The present disclosure relates to systems used for cooling enclosures, and more particularly to a system and method for dividing and guiding air flow being used to cool an electronics equipment enclosure.
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
There is a growing interest in maximizing the efficiency of cooling systems used to generate a cooling air flow through electronic equipment enclosures. Maximizing the cooling system efficiency is important to minimize energy costs associated with operating the cooling system.
Many electronic equipment enclosures incorporate a plurality of fans positioned adjacently to one another to either draw air into an enclosure (i.e., a “push” configuration) or to exhaust air out from the enclosure (i.e., a “pull” configuration). Some equipment enclosures use both a “push” type cooling system at one end of the enclosure and a “pull” type cooling system at the other end of the enclosure.
With such cooling systems, the fan inlet and exhaust air flows are complex and highly dependent on the fan surroundings, as well as on the specific impeller or blade geometry of the fan. Accordingly, there is an interest in maximizing the flow efficiency of such fans and to ensure that adjacently positioned fans are not disturbing each other by creating air flows that generate unwanted air flow turbulence and uneven air flow.
In one aspect the present disclosure relates to a cooling system. The cooling system may comprise a fan having a plurality of fan blades disposed in a housing, with the fan having an input side and an exhaust side. A flow divider component may be disposed parallel to an axial center of the fan and positioned adjacent to the housing of the fan, and adjacent to one of the input side or the exhaust side. The flow divider may further project away from the fan blades for channeling an air flow created by the fan blades.
In another aspect the present disclosure may comprise a cooling system for an electronics enclosure in which the system includes first and second fans each having a plurality of fan blades disposed within a respective housing. The fans may each have an input side and an exhaust side. A plurality of flow divider components may be disposed parallel to axial centers of the fans and positioned between the fans, and adjacent to the input and exhaust sides of the fans, to project away from the fan blades. The flow divider components may channel air flows created by the fan blades along longitudinal axes extending through an axial center of each of the fans.
In still another aspect the present disclosure may relate to a method for forming a cooling system that involves providing a first fan having a first housing, providing a second fan having a second housing, and disposing the fans adjacent to one another. A flow divider component may be arranged between the fans so that the flow divider component extends generally parallel to a direction of air flow through the fans, the flow divider restricting intermixing of air flows generated by the fans.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.
Referring to
The cooling system 10 in this example includes five fans 14a-14e supported within the chassis 12. However, it will be appreciated that the cooling system 10 is not limited to use with only five fans. The principles of the present disclosure are applicable to cooling systems employing from one fan to virtually any number of adjacently positioned fans, either in single rows, single columns or with a uniform or non-uniform configured grid of rows and columns of fans. The specific configuration and number of fans used will depend primarily on the cooling requirements of the electronic equipment being cooled and the configuration of the chassis supporting the equipment.
The cooling system 10 of
Referring to
Each fan 14 has fan an impeller 24 having a plurality of blades 24a that is driven by a motor 26. The motor 26 rotates the impeller 24 and the blades 24a generate an air flow through an axial center of the fan 14. Each fan 14 further has a housing 28 within which the motor 26 is supported. Each flow divider panel 20 may be formed by a panel or plate of rigid material, for example steel, aluminium, plastic, composites, etc. The principle requirement is that the flow divider panel 20 be relatively rigid so that it cannot flex towards or away from its adjacent fan 14 while the fan is operating. The flow divider panel 20 may have tapering edges 22. Forming or providing the flow divider panels 18 or 20 with the tapering edges 22 provides the benefit of reducing any potential mechanical interference issues with other components or portions of an enclosure in which the chassis 12 is secured. Also, while the flow divider panels 18 and 20 in this example are identically constructed, it is entirely possible that the flow divider panels 18 could be constructed with a shape and/or with dimensions that differ from the shape of the flow divider panels 20.
With further reference to
Referring to
In
Referring further to
As described above, the air flow divider panels 18 and 20 help to improve the efficiency of the fans 14 by reducing intermixing of the air flows drawn in, or exhausted by, the fans 14, as well as by reducing turbulence in the air flows being drawn into or exiting from the fans 14. In practice, the intake and exhaust air flows created by each fan 14 are complex and highly dependent on the fan's surroundings, as well as on the specific blade geometry of the fan 14. Due to the circular structure of the blades 24a of each fan 14, the separation distance between the blade tips of two adjacent fans is smallest along the centerline 32 (
In a conventional cooling system where a set of fans are closely spaced next to one another, the inlet and exhaust air flows from adjacent fans can cause interference between the fans. This can lead to reduced performance due to increased turbulence and uneven air flow. In essence, the air flows from adjacent fans can be thought of as “competing” with one another. This is due in part because inlet side air flow patterns from each fan create low pressure regions around the fan's perimeter. This effectively pulls air flow from all directions, including directions that are not aligned close to the axial center of the fan. Thus, in a conventional cooling system, when two fans are placed in close proximity, at their inlet (i.e., intake) sides, the fans will each be pulling air from the volume around its periphery, but the volume between the fans will be shared by the two fans. This is what causes interference between the two air flows being generated by the two adjacent fans, and thus reduces performance for both adjacently positioned fans.
The flow divider panels 18 provide the benefit of effectively restricting the air flow volume available to a specific fan 14 as it pulls air through its housing 28 on its inlet side 16a. This serves to create air flow streams that enter each fan's 14 housing 28 along paths that are more closely aligned with the axial centerline 30 of each fan.
On the exhaust sides of a conventional cooling system with adjacently placed fans, the air flows generated by the fans will not be closely along the axial centerline of each fan, but rather will radiate out from each fan along a radial/helical pattern that diverges away from the axial centreline of the fan. Thus, when two fans are placed in close proximity to each other, the exhaust flows from the two fans 14 will be partially “against” each other and will become partially intermixed. This leads to increased turbulence in the exhaust air flows and a decrease in fan performance. The exhaust side air flow divider panels 20 of the present disclosure help to reduce this interference by constraining the air flow exiting each fan housing 28 so that the exhaust air flow flows along a flow path that is more closely aligned with the axial centerline 30 of the fan 14.
While the fans 14a-14e have been shown arranged in a single horizontal row, it will be appreciated that the air flow divider panels 18 and 20 may be employed with fans that are arranged vertically or even in a grid of fans having both rows and columns.
While various embodiments have been described, those skilled in the art will recognize modifications or variations which might be made without departing from the present disclosure. The examples illustrate the various embodiments and are not intended to limit the present disclosure. Therefore, the description and claims should be interpreted liberally with only such limitation as is necessary in view of the pertinent prior art.
The present application claims priority from U.S. Provisional patent application Ser. No. 61/196,436, filed Oct. 17, 2008, the entire contents of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61196436 | Oct 2008 | US |