SYSTEM AND METHOD FOR AN ADJUSTABLE CONNECTOR

Abstract
A coupler system which changes the relationship of two or more rotating shade tubes is disclosed. The invention enables the installer to compensate for the height of the hembar by rotating the tube forward or backward any desired number of degrees. The coupler includes a cam which is adjusted by opposing set screws. The cam may be rotated by about 15 degrees in each direction. Adjusting the cam adjusts the second tube without adjusting the first tube (e.g., the drive or motor end tube). The adjustment device is configured to rotate the cam which, in turn, rotates the second tube to align a second hem bar hanging from the second tube with a first hem bar hanging from the first tube. The adjustments may be accomplished with minimal or no removal or adjustment of the other shades, and with minimal friction on the aligned shade.
Description

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the invention may be derived by referring to the detailed description and claims when considered in connection with the Figures, wherein like reference numbers refer to similar elements throughout the Figures, and:



FIG. 1 is an exploded view of a multi-banded shade assembly including a coupler in accordance with an exemplary embodiment of the present invention.



FIG. 2 is a male portion of a coupler in accordance with an exemplary embodiment of the present invention.



FIG. 3 is a female portion of a coupler in accordance with an exemplary embodiment of the present invention.





DETAILED DESCRIPTION

The detailed description of exemplary embodiments describes the exemplary embodiment by way of illustration and its best mode. While these exemplary embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, it should be understood that other embodiments may be realized and that logical and mechanical changes may be made without departing from the spirit and scope of the invention. Thus, the detailed description herein is presented for purposes of illustration only and not of limitation. For example, the steps recited in any of the method or process descriptions may be executed in any order and are not limited to the order presented. Moreover, any of the functions or steps may be outsourced to or performed by one or more third parties. Furthermore, any reference to singular includes plural embodiments, and any reference to more than one component may include a singular embodiment.


In general, the present invention includes, with respect to FIG. 1, a novel coupler system 40 which enables the efficient adjustment of tubes (e.g., shade tubes 15, 20). Shade tube system 10 may include, for example, a first shade tube 15, a second shade tube 20, a bracket 25, and coupler 40. Coupler 40 may include, for example, an adjustable head component 48, a cylindrical shaft 46 which is received into opening 27 of bracket 25 and two drive shafts 42, 44 (e.g., square drive shafts) which are respectively received into shade tubes 15 and 20. While a shade tube system 10 is discussed herein, one skilled in the art will appreciate that coupler system 40 may be incorporated into any other system in which alignment of two or more parts is desired. Moreover, one skilled in the art will appreciate that shade tubes and coupler 40 may include other configurations, integrated components, non-integrated components, or other means for attachment. For example, shade tubes may include the shafts which are received into head component 48 and/or cylinder 46.


Coupler system 40, in one embodiment, includes two main components, namely a male portion 70 and female portion 80. One embodiment of male portion 70, with respect to FIG. 2, includes a shaft 56 and a cam 54. One embodiment of female portion 80 includes an inlet 62 configured to receive shaft 56, a recessed area 63 configured to receive cam 54, and inlets 58, 60 configured to receive screws 50, 52.


The coupler adjustment changes the relationship or aspect ratio of two or more rotating shade tubes 15, 20. Coupler 40 includes an adjustable shade tube connector which couples two adjacent shade tubes together. The invention includes one or more couplers 40 associated with each tube, and the couplers may be temporarily or permanently affixed to one or more ends of each tube, or anywhere along the tube. The coupler may be located on either end of the shade band tube 15, 20, thereby allowing the installer to simply move the coupler or flip the tube in order to adjust the appropriate shade. The coupler is scalable to facilitate the adjustment of multiple sizes of shade tubes. Coupler 40 and/or any of its components may be comprised of any material or composite. In an exemplary embodiment, the components are comprised of machined brass and bronze (or any material of similar strength) and the components may be cast from mold.


A standard coupler includes a cylindrical shaft 46 with two square drive shafts 42, 44 emanating from both sides of the cylindrical shaft. However, when incorporating the head portion 48 of coupler 40, as set forth in the present invention, head portion 48 causes the coupler 40 to become asymmetrical. To compensate for the asymmetrical design and to avoid any gaps between the shades, the invention also includes a shade tube 15 having a recessed portion within its end face 18, such that shade tube 15 reciprocally receives head portion 48. More specifically, and in an exemplary embodiment, end face 18 of shade tube 15 includes an opening 17 for receiving square drive 42, and various projections 16, 19 which are configured to allow head 48 to lay partially or fully within end face 18. In one embodiment, coupler system 40 includes a standard tube square drive 44 on one side and square drive 42 on the adjustable side that is recessed into end face 18 of shade tube 15. In this configuration, square drive 42 is configured such that the gap between the shades is substantially uniform. Because one side of the coupler (having a square drive and head component) may be larger than the other side (having only a square drive), in one embodiment, a further recessed square drive on one or both sides of the coupler 40 allows for uniformity of the space from the center line of the center support bracket 25. In an exemplary embodiment, the non-adjustable square drive 44 may be lengthened or further recessed to enable coupler 40 to be more symmetrical. Both square drive shafts which are configured to be further recessed into shade tube may be incorporated into the adjustable and non-adjustable sides of coupler 40.


In one embodiment, the coupler includes a opposing notches (e.g., on each half), electronic device or other indicator for setting the coupler in a “normal” setting. Coupler 40 may not need to be adjusted away from the normal setting, unless another level of precision is needed, then the set screws 50, 52 can be rotated, thereby adjusting the coupler away from the normal setting. In one embodiment, such indicator shows misaligned notches, analyzes set screws 50, 52 and/or cam 54 to determine when coupler has been adjusted away from a normal setting.


Coupling of the shade bands enables multiple shade bands to be driven rotationally by the same source (e.g., manual chain, cord, or motor). In one embodiment, two to six (or more) shade bands may be coupled to one motor. When adjusting a multi-banded group, the installer may start at the idle end and work across to the drive band. The side of the coupler closest to the motor may be held stationary by the motor brake/manual shade clutch. With each band, the amount of force needed to rotate the band to alignment will grow, but the force should not be excessive.


The system and method enables the installer to compensate for the height of the hembar by rotating the tube forward or backward any desired number of degrees. This adjustment is applied substantially evenly across the entire width of the shadeband, and compensates for the height of the shadeband. The adjustment is completed with minimal or no effective changes to the shape of the rollertube, thereby minimizing the differences between adjacent shadebands. The adjustments may be accomplished with minimal or no removal or adjustment of the other shades, and with minimal friction on the aligned shade.


In one embodiment, two set screws 50, 52 (as shown in FIG. 1) support cam 54 of male portion 70 (FIG. 2) by pushing on cam 54 (e.g., half disc) inside recessed area 63 of female housing portion 80 (FIG. 3). One skilled in the art will appreciate that screws may be replaced or supplemented by any device which is configured to exert a force and/or rotate on male portion 70 or cam 54. Set screws 50, 52 support the weight and force of the shade and motor, while allowing for adjustment of the rotational alignment using the same set screws 50, 52. One of the two set screws supports the rotational force of the shade tube system on the cam, while the other set screw creates an opposing force that tensions to lock the two set screws and prevents backlash.


The present invention allows for a tighter coherence between the positioning of shadebands between two adjacent roller tubes using the same tube design. In one embodiment, the coupler transfers partial or full torque to the next shadeband assembly and does not provide any additional gearing. The range of adjustment is established by the angle between the ends of cam 54 (or the surfaces above inlets 58 and 60 in FIG. 3), and the length of the set screws 50, 52. In one embodiment, cam 54 is adjusted about 15 degrees in each direction for a total adjustment of 30 degrees.


Benefits, other advantages, and solutions to problems have been described herein with regard to specific embodiments. However, the benefits, advantages, solutions to problems, and any elements that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as critical, required, or essential features or elements of the invention. The scope of the invention is accordingly to be limited by nothing other than the appended claims, in which reference to an element in the singular is not intended to mean “one and only one” unless explicitly so stated, but rather “one or more.” Moreover, where a phrase similar to ‘at least one of A, B, and C’ is used in the claims, it is intended that the phrase be interpreted to mean that A alone may be present in an embodiment, B alone may be present in an embodiment, C alone may be present in an embodiment, or that any combination of the elements A, B and C may be present in a single embodiment; for example, A and B, A and C, B and C, or A and B and C.

Claims
  • 1. A coupler system for changing a relationship of a first tube and a second tube, said coupler system comprising: a head component having a first side, a second side and a cam;a first drive shaft emanating from a first side of said head component, said first drive shaft mating with said first tube and with said cam;a second drive shaft emanating from a second side of said head component, said second drive shaft mating with said second tube; and,an adjustment device configured to adjust said cam.
  • 2. The coupler system of claim 1, wherein said head component is recessed into at least one of said first tube and said second tube.
  • 3. The coupler system of claim 1, wherein said first drive shaft is recessed further into said first tube than said second drive shaft is recessed into said second tube.
  • 4. The coupler system of claim 1, wherein said adjustment device comprises at least one set screw.
  • 5. The coupler system of claim 1, wherein said adjustment device comprises a first set screw which exerts a force on a first side of said cam
  • 6. The coupler system of claim 1, wherein said adjustment device comprises a first set screw which exerts a force on a first side of said cam, and a second set screw which exerts a force on a second side of said cam.
  • 7. The coupler system of claim 1, wherein said adjustment device is configured to rotate said cam.
  • 8. The coupler system of claim 1, wherein said adjustment device is configured to rotate said cam by about 15 degrees in each direction.
  • 9. The coupler system of claim 1, wherein said adjustment device is configured to rotate said cam which, in turn, rotates said second tube.
  • 10. The coupler system of claim 1, wherein said adjustment device is configured to rotate said cam which, in turn, rotates said second tube to align said second tube with said first tube.
  • 11. The coupler system of claim 1, wherein said adjustment device is configured to rotate said cam which, in turn, rotates said second tube to align a second hem bar hanging from said second tube with a first hem bar hanging from said first tube.
  • 12. The coupler system of claim 1, wherein said first tube and said second tube comprise shade tubes in a multi-band arrangement.
  • 13. The coupler system of claim 1, wherein said first tube and said second tube comprise more than two tubes.
  • 14. A method for changing a relationship of a first tube and a second tube in a multi-band arrangement, said method comprising: installing a cam between a first drive shaft and a second drive shaft;mating said first drive shaft with said first tube and with said cam;mating said second drive shaft with said second tube; and,adjusting said cam to adjust said second tube without adjusting said first tube.
  • 15. A method for changing a relationship of a first tube and a second tube in a multi-band arrangement, said method comprising rotating a set screw to rotate a cam, wherein said cam rotates said second tube without adjusting said first tube.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to, and the benefit of, U.S. Provisional Application Ser. No. 60/745,699, filed Apr. 26, 2006, which is hereby incorporated by reference in its entirety.

Provisional Applications (1)
Number Date Country
60745699 Apr 2006 US