or more secondary networks (e.g., network 246), such as a local area network, a wide area network, or an intranet.
The instruction sets and subroutines of the of the analysis system 200 may be stored on a storage device (e.g., a storage device 248 coupled to computer 240) and may be executed by one or more processors (not shown) and one or more memory architectures (not shown) incorporated into computer 240. Analysis data 236 generated by and/or used by the analysis system 200 may also be stored on a storage device (e.g., storage device 248 coupled to computer 240). The storage device may be, for example, a hard disk drive, a tape drive, an optical drive, a RAID array, a random access memory (RAM), or a read-only memory (ROM). A relational database management system (not shown), such as Microsoft SQL Server 2005, may be used to manage the analysis data 236.
An Application Service Provider (ASP) may host one or more application components of the system 200 and the analysis data 236. The ASP may thus handle application support and storage of data such as usernames, passwords, etc. The ASP may also handle reporting of certain data such as new registered users and contact information (e.g., email addresses), saved solution sets, user information, etc. One of the web site providers 220, 226 may also host the analysis system 200 and the analysis data 236.
All or a portion of the analysis system 200 may also reside on and/or be executed other computers such as web site provider computers 250, consumer computers 252 and/or producer and/or distribution intermediary computers 254. At least a portion of the analysis tool 130a, for example, may be executed on the consumer computers 252, for example, as an Active X™ control, a Java™ Applet, or a Adobe™ Flash file, as the consumer uses the 130a. All or a portion of the analysis data 236 may also be stored on other storage devices, for example, coupled to web site provider computers 250, consumer computers 252 and/or producer and/or distribution intermediary computers 254.
A storage device 256 may also be coupled to a producer and/or distribution intermediary computer 254 for storing product and/or service data 234 for the producer and/or distribution intermediary 202, for example, in product catalog database. The analysis system 200 may pull real-time product data from the product catalog database (e.g., using XML calls) and integrate that product data into the analysis tool 130a. Changes to the catalog data may thus be reflected in the analysis tool when the changes are made to the catalog database. The product and/or service data 234 may also be stored with the analysis data 236 on the storage device 248 (e.g., hosted by an ASP).
Consumers 212, 214, 216 may access the system 200 directly through network 242 or through secondary computer network (e.g., network 246). The computer 240 (i.e., the computer that executes the analysis system 200) may be connected to network 242 through a secondary network (e.g., network 246). Consumers 212, 214, 216 may access the analysis system 200 through a computer (e.g., computer 252) that is connected to network 242 (or network 246) and executes a desktop application 260 (e.g., Microsoft Internet Explorer®, Netscape Navigator®, or a specialized interface). The computer 252 may be the consumer's PC or MAC® computer or may be a computer terminal located at a location of a producer and/or distribution intermediary or web site provider.
An administrator may access and administer the analysis system 200 through a desktop application 270 (e.g., Microsoft Internet Explorer®, Netscape Navigator®, or a specialized interface) running on an administrative computer 272 that is also connected to the network 242 (or network 246). The administrative computer 272 may be located at the same location as the analysis system 200 or remotely.
In one embodiment, a consumer may use an analysis tool 130 to generate a consumer inquiry to the analysis system 200. The analysis system 200 may be configured to generate a solution set 238 based on, at least in part, one or more of supply parameters and distribution parameters provided by producers and/or distribution intermediaries. The analysis system may be configured to generate the solution set presenting reduced or minimized cost or time to delivery of a product to the consumer. For example, the analysis system 200 may generate several options for purchase of product and delivery services including information on both product and delivery parameters, which may include cost, quality, timing of availability and combinations thereof. In one example involving fuel transactions, the options may include a display of information on the cost per energy content, e.g. cost/BTU. As will be discussed in greater detail below, the set of options (i.e. the solution set) presented to the consumer may be filtered based on one or more user definable criteria and/or parameters (e.g., only the optimal channel as defined by the user), a set of options that are nearly optimal, or the entire set of potential options for supply and distribution channels.
The dollar figures adjacent producers 302-1, 302-2, 302-3, 302-4, 302-5, 302-6, 302-7 and distribution intermediary 306 represent the cost of the product at the associated producer or distribution intermediary, and the dollar figures along the distribution channels 300-1, 300-2, 300-3, 300-4, 300-5, 300-7, 300-8 and paths 308 and 310 represent delivery costs along the distribution channel or path. In the illustrated exemplary embodiment, product may flow along multi-level channel 300-6 from the producer 302-6 to consumer 304, with a $10 product cost at the producer 302-6 and along path 308 to distribution intermediary 306 with a $10 delivery cost. The product cost at the distribution intermediary may be $5 and the cost of delivery along path 310 to the consumer 304 may be $10. The resulting total delivered cost the consumer along path 300-6 may be $35, which includes at total of $10 in product costs and a total of $25 in delivery costs.
The option of purchasing the product through multi-level channel 300-6 at a total delivered cost of $35 may be presented to the consumer option in a solution set along with the option of purchasing product through distribution channels 300-3, 300-5 and 300-7 which may each have total delivered product costs of $40. In one embodiment, product delivered through distribution channels 300-1, 300-2, 300-4 and 300-8 may not be presented as part of a solution set to the consumer 304 due to their relatively higher delivered cost. Advantageously, a system and method according to the present disclosure may allow a consumer to be presented a solution set including a plurality of delivery options that analyze multiple distribution channels from producer to consumer in a multi-channel distribution network and choose among those options. Although the illustrated embodiment is described as presenting a solution set involving cost minimization within a multi-channel distribution network, selection of product and distribution channels may determined based on, at least in part, the timing of delivery or other factors of concern to the specific consumer 304, or by a weighted objective function driven by multiple factors such as cost, timing and product quality.
According to another embodiment of the present disclosure the distribution network 100a configured to generate a solution set based on, at least in part, an aggregate demand from multiple consumers located at geographically different locations wherein a plurality of producers may bid for the right to supply product to that group of consumers in an auction format. The analysis system may determine time and/or costs associated with moving the product from producers to these consumers based on, at least in part, one or more of the analysis tool inputs representing the aggregate demand from multiple consumers, the set of distribution parameters and the set of producer bids. For example, if the consumer 304 is considered to be an aggregate group of geographically dispersed consumers desiring to minimize cost, the analysis system may provide a solution set identifying the lowest net average delivered cost to the aggregated group.
The plurality of consumers may also be geographically partitioned into two or more groups in which a set of solutions may be generated for each group. It may also be useful in some instances to generate a set of solutions 3 for the groups utilizing an iterative process based on successive trials at regional grouping strategies before selecting a grouping strategy that provides the optimal distribution scenario for a given set of aggregated consumers. A similar aggregation strategy may be performed for producers, such that the selling price (net of distribution costs) to the aggregated group of producer's facilities may be maximized.
Turning now to
For example, the analysis system 200 may be configured to subtract the distribution costs from the prices consumers 400-1, 400-2, 400-3, 400-4, 400-5, 400-6, 400-7, 400-8 are willing to pay to determine which of the plurality of available distribution channels 404-1, 404-2, 404-2a, 404-3, 404-4, 404-5, 404-6, 404-7, 404-8 may result in the maximum profit for the producer 402. In the illustrated embodiment, the analysis system 200 may determine that the producer 402 may realize at least $70 in net revenues after accounting for distribution costs from consumers 400-1, 400-2, 400-4 and 400-5 and may present such options as a solution set to the producer 402. Additionally or alternatively, a producer desiring to move product quickly may utilize a distribution system and method consistent with the present disclosure to determine which consumers could rapidly take delivery through the distribution network.
As illustrated in
As shown, distribution network 100c may include a distribution intermediary 504, plurality of potential producers 500-1, 500-2, 500-3, 500-4 of product and a plurality of consumers 502-1, 502-2. The product cost associated with each producer is noted in dollar figures adjacent each producer and the price each consumer is willing to pay for the product is noted in dollars adjacent each consumer. The delivery cost to the consumer or distributor along each of a plurality of distribution channels 506-1, 506-2, 506-3, 506-4, 506-5, 505-6, 505-7, 505-8 is noted in dollars adjacent each channel.
In the illustrated exemplary embodiment, it may be possible for the distribution intermediary 504 to arrange delivery of product to the consumer 502-1 from producers 500-1, 500-3 or 500-4 through distribution channels 506-2, 506-6 and 506-1, respectively, with delivered product cost to the consumer of $75, $65 and $70, respectively. The distributor may choose to provide product from producer 500-3 to maximize the distributor profit of the $80 price the consumer 502-1 is willing to pay. Similarly, consumer 502-2 may be provided product from producer 500-1 along distribution channel 506-3 or distribution channels 506-7 and 506-8 through the distribution intermediary 504, or directly from producers 500-2 and 500-3. In illustrated embodiment, the lowest delivered cost channel is via channels 506-7 and 506-8 through the distribution intermediary 504, so choosing this distribution channel may result in maximum profit to the distributor.
As shown, a distribution network 100d may include a distribution channel 600-1 directly between the producer and the consumer's location. The consumer 606 may indicate a willingness to travel a distance of no more than radius R as long as he can save $10. Based on these demand parameters, a distribution system and method according to the present disclosure may determine that the product may be delivered directly to the consumer via channel 600-1 for a cost of $30. Additionally or alternatively, the distribution system may determine that the product maybe delivered to distribution intermediary 602 (which may be located within the radius R) for $10 and that the costs associated with picking up the product at distribution intermediary 602 (as indicated along pickup path 608) may also be $10. The effective net cost to the consumer associated with channel 600-2 and pick-up path 608 $80 as opposed to $90 via channel 600-1. The option of purchasing the product through either of the distribution channels, 600-1 or 600-2 may be presented to the consumer. Given this consumer's preference in this example, the consumer 606 may prefer to pick-up the product at distribution intermediary 602 rather than have it delivered directly to his location through distribution channel 600-1.
It should also be understood that even if the form of the product does not change, the form of transportation provided by distribution intermediaries may change. For example, a transload station may take skids of product off of a railcar and then load them onto trucks for the next leg of distribution. Similarly, the type of trucks appropriate for moving a product from a producer to a distribution center may be of a different size than those appropriate for retail deliveries. A distribution intermediary may perform and be compensated for these handling functions when a form-of-transportation change occurs, even if a product-form change does not occur.
Turning now to
As shown the system 800 may be configured to receive a plurality of inputs, e.g. geographic data 820 and prioritization and filtering rules 822, used by the analysis system 200 to generate solution sets 238a, 238b, 238c. For example, system may provide a consumer interface 802, a producer interface 803, a distribution intermediary interface 804, and a system interface 806. A consumer may submit demand parameters 808, and a solution set 238a may be presented to the consumer based on, at least in part, one or more consumer definable criteria and/or parameters. The consumer may input a selection 810 of particular combination of product and delivery services from the interface and the system may interact with the consumer around order fulfillment and tracking 812.
Although the illustration shows these inputs as being directly input into the analysis system by various users of the analysis system, such as consumers, distribution intermediaries, producers and internal system administrators, in some cases it may be preferable to have an internal system administrator enter all or part of the parameters being provided by a producer, consumer or distribution intermediary. For example, this may be the case if a consumer calls and a phone operator enters a consumer's inquiry into the system, or similarly an office staff member may enter producer supply parameters or distribution parameters on behalf of a distribution intermediary.
As used herein, demand parameters 808 may represent broad set of information relating to consumer demand. For example, demand parameters 808 include, but are not limited to: type of demand, which may include: external requests, such as: a consumer request, a reseller request, a commitment to purchase at a fixed price, a commitment to purchase a volume at the best available price, a request for product previously guaranteed to the consumer, an autonomous request based on a level sensor in a storage system, and internal forecasts or virtual requests, such as those based upon heating degree days or weather patterns, historical demand patterns, mailing list data, consumer purchase history, economic data, weather forecasts, historical response rates to quotations, current response rates to quotations; type of product, such as type of materials, classification/certification/grade or quality level, form of product, e.g. bulk solid, bagged solid or liquid, required Storage, cold storage, type of delivery, e.g., the types of trucks that can be accepted or whether rail and/or ship can be accepted; type of consumer, e.g. retail, wholesale or distributor; timing of request, e.g. preference for immediate delivery or at another time; and/or consumer affiliation, e.g. particular consumer groups may be prioritized by the subsequent quoting logic.
The producer interface 803 may allow the producer to pass supply parameters 812 into the system, for example, but not limited to, product supply parameters and the like, which may be used for subsequent analysis by the analysis system As a result of the analysis, a producer solution set 238b, e.g. product orders, may be generated and fed back to the producer, for subsequent order tracking and fulfillment 814.
As used herein, supply parameters 812 may represent broad set of information relating to product supply. Examples of supply parameters provided by a producer 812 include, but are not limited to: type of supply, which may include: external supply signals, such as an offer to sell product from a producer, harvester or primary source, an offer to sell product from a distributor or secondary source, a commitment to sell at a fixed price, a commitment to sell a volume at the best available price, an existing agreement to sell under pre-established terms, an electronic signal from a source carrying any of these parameters; internal forecasts of expected supply, such as those based upon prior supply or production patterns, information on producer inventory, heating degree days or weather patterns, historical supply and demand patterns, mailing list data, economic data, time of year or weather forecasts, historical response rates to requests for product, current response rates to requests for product; type of product; type of materials such as classification/certification or quality level, form of product, e.g. bulk solid, bagged solid or liquid; required storage, e.g. cold storage, means of obtaining product, e.g. the types of trucks that can pick up product; type of producer, e.g. regional or national, single facility or multiple location; timing of request, e.g. preference for immediate delivery or sales or at another time; producer affiliation, e.g. particular producer groups may be prioritized by the subsequent quoting logic; and other producer parameters
The distributor interface 804 may allow the distributor to provide distribution parameters 816 to the system and to receive a distribution solution set 238c, e.g. requests for distribution services, back from the system. Order fulfillment and tracking 818 can then be carried out by the system.
As used herein, distribution parameters 816 may represent broad set of information relating to distribution. Distribution Parameters 16 may include transportation parameters, distribution intermediary parameters and geographic data. Distribution intermediary parameters may be associated with a geographic location. Transportation parameters may be associated with two points or distances between a starting point and a finishing point for any leg of a trip. Examples of transportation parameters may include: the mode of transport (for example truck, rail, ship, etc.), the routes/paths along roads, rail, water, etc., the type of product(s) transportable, the distances or areas serviced, cost parameters (cost per load, cost per mile, etc.), certification parameters, service parameters (relating to reliability, responsiveness, etc.), etc.
A distribution system and method according to the present disclosure may consider that the mode of transport utilized to deliver a product to a first consumer may differ than that which is appropriate to deliver the product to another consumer or location. Furthermore, the distribution system and method may consider that in a multi-channel distribution network, the mode of transport from a producer to a distribution intermediary may differ from the mode of delivery from the distribution intermediary to the consumer. Additionally, the distribution system and method may consider that the mode of distribution may vary based on the type of product being distributed and the form of the product when it is being distributed. The mode of transport may in other cases be driven by the requested timing of the consumer's request.
Examples of distribution intermediary parameters may, therefore include: the type of services provided, which may include storage of product, handling of product, repackaging of product, inspection of product, transloading of product and other operations on product passing through their system; the physical location of the distribution intermediary, which may include as state, county, city, zip code or street address; the operational location of the distribution intermediary, which may include a distance along a rail line from a terminal, proximity to other facilities, etc; the type of goods handled; the service area of the distribution intermediary, e.g. states or regions served; cost parameters; the type of transportation equipment that may enter or leave the facility; parameters associated with services provided such as packaging costs per unit, storage costs per unit, handling fees per unit, costs for allowing consumers to pick up and the parameters associated with services provided; and other parameters uniquely associated with that distribution intermediary. Examples of geographic data that may be included among the distribution parameters may include: the geographic location of specific points; point-to-point distances (via air, road, straight line or other means); travel times between points; travel costs between points (if previously developed); minimum quantity levels by location; auto-acceptance quantity levels by location; and other geographic data.
The presented options may vary depending on geographic location, e.g. a consumer making a request in one geographic location may see different results, e.g. a different set of producers and/or a different set of products or services, than a consumer in another geographic location. In addition, though the user may have requested a particular quantity of product, the distribution system and method may respond with alternative quantity suggestions as discussed below. In the illustrated example, the consumer requested 2 tons, and the system presented a solution set including 2, 2.4, 4, 4.8 and 8 tons, based on the available materials in the area, e.g. as determined from supply parameters provided through a producer interface. A system and method consistent with the present disclosure may provide other alternatives associated with the demand parameters provided by the consumer including, but not limited to, alternative types of product and/or brands as well as alternative schedule parameters.
For example, a consumer requesting the product “Wood Pellets (Premium)” may also be presented with options for the product “Wood Pellets (Super-Premium)” or even alternative goods such as “Clean Dry Corn Fuel”. A consumer requesting a specific product or brand may be presented multiple brands. A consumer requesting immediate delivery may be quoted “Late Summer/Early Fall” or quoted “Fall Delivery” at potentially a different price. Additionally, the distribution system and method may also include a link or button that allows a consumer to check availability of a product and/or delivery service, when the ability to supply is not known instantaneously. In one embodiment, this information may be fed back to a central database where a consumer service team may act on the inquiry and respond to the consumer at a later date.
The types of information that may be presented as part of a solution set 238a presented to a consumer may include any appropriate elements of the demand parameters 808, the supply parameters 812, the distribution parameters 816 and other relevant parameters such as data associated with prioritization and filtering rules 822. The data presented in the illustrated exemplary embodiments a provided by way of illustration only. Additional and/or different parameters may be appropriate for display depending on the implementations and/or applications.
In
According to one embodiment of the present disclosure, the interfaces discussed herein may be configured such that a user may manually enter the parameters discussed herein. However, the interfaces may be configured to automatically receive data through electronic data interchange. A system and method according to the present disclosure may allow each party within the overall transaction to individually update their own parameters, and/or may substantially continually refine and update the set of options which may be provided on an automatic and ongoing basis.
In
One method 1700 and system for conducting the analysis, e.g. in an analysis system 200, as described above is shown in
Distribution parameters 816 may be used to trace at least one distribution channel from each source of the product to the desired delivery location to generate a set of potential combinations for source and distribution channels 1705. This may include, for example, examining potential routes from each source to the consumer's location, potentially including multiple potential travel channels between a single source and the consumer.
Optionally, the potential combinations for source and distribution channels may be prioritized and filtered 1708 based on, at least in part, one or more prioritization rules 822 and/or filtering rules 822a. In one example, the prioritization rules 822 may be used to determine the lowest cost channel for each source, and then to choose a set of sources providing the lowest total delivered cost solutions. In another example, the prioritization rules 822 may be used to determine the shortest delivery time. The consumer inquiry 1701 may contain demand parameters 808 used prioritize or filter the responses as well, such as the consumer identifying his own priorities such as “lowest cost” or “fastest time”. In other cases, it may not be necessary to prioritize or filter results at all, and advisable merely to present all options to the consumer.
The system and method according to the present disclosure may then generate 1709 a solution set including options for purchasing product through a plurality of at least partially separate distribution channels in a multi-channel distribution network for presentation to the consumer. This presentation may be a visual display on a web interface, or in some cases may be an electronic transfer of information to a prospective or committed buyer. In one embodiment, the solution set options presented to the consumer may be issued as an e-mail including an actionable purchase button allowing the consumer to make a purchase associated with one of the options
Referring to
The set of updated inquiries 1805 may be permutated to generate a set of permutated inquiries 1811, which may then be submitted for analysis as if each were an individual consumer inquiry. For example, the permutated inquiries 1811 may be generated based on a variety of factors depending on the specific application including, but not limited to, product substitutions 1806, product-brand combinations 1807, timing substitutions 1808, form substitutions 1809, or quantity substitutions 1810. By way of example, the set of permutated inquires 1811 may be generated based on a product substitution 1806 by submitting a request for at least one other product type in response to a consumer requesting a specific type of product. For example, if a consumer requested premium wood pellets for a heating application, the distribution system and method may be configured to also submit a request for standard wood pellets. Such a request may be configured to convert all premium wood pellet inquiries to requests for standard wood pellets, to initiate quotes on both types any time either is requested, or generally to suggest another product in response to a given goods request.
An example of a product-brand combination 1807 which may be utilized to generate the set of permutated inquires 1811 may include generating requests for three different brands of product in response to a request for one or more specific types or brands of product. An example of a timing substitution 1808 which may be utilized to generate the set of permutated inquires 1811 may include offering more than one option for the timing of delivery, such as “Expedited”, “1-2 weeks”, “2-4 weeks” and so on. An example of a form substitution 1809 which may be utilized to generate the set of permutated inquires 1811 may include offering bulk product in response to a request for bagged product. An example of a quantity substitution 10 which may be utilized to generate the set of permutated inquires 1811 may include “upsize” requests, e.g., creating a request for 4 tons of product simultaneously with each request for 2 tons of product. It should be understood that pricing of different combinations of these parameters may be varied. Specifically with reference to timing options, the pricing offered to a producer or a consumer may be varied according to a fixed schedule, or with reference to an external index, such as a Consumer Price Index or publicly available commodities index.
The examples of how the set of permutated inquires 1811 may be generated based on the various factors discussed above are not intended to be limiting and other factors may be utilized depending on the intended application. For example, any number of parameters associated with the consumer inquiry may also be used. In addition, it may also be advisable to limit certain types of permutation to acceptable combinations of parameters. For example, one may limit the list of brands associated with a particular product to an appropriate set. It may also be beneficial to permutate customer preference relating to distribution parameters, to generate requests for product delivered by various modes, such as by truck, railcar or other means, or to generate requests for product delivered using a specific class of vehicle or specific affiliated delivery service provider.
Referring now to
The consumer may then select pickup 2008, immediate delivery 2009 or storage 2010. If the consumer selects a pick-up option 2008, the consumer may make a purchase 2013, the product may be shipped to the pick-up location 2011, the consumer may be billed 2019 and notified 2019 of the delivery. The consumer may then pick-up 2022 the product at the designated location. If the consumer selects immediate delivery 2009, the consumer may make a purchase from the solution set 2053, the product may be shipped to the consumer 2017, optionally through a distribution center 2012, and the consumer may be billed 2020.
If the consumer selects a storage option 2010, the consumer may make a purchase 2053 and the product may be shipped to a distribution center 2012 before being shipped the consumer 2017. Alternatively, the consumer may purchase the product, the product may be stored for the consumer, e.g. at a distribution center, and the consumer may be billed before delivery of the product to the consumer. Alternatively, the consumer may make a contract for future purchase of the product 2014, before purchase 2063 and billing 2018. The analysis may encompass these various options, along with other potential options and present them to the consumer.
The auto-acceptance criteria for each region 2104, 2106, 2108 may be different from minimums. For example, a minimum quantity may represent the smallest quantity that may be delivered to a location within a region under any circumstances whereas an auto-acceptance quantity may represent a quantity above which any orders received by the system will be automatically accepted. There may be a gap or difference between the auto-acceptance quantity and the minimums in which other factors may be used to determine if a request is quoted or an order is accepted as discussed below. For example, if the minimum delivery to an region is one ton of product and the auto-acceptance level is five tons, a request for 3 tons may not be automatically rejected or accepted by the system, and may be considered on the basis of other orders in the area or after review by an appropriate team member.
Referring now to
If the consumer inquiry is not above the auto-acceptance quantity and is not geographically near other pending shipments, the consumer inquiry may be compared 2204 against a minimum quantity parameter to determine if the consumer inquiry is above the minimum quantity. If the consumer inquiry is above the minimum quantity, the system may adjust quantity to a larger value 2209, and the quote 2211 “Upsized” quantity. If the consumer inquiry is not above the minimum quantity, the system may adjust 2205 the quantity up to the minimum quantity, quote the minimum quantity 2206, and present a solution set of options 2207 to the consumer based on the minimum quantity. Optionally, if consumer inquiry is below the minimum, the system may offer to notify 2208 the consumer if others in the area make similar requests, and the economics of delivering to that location may thereby improve. Combinations of these channels may also be appropriate in some instances. For example, the system may offer notification if others in the area also request product allowing a smaller delivery, while simultaneously quoting a larger quantity.
A method consistent with the present disclosure may also or alternatively include an iterative process for generating a solution set or set of options. One embodiment 2500 of such a method is shown in
The consumer interface 802 may be configured to allow the user to input his or her own sorting and/or filtering criteria and to further refine the solution set 2506 using demand parameters 808 According to another embodiment, consumer interface 802 may be configured to generate a new consumer inquiry as (illustrated by arrow 2509) which may be used to generate a new solution set. The sorting and/or filtering may continue until the consumer is satisfied and proceeds to selection of product and delivery 2511 and order fulfillment 2512, or a quote may be sent without being requested (e.g., a confirming e-mail showing a customized e-mail quote 2510 which may contain elements of the solution set presented to the consumer).
While the embodiments described above may be directed to the benefit of a consumer, the present disclosure may also be used by a producer for the benefit of a producer, or by a distributor for the benefit of a distributor. While some of the embodiments described herein may continue to use a consumer inquiry as an example, such systems and methods may also be equally applied for the benefit of a producer or distributor. Also, while the embodiments described herein may be described in the context of a transaction between a user and a producer, the present disclosure may also be used in the context of an auction. For example, a consumer or a group of consumers could use this analysis system to conduct an auction whereby producers and/or distribution intermediaries are bidding competitively for the right to supply to that consumer. Similarly, a producer or group of producers could use this analysis system to conduct an auction whereby consumers and/or distribution intermediaries are competitively bidding for the opportunity to buy product and/or services. Finally, a distribution intermediary may conduct auctions whereby consumers and/or producers are competitively bidding for product contracts and distribution services. It should be understood that such auctions may be conducted as forward auctions, reverse auctions, dutch auctions and other auction formats.
Referring now to
In the illustrated exemplary embodiment, the widget 2801 on a given user's machine may then transmit 2802 a request, which may represent a consumer inquiry as previously described, to a central system. The central system may include an analysis system 200 configured to generate a solution set of options which may be transmitted back to the widget 2801 for presentation to the user 2803. The user may make a selection 2804, which may be transmitted to the central system 2805. Optionally, upon receipt of the selection 2804, the order may be processed 2806. According to one embodiment, the procurement widget 2501 may comprise location based information on the consumer that may be entered by the consumer, or may be autonomously developed, such as by sensing the consumer's location from his IP address.
According to a further embodiment 2900, a method consistent with the present disclosure may be configured to automatically monitor a product level and generate a consumer inquiry upon meeting or exceeding a minimum threshold level. Referring to
The level monitoring device and/or the central system may generate a signal to notify the consumer that the minimum quantity storage threshold has been reached and/or exceeded. The central system may also present the consumer with a solution set 2905 for selection 2906 by the consumer. The selection may be transmitted 2907 to the central system and the order may be filled 2908. In one embodiment, the consumer may provide the central system with demand parameters (e.g., price parameters, delivery time parameters, etc.) that the central system may utilize to automatically generate a purchase order, for example, to refill the storage system with the lowest delivered cost option according to pre-established criteria.
One embodiment 3000 of a multi-layer marketing widget consistent with the present disclosure is shown in
A multi-layer marketing widget consistent with the present disclosure may be used in a successive sequence of referrals, for example from an original user or recipient of the widget to Friend A, to Friend B, to Friend C . . . Friend N, where each person or entity in the referral chain receives some form of compensation. For example, users of the system may be compensated for referring a friend, and also for the referrals generated by that friend, within a multi-layer marketing compensation arrangement.
Another embodiment 3200 a method for linking a specific, delivered type of distributed product (for example, but not limited to, a fuel) to an associated product consuming device is shown in
Another embodiment consistent with the present disclosure may also or alternatively include a capability for aggregating delivery of goods and/or services purchased by one or more users. Such a pooling activity may allow one or more users to pool delivery of their purchases to achieve savings in delivery costs and/or service costs. For example, biomass heating fuels may be delivered by weight, e.g., ton and/or volume, e.g., cord. Delivery of bulk quantities of such biomass heating fuels on a truck may present unique distribution challenges. Optimizing trucking parameters, for example, loading a truck for delivery of a truckload to one or a few geographically close delivery locations, may decrease the delivery costs of the biomass heating fuels. Achieving a truckload may be accomplished by pooling shipments of one or more consumers. Pooling consumer goods is not limited to biomass fuels. A biomass fuel is only one illustrative embodiment of goods that may be shipped to a user and may therefore benefit from pooling shipments.
A system and method for aggregating delivery of goods or services may be implemented using an aggregated delivery coordination system accessed through a computer network by users interested in participating in pooling activities. Similar to the analysis system 200 described above and shown in
One embodiment of the method for aggregating delivery of goods or services is illustrated generally in
The aggregate delivery coordination system presents 8014 pooling activity information to the users in response to the user inputs representing interest. The pooling activity information may include lists of existing pooling activities that a user may join as well as the goods or services associated with those existing pooling activities and the cost and available quantity of those goods or services. The pooling activity information may also include information for starting a new pooling activity, such as available goods/services, cost and delivery locations. The pooling activity information may further include maps representing user locations, delivery locations, and existing pooling activities associated with those users and/or delivery locations.
The coordination system also coordinates 8016 pooling activities between respective groups of the users to establish pooling activity delivery options aggregating delivery of goods or services for the respective groups. Coordinating pooling activities may include facilitating communications between users within a group of users interested in one of the pooling activities, for example, between a user wishing to join a pooling activity and a pooling activity coordinator. Coordinating pooling activities may also include providing information for determining if users should join certain pooling activities, for example, based on the type of goods or services, an available quantity, a delivery location, and/or a cost.
The coordination system further notifies 8018 the respective groups of users of completed pooling activities and the delivery options established for those groups. After a delivery option has been established by a pooling activity, the pooling activity may be completed or closed, for example, by the pooling activity coordinator. Notifying users of completed pooling activities may include requests for confirmation of participation, requests for payment, or notices of delivery.
In one embodiment described in greater detail below, the aggregate delivery coordination system receives user inputs, presents pooling activity information, and coordinates pooling activities via a web-based interface.
As used herein, a coordinator may be responsible for coordinating a pooling activity, e.g., a pooling of goods for a truckload and/or an aggregation of services. A coordinator may initiate a truckload and/or may coordinate contents of a truckload. A coordinator may take action to allow a user to participate in a delivery or route. A coordinator may take action to disallow a user from participating in a delivery or route. In an embodiment, a coordinator may be a consumer. A coordinator may have financial responsibility for a truckload and may be provided consideration for the coordination services. In another embodiment, a coordinator may be responsible for coordinating at least a portion of a shipment or at least a portion of a route.
As used herein, a drop location, i.e., a delivery location, may be any location where a truck may unload or be unloaded. For example, a drop location may include a church, a parking lot, a school, a business or the like. A drop location may be a distribution center. A drop location may be used once or may be used multiple times. A drop location may be qualified based on equipment and/or services available. Equipment and/or services may include loading docks, forklifts, pallet jacks, ability to accommodate trucks of a particular size, etc.
The Map page may further include a legend 3504. The legend 3504 may include icons for a user (“You”) 3504a, Other Users 3504b, Drop Locations 3504c and Truckloads 3504d. The You 3504a and Other Users 3504b icons may be further differentiated by color. Any one or more icons may be positioned on the map 3502. The position of each icon may indicate its approximate geographic location. For example, the Map page shown in
In an embodiment, the Map Page 3402 that the user first encounters may include the map 3502 without icons positioned on the map. The user may be provided user-selectable options. User-selectable options may include creating a person icon, e.g., You, becoming a drop location, finding a drop location, emailing to friends and/or going to a forum. In this manner, a user may initiate a pooling activity.
The Map page may further include a listing 3506 of distribution centers and/or drop locations. The listing 3506 may include menus, as will be discussed in more detail below. The Map page may include a list of user-selectable options 3507 related to drop locations and distribution centers. For example, a user may join a distribution network, e.g., add a drop location and/or distribution center, and/or arrange a truck to a delivery location.
The Map page may include a user-selectable geographic location signifier 3508 such as a Zip Code. The geographic location signifier 3508 may be used to define an approximate center of the map 3502 illustrated on the Map page. The geographic location signifier 3508 may correspond to a location of the user. The Truckload and Drop location and/or Distribution Center icons, if any, that are closest, geographically, to the user-selected geographic signifier may be highlighted. The Map page may further include one or more user-selectable menus, e.g., menus 3510a, b and c.
In an embodiment, the menus 3510a, b, c, may be pull-down menus. A first menu 3510a may include distances, e.g., radii about the geographic location signifier 3508. These distances may provide a scale and a range for the map 3502 displayed on the Map page. The distance menu 3510a may include a selection of predefined distances and may have, as a default value, ALL distances.
A second menu 3510b may include a list or lists of products, for example, heating fuels such as biomass. The list is not limited and may include any products and/or services that may be available. The products and/or services may be grouped in categories. A user may select a category for display of products and services within that category. The menu may have, as a default value, ALL categories and/or all products and/or services. A third menu 3510c may include a list of brand names and/or trade names related to the products and/or services available. This menu 3510c may likewise default to ALL names.
The exemplary pooled shipping site map depicted in
The popup balloon 3812 may include an identifier for the drop location, e.g., “Windham Drop Location.” The popup balloon 3812 may further include geographic information such as a town and state for the drop location and/or a distance from the user-selectable geographic location. The popup balloon 3812 may include a per truck drop fee associated with the drop location. The per truck drop fee may be dynamically updated, e.g., as users join and/or leave a truck. The popup balloon 3812 may include other information such as a drop location rating. The drop location rating may include ratings and/or comments from one or more users. The popup balloon 3812 may include a user-selectable link to a drop location rating entry page, a Drop Location Forum and a link to other functions such as scheduling a new truck.
A Join Truckload 3406 page may be reached from the Map page 3402 when Join this Truck is selected. Join this Truck may be selected from the listing 3506 of distribution centers and/or drop locations, e.g., menu item 3806, and/or a Truckload popup balloon, e.g., popup balloon 3912. At the Join Truckload page 3406, a user may join a truckload. The user may be required to specify a quantity to be shipped. The user may also be provided with any terms and conditions that relate to a transaction. For example, a user may be provided with purchase and/or shipping terms and conditions.
A Truckload Coordinator may coordinate a total quantity of goods to be shipped on a truck. A user may join a truck regardless of a quantity of goods currently committed to a truckload. The Truckload Coordinator may manage which goods are ultimately shipped on a particular truck. The number of users that may join a particular truck may be limited. For example, the number of users may be limited to five. From the Join Truckload page 3406, a user may send a personal message to the Truckload Coordinator. User entries via the Join Truckload page 3406 may be provided to the Truckload Coordinator, via email for example, and/or posted to a forum page for that truckload.
The Join Truckload page 3406 may include an acknowledgement page. The acknowledgement page may include a link to the forum page for that truckload. The acknowledgement page may further include an option for sending emails to friends. This option may facilitate filling a truck with goods for delivery local to the user and thereby increase the likelihood that a truck will be full.
A New Truckload page 3408 may be reached from the Map page 3402 when Schedule a New Truck is selected. Schedule a New Truck may be selected from the listing 3506 of distribution centers and/or drop locations. For example, selecting a drop location icon on the map 3502 may result in menu item 3806 being displayed in the listing 3506 of distribution centers and drop locations. This menu item 3806 may include a user-selectable option for scheduling a new truck.
The New Truckload page 3408 may include a list of options and price per unit for a product and/or service. The options and price per unit may be based on a brand, mode and/or geographic location of the user. Mode may include the type of truck, e.g., flat or box. The price per unit may be calculated and/or recalculated when the geographic location of the user differs from the geographic location of the Drop Location. The Drop Location fee may not be included in this calculation and may be indicated separately, as discussed above. The user may specify and/or select a product and/or service name, brand, destination, truck description and mode, e.g., flat or box truck, depending on Drop Location capability. Drop location capability may depend, for example, on whether the drop location has a loading dock and/or a forklift. The user may provide comments in the New Truckload page 3408.
The New Truckload page 3408 may provide terms and conditions to the user. A capacity of a truck, i.e., quantity available for a truckload may also be specified. Such capacity information may be provided to a Truckload Coordinator. Similar to the Join Truckload page 3406, the New Truckload page 3408 may include an acknowledgment page. The acknowledgement page may include a link to a forum page for the new truckload and an option for sending emails to friends.
The popup balloon 4012 may include an identifier for the distribution center, e.g., “Raymond Distribution Center.” The popup balloon 4012 may further include geographic information such as a town and state for the distribution center and/or a distance from the user-selectable geographic location. The popup balloon 4012 may also include other information such as a per truck drop fee associated with the distribution center. The popup balloon 4012 may include a user-selectable link to a Drop Location Forum and a link to other functions such as scheduling a new truck.
Continuing with
A Truckload Status page 3412 may be reached from the Map page 3402, for example, when a user selects a truck name from the drop location/distribution center menu, e.g., menu item 3806. The Truckload Status page 3412 may include a number of parameters related to the truckload. The parameters may include the truckload identifier, e.g., name; truckload status, e.g., full, partially full; a description and/or comment field; destination; brand or brands of product in the truckload; capacity remaining and name of the truckload coordinator. The Truckload Status page 3412 may further include a link to a Truckload Forum associated with that truckload. For each person with products associated with the truckload, name, product, quantity, approval and payment status may be indicated. When the truckload status becomes full, an email notification may be provided to the truckload coordinator.
An Approval page 3414 may be reached from and return to the Truckload Status page 3412. The Approval page 3414 may include an editable email to a customer. The editable email may include approval status, for example. The Truckload Coordinator may adjust user quantity values at the Approval page 3414. For example, a user quantity may be adjusted to conform to volume and/or weight requirements. For example, a product, such as biomass fuel, may be purchased in multiples of a weight value such as a ton. In another example, a product may be restricted to a particular physical dimension, e.g., skid and/or pallet size. Adjustments in user quantities may be communicated via the editable email to the customer. A customer may also be requested to invite friends to join, e.g., via the editable email.
A Release Truckload page 3416 may be reached from and return to the Truckload Status page 3412. The Release Truckload page 3416 may include an updated quote for each product in a truckload. For example, a quote may be received from an MS-SQL server that does not include the Drop Location fee. This quote may be updated to include the Drop Location fee. The Drop Location fee may be divided proportionally between truckload users according to a quantity of product associated with each user. The Release Truckload page 3416 may further include a description/comment field. A confirmation process, discussed in more detail below, may be initiated at the Release Truckload page 3416. An email may be sent to all users with final pricing information and a request for order confirmation. A user may change and/or cancel an order prior to release of a truckload.
The Truckload Coordinator may access the Truckload Release page 3416 after approval of the final customer for a truckload. The Truckload Release page 3416 may display final pricing and the Truckload Coordinator may then release the truck, i.e., truck is ready for dispatch for delivery. Confirmation emails may be provided to all customers associated with the truckload. Customers may access the Truckload Status page 3412 and confirm their orders. When the last customer confirms, payment request emails may be sent to all confirming customers. Customers may then return to site to make payment. The truckload may be dispatched when a last payment is received. Once delivery has been made, a supplier or suppliers may be notified that delivery has been made. For example, the Truckload Coordinator may provide a delivery acknowledgement to the supplier or suppliers. Upon receipt of the delivery acknowledgement, a Drop Location payment may be provided to a Distribution Center and/or Drop Location Coordinator. The Truckload Coordinator may receive compensation for coordinating the truckload.
If the expiration period has not passed (i.e., the quote is under the number of days), the truck may be closed using a Close Truck link in a truck status page 6330. A confirmation email may then be sent and may include a link to a pooling confirmation page 6340. Whether the quote is under the number of days may then be determined 6349. If the expiration period has passed, a quote expired page may be displayed and an email may be sent to a truck coordinator 6355. If the expiration period has not passed, flow may proceed to a confirm pooling order page 6350. Whether an order is confirmed may then be determined 6357. If an order is not confirmed, the truck may expire 6365. If the order is confirmed, an order record may be set to a new pooling status and a user may be redirected to a truck status page that may indicate that the user is confirmed 6360. A payment confirmation email may then be sent 6360. Whether a last confirmation occurred may be determined 6367. If the last confirmation occurred, a truck confirmation email may be sent to each member 6370. A member's order record may then be changed to confirmed status 6370.
Exemplary screen shots that may be useful for facilitating flow of step 6310 are shown in
Exemplary screen shots that may be useful for facilitating flow of step 6320 are shown in
In an embodiment, each forum may include a method for prohibiting spamming of the forum. For example, each forum may include a spam filter.
In another embodiment, a coordinator, drop location and/or distribution center may be provided an associated rating. The rating may include feedback from one or more users. Each rating may be linked to the associated coordinator, drop location and/or distribution center. Each rating may be accessible by a user for view and/or comment.
In yet another embodiment, pooling a truckload may be an iterative process. A coordinator may be selected. A drop location may be selected. The coordinator may sign on. One or more users may sign on. A user may be accepted or rejected. When a truckload is complete, a confirmation request may be provided to each accepted user. Each accepted user may confirm. When all accepted users have confirmed or after a time period, a payment request may be made to each confirmed user. When all confirming users have made payment, the truckload may be dispatched.
In another embodiment, all emails may be BCC'd to a System administrator logging ID.
In an embodiment, a truckload pooling system may interface with an application service provider, as discussed above. Costs of goods and/or services may be updated dynamically. Delivery costs, including drop location fees, may be updated dynamically and may be based on the goods, quantities of goods, suppliers of the goods and the drop location. In this way, real time quotes including costs of goods and delivery may be provided.
In another embodiment, a process for qualifying drop locations may be provided. Factors may include equipment available at the drop location, accessibility and ease of truck movement at the location.
Embodiments of the methods described above may be implemented as software or a computer program product for use with a processing system or computer. Such implementation may include, without limitation, a series of computer instructions that embody all or part of the functionality described herein. The series of computer instructions may be stored in any machine-readable medium, such as semiconductor, magnetic, optical or other memory devices, and may be transmitted using any communications technology, such as optical, infrared, microwave, or other transmission technologies. Such a computer program product may be distributed as a removable machine-readable medium (e.g., a diskette, CD-ROM), preloaded with a computer system (e.g., on system ROM or fixed disk), or distributed from a server or electronic bulletin board over the network (e.g., the Internet or World Wide Web). Alternative embodiments of the invention may be implemented as pre-programmed hardware elements or as a combination of hardware, software and/or firmware.
According to one aspect of the disclosure, a computerized method is provided for aggregating delivery of goods or services. The method comprises: providing access to an aggregate delivery coordination system on a computer network; receiving user inputs to the aggregate delivery coordination system from a plurality of users, wherein at least some of the user inputs represent interest in participating in pooling activities for aggregating delivery of the goods or services; presenting pooling activity information, using the aggregate delivery coordination system, to at least some of the users in response to the user inputs representing the notification of interest in participation in pooling activities; coordinating pooling activities between respective groups of the users to establish pooling activity delivery options aggregating delivery of goods or services for the respective groups of the users, the delivery options including a specified good or service, cost and at least one delivery location; and notifying the groups of the users of completed pooling activities and the delivery options established for the completed pooling activities.
According to other aspects of the disclosure, a computer program product and computerized system are provided for performing the operations of the method for aggregating delivery of goods or services.
While the principles of the invention have been described herein, it is to be understood by those skilled in the art that this description is made only by way of example and not as a limitation as to the scope of the invention. The features and aspects described with reference to particular embodiments disclosed herein are susceptible to combination and/or application with various other embodiments described herein. Such combinations and/or applications of such described features and aspects to such other embodiments are contemplated herein. Other embodiments are contemplated within the scope of the present invention in addition to the exemplary embodiments shown and described herein. Modifications and substitutions by one of ordinary skill in the art are considered to be within the scope of the present invention, which is not to be limited except by the following claims.
This application claims the benefit of the filing date of co-pending U.S. Provisional Patent Application Ser. No. 61/109,282, filed on Oct. 29, 2008, the teachings of which are fully incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61109282 | Oct 2008 | US |