Field of the Invention
The present invention relates generally to alarm systems and more particularly to a system and method where any activation of an existing alarm system inside a structure can be relayed to an external unit that can flash or provide an audio alert of the internal alarm condition.
Description of the Prior Art
Numerous alarm and emergency indications systems are known in the art. Examples include burglar alarms, smoke detectors, carbon monoxide detectors, natural gas detectors and many other alarms or safety devices.
While some burglar alarms have exterior flashers or sirens, most do not. Most smoke detectors and carbon monoxide or other gas detectors are totally interior. It would be very advantageous to have a device that acted as an extension of an existing alarm device to indicate on the exterior of a structure that there is a problem within.
The present invention is related to an extension system that takes an interior alarm condition and extends it to the exterior of a structure. In various embodiments, the present invention is a system and method that links to an existing alarm (smoke detector, burglar alarm, etc.) and activates a flashing mode in one or more exterior lights or an exterior siren. Thus, during an alarm condition within the house or other structure, a neighbor or anyone passing by can become aware of the alarm condition. This signaling alerts people in the surrounding area of a situation within the building that may require emergency assistance.
The preferred embodiment includes two units, an alarm detection or trigger unit, and a remote receiver light unit. The trigger unit detects an alarm by sensing an audio signal, a light signal or any other signal from the existing alarm. Typically, the trigger unit is not directly coupled to the alarm. Warranties and contracts on many burglar alarm systems prohibit direct connection. Smoke alarms are generally test laboratory approved and also cannot be tapped into. The trigger unit therefore picks up a light signal or an audio alarm from the interior alarm unit. Upon detection of an alarm condition, the trigger unit sends a coded signal to the remote receiver. This is done using a wireless technique such as RF. The remote receiver is normally located on the exterior of the structure; however, it can also be located in a window or other convenient place where it can signal to the outside world. Upon receiving the correct coded signal, the receiver unit activates and causes lights to flash along with an optional audio signal.
Attention is now directed to several drawings that illustrate features of the present invention.
Several illustrations have been provided to aid in understanding the present invention. The scope of the present invention is not limited to what is shown in the figures.
The present invention relates to a system for extending an internal alarm from inside a structure to the outside so that neighbors or passersby become aware of a problem inside the structure.
The system includes at least two units: 1) an alarm detection trigger unit, and 2) a remote receiver and annunciator unit.
Trigger-Transmit Unit (T-Tx Unit)
There can be any number of embodiments of the trigger unit 2. At a minimum, the unit needs power (A/C and/or battery), a method to detect an external alarm condition, and a code transmitter. If a/c powered, a battery backup can be used. The unit can also include a rechargeable battery.
The trigger unit may be located right next to, or at least near, the alarm source. For instance, in the case of an extension to a smoke alarm, the trigger unit case can be attached to the ceiling very near the smoke detector. In fact, the trigger unit can even be secured to the smoke detector itself through the use of a clamp. The trigger unit can optionally secure to an existing light socket by having a male light socket adapter as its securing mechanism.
If the alarm is an audible type, an audio detection method is used for the trigger unit. The audio detection electronics can have a simple amplitude range setting that ignores lower level sound thresholds so that the user is less likely to accidentally set off the alarm.
In addition, the audio detection system could implement a time integration of the received audio input. The method of time integration could be either a simple analog type or a digital type. The analog type could employ a very simple op amp integrator and comparator. For digital integration, detected audio signals exceeding the predetermined amplitude threshold would cause a timer to initiate. The received audio can then be analyzed over the specified time window to determine the amount of time, as a percentage, as having the amplitude threshold exceeded. An alarm condition can thus be required to satisfy the amplitude threshold over a prescribed percentage of any received time span. This would then allow for the filtering (and thus ignoring) of any high level noise of short duration (e.g. a barking dog).
A more sophisticated trigger detection method can implement the use of an audio training mode, which could be used to “learn” the alarm signal. This signal can be stored within the unit and used as a match for the incoming audio activation. This method could provide enhanced trigger detection while limiting spurious alarm activation. Also, simple filtering can be used to eliminate lower frequencies such as voices, bumps, footsteps and the like. Optionally, the trigger unit can be wired directly to an alarm activation lead (used to tie all of the alarms in the dwelling together) or directly to a particular alarm.
The trigger unit can have a unique activation code that can be set by the user or set at the factory. This activation code set on the trigger unit would need to be matched to the code set within the receiver light unit. The activation code can range from a simple sequence of coded numbers from a switch to an advanced rolling code such as that used in some garage door openers. The code can be modulated onto an RF or light carrier or transmitted over power lines using pulse width, pulse amplitude, pulse position modulation, phase modulation or any other modulation technique. In particular, the code can be binary, ternary or based on any other number system. The reason for the activation code is to prevent nearby similar units from different buildings from triggering the receiver unit.
To further enhance the reliability of the trigger mechanism, the present invention can include a redundancy of the trigger hardware. For example, two trigger units can be installed side be side in any one location. This provides 2N redundancy, and thus far greater reliability.
Trigger-Transmit Unit Input/Output
Trigger-Transmit Unit I/O can include any, all or none of the following:
In addition, the Shared LED Bank/Numeric Indicator can be used to indicate the mode of operation, a successful reception of a “Learned Alarm” or can provide for any number of diagnostic indications, such as but not limited to, normal operation, low battery indication or tamper mode detection.
The embodiment shown in
Receiver-Light Unit (Rx-L Unit)
There can also be a number of embodiments of the receiver light unit. At a minimum, the unit needs power (a/c and or battery), a light, LED or a fixture for a light, and a code receiver. Additionally, if the unit is mounted outdoors, it needs some protection or weatherproofing.
The receiver light unit can optionally secure to an existing light socket by having a male light socket adapter as its securing mechanism. The receiver light unit can simply be screwed into the fixture. The receiver light unit can then optionally have it's own socket into which a standard type of a light bulb or CFL could be secured. If a/c powered, a battery backup can be used. The unit can also include a rechargeable battery.
The receiver light unit may also just be a stand alone unit that is only battery powered. With the present availability of high intensity LED lighting, a long lasting battery powered unit can attached to any exterior location. To keep the unit out of reach of those attempting to tamper with the unit, the unit can be attached just outside of a window. LEDs and modern integrated circuits are not heavy, hence, the receiver light unit can be optionally secured to the exterior of the structure with an adhesive bond or strap.
Receiver-Light Unit Input/Output
The Receiver-Light Unit I/O can include any, all or none of the following:
The receiver light unit has the ability to receive the activation code sent from the trigger unit. As stated, the path for transmission can be an RF link, over power lines, by light path (possibly infrared) or by any other method used to link a transmitter to a receiver.
Additional Components
Panic Button
One or more “panic buttons” can be placed within the house. The panic button can be a manually operated trigger unit. In the event that the individual is under duress, that person can manually activate the panic button which in turn sends the alarm activation to the receiver light unit. In addition, a user can keep a panic button on their person. Thus in a situation where there is a medical or other type emergency, the person under duress could access the trigger transmit unit. The panic button could be in the form of a dongle that is worn or otherwise. It can be a trigger transmitter unit itself, or it can communicate with a trigger transmitter unit via a second wireless link.
Security
The trigger transmit unit transmits a unique code to the receiver light unit. As discussed, this prevents activation of an alarm mode by another, closely located trigger transmit unit or by a stray RF or light signal. The code can be made highly secure if desired using encryption such as rolling encryption algorithms used in some garage door openers. However, for typical use in a house, an unencrypted code is usually sufficient. The activation code encrypted or not can roll as is known in the art, or simply be a fixed set of digits.
Tamper Proofing
There can be a mode that is only initiated by the trigger transmit unit where the receiver light unit, once securely in place, is put into a tamper proof state. If a tamper condition is detected, a high intensity audible alarm can be activated within the receiver light unit. The receiver light unit can also send a tamper notification back to the trigger transmit unit. This serves to call attention to the attempted interruption in the system. Such tamper detection within the receiver light unit can be accomplished in a number of ways. An accelerometer can be engaged by the trigger transmit unit, or the unit can be sealed with one or more tamper switches. Alternatively, the tamper mode could detect an a/c power loss. Any a/c power interruption by the trigger unit can be sent to the receiver light unit thereby disabling the a/c tamper mode during an a/c power failure.
Control of Pre-Existing Lights
Typically, a flashing light on the Receiver-Light indicates an alarm condition. However, the Rx-L Unit often requires control of the static light condition (ON or OFF). In cases where the Receiver Light Unit installs in series with an existing light fixture, it is desired to leave the power to the pre-existing light fixture ON at all times so that the unit is charging and not running off of the battery. For this reason, the light switch to power the light fixture should always be ON. At the same time, control of the pre-existing light is necessary. Many methods may be used to control the “ON/OFF” condition of the pre-existing light fixture while still having the ON/OFF switch remain ON during the steady state condition. One method to control the pre-existing light fixture is employs the use of power toggling. A simple toggling of the ON/OFF switch from ON to OFF and then back to ON (ON→OFF→ON) changes the ON/OFF state of the light. In such an embodiment, any time that the Rx-L Unit looses power momentarily, the power passed to the light toggles from OFF to ON or visa-versa. Of course, multiple ON/OFF transitions can also be used to change the static light condition. Finally, a remote control (IR or RF) or any other means not specified here can be used to control the static light condition on the Rx-L Unit.
Feedback from Rx-L to T-Tx
As mentioned, the T-Tx Unit likely resides within the residence. Therefore, it is beneficial to feedback diagnostic information from the Rx-L Unit installed outside the building to the T-Tx Unit within the building. Thus, individuals within the building can become aware of any important status information regarding the Rx-L Unit. As mentioned, tamper indication can be fed back to the T-Tx Unit. Another example of pertinent feedback pertains to the simple loss of NC power, which occurs if a user inadvertently turns OFF the power to an external light fixture housing a Rx-L unit. In this case, a notification can be sent back from Rx-L to T-Tx perhaps causing a chirp sequence to sound on the alarm located on the T-Tx Unit.
Extension to the Internet
The alarm extension system can include an extension to the Internet. In this case, any alarm, which is picked up by the Trigger-Transmit Unit, is forwarded, via the T-Tx Unit itself or the Rx-L Unit, to an Internet server. Either the T-Tx Unit or the Rx-L Unit can accomplish the actual connection to the Internet. Either device can have a wired (E-Net, Fiber etc.) or wireless (cellular, 802.11, etc.) Internet connection. As an example, the T-Tx unit can use an 802.11 interface to a wireless router. Or, an Rx-L Unit can be placed right next to the physical Internet interface point (router, switch, modem, etc.), and have a wired connection to it.
The system can be configured so that an alarm indication is transmitted over the Internet, or by cellular telephone to a remote handheld unit such as a smartphone or tablet computer or to a remote computer. Software on the remote device could also log any alarm indications including the type of alarm, the date and time, and any other pertinent information.
Several drawings and illustrations have been presented to aid in understanding the present invention. One with skill in the art will realize that numerous changes and variations are possible without departing from the spirit of the invention. Each of these changes and variations is within the scope of the present invention.
This is a continuation of application Ser. No. 14/242,710 filed Apr. 1, 2014, now U.S. Pat. No. 9,330,559 issued May 3, 2016. Application Ser. No. 14/242,710 is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4612535 | Sequin | Sep 1986 | A |
4996517 | Kringen | Feb 1991 | A |
5177461 | Budzyna et al. | Jan 1993 | A |
5745040 | Loughridge | Apr 1998 | A |
6114948 | Astell | Sep 2000 | A |
6222455 | Kaiser | Apr 2001 | B1 |
6690288 | Waddell | Feb 2004 | B1 |
8947230 | Gettings et al. | Feb 2015 | B1 |
9235975 | Gettings et al. | Jan 2016 | B2 |
9280681 | Gettings et al. | Mar 2016 | B2 |
9324227 | Gettings et al. | Apr 2016 | B2 |
20130002440 | Crossman | Jan 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
Parent | 14242710 | Apr 2014 | US |
Child | 15144110 | US |