Embodiments of the disclosure relate to the field of cyber security. More specifically, one embodiment of the disclosure relates to a system and computerized method for statically identifying whether an object, such as an executable file for example, is associated with a cyber-attack using artificial neural network techniques, which are often referred to as “deep learning.”
Over the last decade, malware detection has become a pervasive and growing problem, especially given the increased volume of new applications available for download. Currently, malware detection systems are being deployed by companies to thwart cyber-attacks originating from downloaded executable files. These conventional malware detection systems utilize machine learning techniques which examine content (e.g., de-compiled code) of the executable file in connection with signatures associated with known malware. Hence, conventional malware detection systems are reliant on expert analysis in formulating these signatures. Given the static nature of these signatures, however, detection of new (“zero-day”) or polymorphic malware has become more and more challenging in order to successfully defend a company or an individual user against cyber-attacks.
In some instances, a cyber-attack is conducted by infecting a targeted network device with malware, often in the form of an executable file, which is designed to adversely influence or attack normal operations of the targeted network device (e.g., computer, smartphone, wearable technology, etc.). One type of malware may include bots, spyware, or another executable embedded into downloadable content, which operates within the network device without knowledge or permission by the user or an administrator to exfiltrate stored data. Another type of malware may be designed as an executable file that, during processing, conducts a phishing attack by deceiving the user as to the actual recipient of data provided by that user.
Recently, significant efforts have been expended on creating different types of malware detection systems, including systems using artificial neural networks (generally referred to as a “neural network”). A neural network is logic that is designed and trained to recognize patterns in order to classify incoming data as malicious (malware) or benign. Prior approaches to using neural networks avoided some of the drawbacks of traditional malware detection systems by eliminating the need for labor intensive analyses of previous detected malware by highly trained cyber-security analysts to determine features relevant to malware detection; however, known neural network approaches to malware detection tend to be complicated in application, including training to achieve accurate classifications. It would be desirable to provide enhanced techniques effective in detecting malware with reduced complexity over other neural network approaches.
The accompanying drawings, which are incorporated in and constitute a part of this specification, show certain aspects of the subject matter disclosed herein and, together with the description, help explain some of the principles associated with the disclosed embodiments and implementations.
Embodiments of subsystems and methods of a cyber-security system configured to determine whether an object is associated with a cyber-attack (i.e., malicious). One embodiment of the cyber-security system can be used to analyze raw, binary code of the executable file for malware. According to one embodiment of the disclosure, binary code of an incoming object (e.g., an executable file) undergoes feed-forward processing by a convolutional neural network (CNN), trained using supervised learning, to isolate features associated with the binary code that aid in the classification of the executable file as benign or malicious. Significantly, the binary code can be processed in this manner directly, without intermediate analysis or translation. To provide a more robust analysis, CNN-based and intelligence-driven analyses may be performed concurrently (i.e., overlapping at least partially in time), as described below. It is contemplated that other embodiments of the cyber-security system may be implemented that analyze various types of files for malware other than executable files, such as text files, Portable Document Format (PDF) files, Presentation File Format (PPT) files, scripts, for example. In general, the term “file” may pertain to any file type.
I. Overview
As set forth below, one embodiment of the cyber-security system includes a plurality of subsystems that perform neural network analyses on data based on content from a file (e.g., executable file), and in some embodiments, leveraging insight offered by intelligence-driven analyses. One of these subsystems, referred to as a computational analysis subsystem, employs an artificial neural network to automatically determine whether certain features, which are associated with one or more patterns, are present (or absent) in the binary code of an executable file. The presence (or absence) of these features allows the executable file to be classified as malicious or benign. It should be noted that this determination is made without the need to manually pre-identify the specific features to seek within the byte code.
For at least one embodiment of the disclosure, this computational analysis subsystem leverages a deep neural network, such as a convolutional neural network (CNN) for example, which operates on an input based directly on the binary code of the executable file, rather than on a disassembled version of that code. The operations of the CNN are pre-trained (conditioned) using labeled training sets of malicious and/or benign binary code files in order to identify features, corresponding to the binary code of the executable file, that are probative of how the executable file should be classified. Communicatively coupled to and functioning in concert with the CNN, a classifier, operating in accordance with a set of classification rules, receives an output from the CNN and determines a classification assigned to the executable file indicating whether the executable file is malicious or benign.
According to other embodiments of the disclosure, operating in conjunction with the computational analysis subsystem, the cyber-security system may also include an intelligence-driven analysis subsystem, whose operations are more directly influenced by and therefore depend on analyses of previously detected malware performed by highly trained cyber-security analysts. More specifically, based on intelligence generated through analyses of known malicious executable files and benign executable files by highly trained cyber-security analysts, this intelligence-driven subsystem is configured to statically (without execution) identify “indicators” in the executable file through their automatic inspection and evaluation, which permit their classification. In general, an “indicator” is one or more suspicious or anomalous characteristics of the executable file, which may be directed to the content as well as the format or delivery of such content. Accordingly, the prior work of the cyber-security analysts is used to identify the indicators that differentiate malicious from benign executable files and then these analyst results are used to configure the intelligence-driven analysis subsystem. It should be emphasized that the determination of malware in unknown (e.g., previously unanalyzed) executable files proceeds automatically and without human intervention.
Additionally, in embodiments configured to receive network traffic, this intelligence-driven subsystem can also statically identify indicators in communication packets containing the executable file. The inspection and evaluation performed may involve identifying any communication protocol anomalies or suspicious packet content, as well as using signature (hash) matching, heuristics and pattern matching, as well as other statistical or deterministic techniques, in each case, informed and guided by prior work of the analysts.
As an illustrative example, the analysts may identify the anomalies, signatures of known malware, and patterns associated with known malware and other tell-tale attributes, which can be used in generating computer applied rules used in the intelligence-driven analysis subsystem. It is worth noting that none of these analyst results are needed by the computational analysis subsystem, which only requires the labeled training sets of malicious and/or benign binary code files for training purposes. The classifier can then use these results of both the computational analysis and the intelligence-driven analysis to classify the executable file. In some embodiments, the results of the intelligence-driven analysis subsystem can be placed into a format common to the output provided by the computational analysis subsystem, and thereafter, routed to a post-analysis subsystem for classification.
More specifically, embodiments of the disclosure will now be described in greater detail. According to one embodiment of the disclosure, a cyber-security system is configured to analyze an executable file (of any size), where the cyber-security system includes a computational analysis subsystem. As described herein, this computational analysis subsystem includes a pre-processor, a CNN and, in some embodiments, a separate classifier, followed by a message generator. Each of these components may be software running on a network device or multiple (two or more) network devices that collectively operate to determine whether the executable file is associated with a cyber-attack (i.e. malicious) or benign. Herein, an “executable file” refers to a collection of digital data that is not readily readable by humans and, when processed by a processor within a network device, causes performance of a particular task or tasks (e.g., write to memory, read from memory, jump to an address to start a process, etc.). The digital data may include binary code, namely a collection of bit patterns for example, each corresponding to an executable command and/or data, along with other data resources (e.g., values for static variables, etc.). Examples of the binary code may include, but are not limited or restricted to, and the term is often used synonymously with, an executable, machine code (e.g., set of machine readable, processor-executable instructions), or object code. The executable file may be provided in a Portable Executable (PE) format, namely a data structure that encapsulates information necessary for a Windows® Operating System (OS) loader to manage the wrapped binary code, although other formats may be used.
The CNN includes a plurality of layers (logic modules) that together implement an overall programmatic function, which is generated and tuned as described below. Each of the layers operates both as a portion of the overall programmatic function and as a plurality of operations executed by kernels (i.e., execution elements sometimes called “neurons”), where the operations of each of the layers implement one or more layer functions. The layout and architecture of the CNN in terms of the number and order of the layers and their respective layer functions, fall within the ordinary skill of practitioners in this art in light of this disclosure, and so only illustrative examples of the architecture will be described herein.
Operating as part of an input layer for the CNN deployed within the computational analysis subsystem, the pre-processor is configured to receive an executable file. In some embodiments, the pre-processor may receive the executable file separately or encapsulated as a plurality of binary packets in transit over a network. The content of the binary packets may be extracted from portions of the binary packets (e.g., payloads), and thereafter, aggregated (reassembled) to produce the executable file. Where some content of the binary packets is encoded and/or compressed, the pre-processor may feature decode logic and/or decompression logic to perform such operations on the content before the content is aggregated to produce the executable file.
Upon receiving the executable file, the pre-processor is responsible for selecting a section of binary code from the executable file for analysis. In some embodiments, the pre-processor may select a plurality of subsections of the binary code for analysis by the CNN, each subsection being combined (or retained separately) and conditioned for analysis. The disclosure in connection with
Communicatively coupled to the pre-processor, the CNN may be logically represented by a plurality of executable logic layers including one or more convolution layers, one or more pooling layers, and one or more fully connected/nonlinearity (FCN) layer. These layers generally represent weighting, biasing and spatial reduction operations performed by their convolution logic, pooling logic and FCN logic deployed within the cyber-security system.
According to one embodiment of the disclosure, each convolution layer is configured to (i) process an incoming representation (e.g., in the case of the first convolution layer of the CNN, the first representation of the binary code) by applying operations executing a portion of the overall programmatic function (referred to as a “programmatic layer function”) on the incoming representation to produce a resultant representation (e.g., an output tensor). These operations may be performed using one or more convolution filters, which are pre-trained using a training set including patterns associated with known benign executable files and/or malicious executable files. The size of the resultant representation may be based on a number of hyper-parameters that influence operations of the convolution layer, including the number, length and width of the convolution filter(s), stride length, and an amount of zero padding.
After each convolution layer, various operations may be performed on the resultant representation. As one example, after performing a convolution operation on the first representation by a first convolution layer (of the one or more convolution layers), element-wise nonlinear operations (e.g., rectified linear unit or “ReLU”) may be performed on the resultant representation to map all negative values to “0” in order to introduce nonlinearities to the resultant representation.
As another example, after performing a convolution operation in a convolution layer to produce a resultant representation, a pooling layer (of the one or more pooling layers) may transform the resultant representation by reducing the spatial dimensions of the resultant representation provided to the next convolutional layer or the FCN layer. This may be viewed as compressing the data of that resultant representation from the convolution layer. The pooling operation does not affect the depth dimension of the resultant representation, where the depth dimension equates to the number of convolution filters. Sometimes, the pooling operation is referred to as “down-sampling,” given that the reduction in size of the resultant representation leads to loss of location information. However, such information loss may be beneficial for overall CNN performance as the decreased size leads to lesser computational overhead for a next convolutional layer (since embodiments of the CNN likely support multiple convolution layers) or a next FCN layer, e.g., where the pooling is being conducted after the final convolution operation has been performed by the CNN. Different types of pooling may include “max pooling,” “average pooling,” “dynamic pooling,” as known in the art.
As yet another example of a weighting and/or biasing operation, the FCN layer receives the resultant representation after convolution and/or pooling operations. The FCN layer applies weights and biases as trained by the training set described above to produce a vector, which may operate as the “output” for the CNN. The FCN layer applies the learned weights and biases to account for different nonlinear combinations and ordering of the features detected during preceding convolution/pooling operations.
Communicatively coupled to the CNN, a classifier is configured to receive the output from the CNN and determine a classification assigned to (and stored in memory in association with) the executable file, based, at least in part, on a threat score generated based on the received output from the CNN. The threat score is generated by threat assessment logic, which may perform a sigmoid function or other function to normalize a scalar value. The normalized scalar value represents the threat score within a prescribed range, and the executable file is considered to be malicious when the scalar value exceeds a threshold value within the prescribed range.
Additionally, a message generator may be deployed to generate an alert or other message. The alert may be transmitted to a system administrator or cyber-security administrator to report on results of the analysis, that is, a classification of an executable file as malicious and thus associated with a cyber-attack. Where the computational analysis subsystem is incorporated into or is in communication with a network device (such as a laptop, tablet or other endpoint) under user control, the message may be provided (e.g., on screen) to the user of the device. Moreover, the message may be provided to one or more other components (e.g., operating system or agent) running within the network device for example, to influence its operation such as signaling to cause the network device to block processing (e.g., download, loading or execution) of the executable file on the network device.
According to another embodiment of the disclosure, operating concurrently with the computational analysis subsystem described above, the cyber-security system may include an intelligence-driven analysis subsystem, which is configured to (i) receive the executable file, (ii) inspect the executable file (and, in some embodiments and/or deployments, of communication packets carrying the executable file) for indicators associated with a cyber-attack based on intelligence generated by a cyber-security analyst, as described above, (iii) compute features of the executable file for indicators, and (iv) produce an output representing the features.
The static analysis conducted by the intelligence-driven analysis subsystem may involve an inspection of the binary packets based on known (previously detected) malicious executable files and/or benign executable files. The inspection of the binary packets may involve identifying any communication protocol anomalies and suspicious content in the header, payload, etc. The inspection of the payload may include extraction and re-assembly of the executable file, followed by an inspection of the header and other portions of that executable file. Of course, where the executable file is received directly without being carried in communication packets, then the packet inspection is of no avail. Thereafter, the inspection can be conducted in a variety of ways, using signature hashes of known malicious executable files, heuristics and pattern matching based on known executable files, or the like. In some embodiments, the results of the intelligence-driven analysis, including the features associated with the detected indicators, may be provided to the post-analysis subsystem.
The concurrent operations of the computational analysis subsystem and the intelligence-driven analysis subsystem complement each other. The intelligence-driven analysis subsystem targets an analysis of context, e.g., anomalous data placement in binary packets, communication protocol anomalies, and/or known malicious and benign patterns associated with malicious and benign executable files. The computational analysis subsystem targets digital bit patterns, independent of context and based on training by a training set including hundreds of thousands or millions of benign and/or malicious executable files. Hence, the computational analysis subsystem is more content centric, and thus, coding tendencies or styles by malware authors that may be missed in the intelligence-driven analysis (absent profound observational skills and too often luck on the part of the analyst) may assist in the detection of zero-day (first time) cyber-attacks.
Herein, the post-analysis subsystem is communicatively coupled to both the computational analysis subsystem and the intelligence-driven analysis subsystem, described above. The post-analysis subsystem may include (i) grouping logic and (ii) a classifier. According to one embodiment of the disclosure, the grouping logic may be configured to perform one or more mathematical or logical operations (e.g., concatenation) on content from the output from the computational analysis subsystem and content from the output from the intelligence-driven analysis subsystem to generate a collective output. The classifier, as described above, is configured to receive the collective output from the grouping logic (subject to further fully connected/nonlinearity operations) and determine a classification assigned to the executable file based, at least in part, on a threat score generated based on the collective output. As also described above, the message generator may be deployed to generate a message to one or more components operating within the network device when the classification of the executable file is determined to be malicious.
In summary, by operating on the binary code and avoiding disassembly operations and attention mechanisms, the computational analysis subsystem (as well as the cyber-security system) may be performed with greater operational efficiency during runtime of the network device than previously available. Additionally, where deployed within a network device such as an endpoint device, the computational analysis subsystem (and the cyber-security system containing the computational analysis subsystem) can determine whether a cyber-attack is occurring without significant degradation of the network device's (e.g., endpoint device's) performance, and as a result, may issue alerts in time for action to be taken to contain, mitigate or even block the effects of the cyber-attack. Lastly, by avoiding complete reliance on a preconceived notion as to what features should be sought (a tendency in many conventional approaches), a cyber-security system including the computational analysis subsystem and, in some embodiments, a combination of the computational analysis subsystem and the intelligence-driven analysis subsystem, provides a more holistic analysis of the executable file in detecting an attempted cyber-attack.
II. Terminology
In the following description, certain terminology is used to describe aspects of the invention. For example, in certain situations, the term “logic” is representative of hardware, firmware and/or software that is configured to perform one or more functions. As hardware, logic may include circuitry having data processing or storage functionality. Examples of such processing or storage circuitry may include, but is not limited or restricted to the following: a processor; one or more graphics processing units (GPUs); one or more processor cores; a programmable gate array; an application specific integrated circuit (ASIC); semiconductor memory; combinatorial logic, or any combination of the above components.
Logic or a logic module may be in the form of one or more software modules, such as a program, a script, a software component within an operating system, an application programming interface (API), a subroutine, a function, a procedure, an applet, a servlet, a routine, source code, object code, a shared library/dynamic load library, or even one or more instructions. These software modules may be stored in any type of a suitable non-transitory storage medium, or transitory storage medium (e.g., electrical, optical, acoustical or other form of propagated signals such as carrier waves, infrared signals, or digital signals). Examples of a “non-transitory storage medium” may include, but are not limited or restricted to a programmable circuit; non-persistent storage such as volatile memory (e.g., any type of random access memory “RAM”); or persistent storage such as non-volatile memory (e.g., read-only memory “ROM”, power-backed RAM, flash memory, etc.), a solid-state drive, hard disk drive, an optical disc drive, or portable memory device. As firmware, the executable code is stored in persistent storage.
The term “object” generally refers to a collection of data, whether in transit (e.g., over a network) or at rest (e.g., stored), often having a logical structure or organization that enables it to be classified for purposes of analysis. According to one embodiment, the object may be an executable file as previously defined, which can be executed by a processor within a network device. The binary code includes one or more instructions, represented by a series of digital values (e.g., logic “1s” and/or “0s”). Herein, the executable file may be extracted from one or more communication packets (e.g., packet payloads) propagating over a network.
A “section” may be generally construed as a portion of content extracted from a particular file. In one embodiment, the “section” may be a collection of binary code of a particular size extracted from an executable file. The section may be comprised of contiguous binary code from the executable file or non-contiguous binary code subsections that may be aggregated to form a single binary code section.
A “network device” generally refers to an electronic device with network connectivity. Examples of an electronic device may include, but are not limited or restricted to the following: a server; a router or other signal propagation networking equipment (e.g., a wireless or wired access point); or an endpoint device (e.g., a stationary or portable computer including a desktop computer, laptop, electronic reader, netbook or tablet; a smart phone; a video-game console; wearable technology such as a smart watch, etc.).
The term “transmission medium” is a physical or logical communication path to or within a network device. For instance, the communication path may include wired and/or wireless segments. Examples of wired and/or wireless segments include electrical wiring, optical fiber, cable, bus trace, or a wireless channel using infrared, radio frequency (RF), or any other wired/wireless signaling mechanism.
The term “computerized” generally represents that any corresponding operations are conducted by hardware in combination with software and/or firmware. Also, the terms “compare” or “comparison” generally mean determining if a match (e.g., a certain level of correlation) is achieved between two items where, in certain instances, one of the items may include a particular signature pattern.
Lastly, the terms “or” and “and/or” as used herein are to be interpreted as inclusive or meaning any one or any combination. Therefore, “A, B or C” or “A, B and/or C” mean “any of the following: A; B; C; A and B; A and C; B and C; A, B and C.” An exception to this definition will occur only when a combination of elements, functions, steps or acts are in some way inherently mutually exclusive.
As this invention is susceptible to embodiments of many different forms, it is intended that the present disclosure is to be considered as an example of the principles of the invention and is not intended to limit the invention to the specific embodiments shown and described.
II. General Architecture
Referring to
More specifically, the CNN 110 produces an output 130 based on a received input 120. The received input 120 includes encoded values each uniquely representing, for example, a corresponding measured unit of the binary code (e.g., nibble, byte, word, etc.). The convolution logic 112 includes a hierarchy of one or more convolution filters operating at each convolution layer to apply a programmatic layer function (e.g., weighting and/or biasing) on an incoming representation to produce a transformed, resultant representation. For a first convolution layer, the convolution logic 112 receives the incoming representation (i.e., the received input 120) and produces a resultant representation (e.g., one or more features extracted from the received input 120). For subsequent convolution layers, the convolution logic 112 receives the incoming representation, which may include the feature(s) produced by the last convolution layer (or feature(s) modified by an intermediary pooling layer as described below) instead of the received input 120. Hence, for each convolution layer, higher-level features may be extracted, where the number of convolution layers may be selected based, at least in part, on (i) accuracy improvements provided by each convolution layer and (ii) time constraints needed to analyze an executable file and conduct potential remediation actions (e.g., blocking, removal, quarantining, etc.) on a malicious executable file.
The pooling logic 114 operates in conjunction with the convolution logic 112. Herein, at a first pooling layer, the pooling logic 114 reduces the spatial dimension (size) of a feature produced by a preceding convolution layer. This “down-sampling” reduces the amount of additional computations needed by the CNN 110 in completing its analysis without significant adverse effects on accuracy of the analysis. Typically, for each pooling layer, a maximum (max) or average pooling technique is used, resulting in a fixed-length tensor that is smaller than the previous convolutional layer. For these techniques, the input, such as the features (represented by feature maps) may be divided into non-overlapping two-dimensional spaces. For average pooling, the averages of the pooling regions are calculated while, for max pooling, the maximum value of each pooling region is selected.
Another pooling technique utilized by one or more pooling layers may include dynamic pooling. For dynamic pooling, “k” best features (k≥2) are extracted during pooling, where the “k” value is dynamically calculated based on the length of the input (e.g., in bytes, bits, etc.) and/or the depth of the current pooling layer within the CNN hierarchy. The input (e.g., section of content under analysis) may vary in size during the analysis, and subsequent convolutional and pooling tensors will likewise vary in size in relation to the current depth in the hierarchy and length of the input. The variable-length tensors must be reduced to a common fixed size before interaction with the full-connected/non-linearity logic 116. This dynamic pooling technique allows the classifier to learn and extract a number of features that is proportional to the length of the input, rather than limiting it to a fixed number of features. Furthermore, this approach enables feature extraction to be concentrated in a non-uniform manner across the input, essentially allowing for features to be more densely distributed than in the fixed-length case. The combination of these benefits results in an ability to extract and retain more long-term relationships among the features than would otherwise be possible for arbitrary input lengths.
For instance, as an illustrative example, for a first convolution layer of analysis, the convolution logic 112 controls the convolution filter(s) to convolve the incoming representation of a section the binary code to extract features, which are associated with patterns that may aid in analysis of the executable code for malware. Collectively, the number of features produced by each convolution layer is based on the input and the number of convolution filters selected. Thereafter, for a second (subsequent) convolution layer, the convolution logic 112 applies the convolution filters to the features (or spatially reduced features produced by an interposed pooling layer described above) to extract higher level features. According to this example, the higher level features may include instructions formed by nonlinear combinations of at least some of the features extracted at the first convolution layer. Similarly, for a third (subsequent) convolution layer, the convolution logic 112 applies the convolution filters to the features generated during the second convolution layer (or spatially reduced features produced by an interposed pooling layer described above) to identify even higher levels features that are associated with nonlinear combinations of the higher level features extracted by the second convolution layer.
It is contemplated that, after each convolution layer, various operations may be performed on the resultant representation (features) to lessen processing load for the CNN 110. For example, during a first convolution layer, after performing a convolution operation on the incoming representation (i.e., received input 120) by the convolution logic 112, element-wise nonlinear operations may be performed (e.g., by a rectified linear unit or “ReLU”) on the resultant representation. The nonlinear operations map all negative values within the resultant representation to “0” in order to introduce nonlinearities to the resultant representation.
Referring still to
Communicatively coupled to the CNN 110, the classifier 140 is configured to receive the output 130 from the CNN 110 and determine a classification assigned to the executable file. This classification may be based, at least in part, on a threat score 145 generated by threat assessment logic 142, which conducts trained weighting and biasing operations on the received output 130. Such operations translate the received output 130 from a vector (e.g., an ordered sequence of two or more values) into a scalar value, where the scalar value is normalized as the threat score 145 bounded by a prescribed value range (e.g., 0-1; 0-10; 10-100, etc.).
Responsive to detecting the threat score 145 exceeding a prescribed threshold, the message generation logic 150 may generate an “alert” 155 (e.g., a message transmitted to report results of the analysis, especially upon detection of an executable file that may be associated with a cyber-attack). The alert 155 may include metadata associated with the analysis, such as executable file name, time of detection, network address(es) for the executable file (e.g., source IP, destination IP address, etc.), and/or severity of the threat (e.g., based on threat score, targeted network device, frequency of detection of similar executable files, etc.).
Referring now to
According to one embodiment of the disclosure, the error evaluation logic 210 computes a difference (i.e., the error) 230 between the threat score 145 and the known score and provides the error 230 to the weighting adjustment logic 220. Based on the determined error 230, the weighting adjustment logic 220 may alter encoded values set forth in the embedding lookup table 260 stored in memory. Additionally, or in the alternative, the weighting adjustment logic 220 may alter the weighting and/or biasing as applied by (i) the convolution filters 2701-270N (N≥1) within the convolution logic 112, (ii) nonlinear analysis logic 280 within the FCN logic 116, and/or (iii) logistic logic 290 within the threat assessment logic 142.
More specifically, during a training process that may occur on a periodic or aperiodic basis, a labeled training set of malicious and/or benign binary code files 225 is provided to the cyber-security system 100. The binary code files 225 are executable files used for training purposes. More specifically, the labeled training set includes a plurality of labeled, binary code sections associated with known malicious and/or benign executable files. Each labeled binary code section 240 is provided (as input) to the encoding logic 250. The encoding logic 250 is configured to encode portions of the labeled binary code section 240 (e.g., byte sequences), and thereafter, a representation of these encoded values (input representation) is processed by the convolution logic 112 within the CNN 110. For clarity, the encoding operations are described for byte sequences, although the encoding may be conducted for other measured units of data (e.g., bit nibble, word, dword, etc.).
The encoding logic 250 may rely on various types of encoding schemes, including “one hot encoding” and “embedding.” For one-hot encoding, the encoding logic 250 substitutes a value of each byte sequence from the labeled binary code section 240 with a corresponding bitwise value from a unity matrix. As an illustrative example, for each byte sequence, the encoding logic 250 stores encoded values that are organized as a 257×257 unity matrix, where the last row/column is an encoded value assigned for padding. Hence, when analyzing the labeled binary code section 240 having a length “L”, a byte value “2” from the labeled binary code section 240 would be encoded with the 257-bit value [0,0,1,0 . . . 0] and the incoming representation 265, provided to the CNN 110 during the training process, would be a 257×L×1 tensor. A “tensor” is a multi-dimensional vector.
Another type of encoding scheme is “embedding,” where the embedding lookup table 260 includes encode values for each byte sequence. During a training session, the embedding lookup table 260 is initialized to random values and, based on the machine learning function followed by the weighting adjustment logic 220, these encode values are adjusted. For this embodiment of the disclosure, the embedding lookup table 260 would be sized as a K×257 matrix, where “K” corresponds to the number of dimensions (rows/entries) for the embedding lookup table 260. Hence, each byte sequence of the binary code section 240 would be encoded to produce the input (incoming representation) 265 provided to the CNN 110.
The CNN 110 receives the input 265 and performs operations on the encoded values of the input 265 to produce an output (outgoing representation) 285 that concentrates its analysis on features that may be probative in determining whether the labeled binary code section 240 includes malware, as described above for
Additionally, based on the error 230 determined, the weighting adjustment logic 220 may alter one or more weighting parameters and/or a biasing parameter utilized by the nonlinear analysis logic 280 within the FCN logic 116, which is used in producing the output 285 from the CNN 110. An illustrated example as to how modification of the weighting parameter(s) and/or biasing parameter of the nonlinear analysis logic 280 may influence the output 130 is shown in
Lastly, based on the error 230 determined, the weighting adjustment logic 220 may alter one or more weighting parameters and/or a biasing parameter utilized by the logistic logic 290. The logistic logic 290 of the threat assessment logic 142 applies weighting to each parameter of the input 285 along with biasing to produce a scalar value. The scalar value is used by the threat assessment logic 142 to produce the threat score 145 for the labeled binary code section 240, which is used by the error evaluation logic 210 to determine the error 230 for potential “tuning” of (i) the weighting and biasing for the convolution filters 2701-270N, (ii) the weighting and biasing for the nonlinear analysis logic 280, and/or (iii) the weighting and biasing for the logistic logic 290 as well as encode values within the embedding lookup table 260 (when embedding encoding is used).
Referring to
Herein, as shown in
The output from the CNN is provided to the classifier (shown at 140 of
As shown in
Referring still to
In particular, for behavioral analysis, the executable file is executed within a virtual machine instantiated by the network device (or, in other embodiments, in another network device) that is configured with a selected software profile (e.g., certain application(s), operating system, etc.). The selected software profile may be a software profile appropriate to execute the executable, for example, the software profile including operating system and one or more applications matching those used by the network device or a different software profile that is used by computers within an enterprise to which the network device is connected. The behaviors, namely the activity performed by the virtual machine and/or the executable file during execution, are monitored and subsequently analyzed to determine whether the executable file is considered to be malicious based on performance (or omission) of one or more behaviors corresponding to those of known malware (operation 355).
Where the executable file is benign, no further analysis of the executable file may be required (operation path A). However, if the executable file is determined to be malicious, logic within the cyber-security system may prompt the message generation logic to generate an alert message and/or perform remediation operations as described above (operations 360 and 365).
Referring now to
The pre-processing logic 422 operates as part of an input layer of the computational analysis subsystem 400 to receive the executable file 410 as a file or as a collection of binary packets from which content may be extracted and aggregated (reassembled) to produce the executable file 410. It is contemplated that Transmission Control Protocol (TCP) sequence numbers within the binary packets may be relied upon to position the content of these binary packets in a correct order when forming the executable file. It is contemplated that the pre-processing logic 422 may further include decode logic and/or decompression logic to recover the binary code where some of the binary packets are encoded and/or compressed.
Upon receiving the executable file 410, the pre-processing logic 422 is responsible for selecting a section of binary code 415 from the executable file 410 for analysis. In some embodiments, the pre-processing logic 422 may select a plurality of sections of the binary code for analysis by the CNN-based logic 430, each being analyzed, separately or in combination, and conditioned for analysis. The size of the binary code section 415 may be a static (constant) value or dynamic based on rules established during the training and dependent on attributes of the binary code such as length or format.
As shown in
Where the size of executable file is less than a prescribed size (M), such as 100K bytes for example, which may be a static value set for the computational analysis or a value set by an administrator, the entire binary code of the executable file is extracted from the executable file (operation 510). This binary code, with additional padding as desired, is provided to the encoding logic to generate an input (incoming representation) for processing by the CNN (operation 515).
However, if the size of the executable file exceeds the prescribed value (M), the pre-processing logic 422 determines whether the selection of the binary code section is to be directed to contiguous binary code or multiple non-contiguous binary code subsections that can be aggregated as the binary code section (operation 520). By extracting subsections of binary code in lieu of extracting a single contiguous binary code section of size M, the computational analysis subsystem has an ability to analyze a broader range of the executable file. This broader analysis of the executable file, in some cases, may provide increased accuracy in classifying the executable file.
Where the binary code section is to be a single contiguous section of binary code, according to one embodiment of the disclosure, the pre-processing logic extracts “M” bytes at the start of the executable code (which may (or may not) be the entire binary code) (operation 525). These M bytes are provided to the encoding logic for use in generating the input to the CNN-based logic 430 through “one hot encoding,” “embedding” or another encoding technique (operation 535). It is contemplated that, for certain embodiments, the “M” extracted bytes may be a dynamic value that can be altered, at least in part, based on the size of the input (e.g., file size).
Alternatively, where the binary code section is to be produced from binary code at a location different than the starting location or from an aggregate of subsections of binary code, the pre-processing logic 420 receives one or more offsets that denote starting memory address locations from which the pre-processing logic 420 extracts binary code from the executable file. The offsets may be preset based on file format (at positions where known malware tends to reside) or may be set by an administrator having knowledge of current malware insertion trends (operation 530). These subsections of binary code may be aggregated to produce the binary code section that is provided to the encoding logic (operation 535).
Referring back to
Communicatively coupled to the encoding logic 424, the CNN-based logic 430 conducts operations represented by a plurality of executable logic layers (“layers”) including one or more convolution layers by the convolution logic 112, one or more pooling layers by the pooling logic 114, and one or more fully connected/nonlinearity (FCN) layer by the FCN logic 116. Each of these convolution layers is configured to (i) process an incoming representation, such as input 425 for the first convolution layer, and (ii) apply operations in accordance with a programmatic layer function to produce a resultant representation 432. These operations may be performed using one or more convolution filters, which are pre-trained using a training set including patterns associated with benign executable files and/or malicious executable files as described above. Each resultant representation 432 is produced by convolving, based on a selected stride for the convolution, each filter over each incoming representation (e.g., input 425 or resultant representations 432 for subsequent convolution layers). The convolution layers are independent and may be performed successively as shown by feed-forward arrow 450 and/or after a pooling layer as referenced by feed-forward arrow 455. The depiction of feed-forward arrows 450 and 455 is merely for convenience to represent that multiple, independent convolution layers and one or more independent pooling layers may be performed by the computational analysis subsystem 400.
More specifically, after each convolution layer, certain operations may be performed on the resultant representation 432 until a final output 436 is produced by the CNN-based logic 430. For example, after the convolution logic 112 performs a convolution operation on the incoming representation (e.g., input 425), element-wise nonlinear operations (e.g., rectified linear unit or “ReLU”) may be performed on the resultant representation 432 to provide nonlinearities to the resultant representation 432 for that convolution layer.
Additionally, after a convolution layer produces a resultant representation 432, a pooling layer may perform operations on the resultant representation 432. The pooling operation is conducted to reduce the spatial dimensions of the resultant representation 432 prior to providing to this transformed resultant representation 434 to a next convolutional layer (as identified by feed-forward 455) or to the FCN layer 116. Hence, as shown, the resultant representation 432 via feed-forward arrow 450 or transformed resultant representation 434 via feed-forward arrow 455 may operate as the incoming representation for a next convolution layer.
As yet another example of a weighting and/or biasing operation, the FCN logic 116 receives a resultant output representation from a convolution layer 432 or pooling layer 434, and thereafter, applies weights and biases once or in an iterative manner 460 to produce an output (vector) 436 from the CNN-based logic 430. Although not shown, it is contemplated that the FCN logic 116 may operate as an intermediary operation between convolution layers.
Communicatively coupled to the CNN-based logic 430, the classifier 140 is configured to receive the output 436 from the CNN-based logic 430 and classify the executable file, based, at least in part, on a threat score. The threat score is generated by threat assessment logic 142, which may perform a sigmoid function or other function to produce a scalar value, which is used to generate the normalized threat score representing a level of maliciousness as analyzed by the computational analysis subsystem 400.
Referring now to
Where the executable file 410 is received in its entirety, the static analysis logic 460 is configured to conduct an analysis of the contents of the executable file 410 without any re-assembly. However, where the executable file 410 is received as a plurality of binary packets, the static analysis logic 465 is further configured to analyze the content of the binary packets forming the executable file 410 to identify any communication protocol anomalies and/or suspicious content in these packets. For example, with respect to payload inspection of the binary packets, the contents of the payloads may be extracted and reassembled to form the executable file for inspection. The header and other portions of the binary packets may be inspected separately.
According to one embodiment of the disclosure, the indicators may be based on intelligence generated by cyber-security analysts and captured in digital signatures (hashes) of known malicious executable files, heuristics and pattern matching based on known executable files, or the like. The comparison of the known indicators associated with malicious and/or benign executable files with the contents of the executable file 410 enables a determination as to whether the executable file 410 is malicious, such as including malware. Thereafter, the static analysis logic 460 produce an output 462 representing features computed from the detected indicators.
In some embodiments, the output 462 from the static analysis logic 460 may be provided to a static encoding logic 465. As a result, the static encoding logic 465 encodes the representative features into a format compatible with the format utilized by the computational analysis subsystem 400. In particular, the encoding may be based, at least in part, on the category of the feature.
More specifically, the static encoding logic 465 translates a Boolean, numeric and categorical features detected by the static analysis logic 460 and creates a vector of real values. For instance, where the feature is a Boolean value (true or false), the static encoding logic 465 translates or encodes the Boolean value as a digital “1” or “0”. For numeric values, the static analysis logic 460 may convert a numeric value into a different type of numeric value, while categorical features may be encoded in accordance with the “one-hot encoding” technique (each categorical feature would be represented by a unique, encoded value). Hence, the static encoding logic 465 produces an output that, after undergoing nonlinear operations by FCN logic 470 and some pre-processing (e.g., normalization, scaling, whitening), is provided to the post-analysis subsystem 475 in a format similar to and compatible with output 436 from the FCN logic 116.
Herein, according to one embodiment of the disclosure, the post-analysis subsystem 475 includes grouping logic 480, FCN logic 485 to provide nonlinearity to the collective output 482 produced by the grouping logic 480, and the threat assessment logic 142. The grouping logic 480 combines the outputs 436 and 472 of these two subsystems into a result (e.g., concatenated result) to which nonlinear combinations of the outputs 436 and 472 from each subsystem are analyzed in determining a result provided to the threat assessment logic 142 to determine the threat score.
As mentioned above, the concurrent operations of the computational analysis subsystem 400 and the intelligence-driven analysis subsystem 450 complement each other. The intelligence-driven analysis subsystem 450 targets an analysis of the context of the executable file, e.g., anomalous data placement in binary packets, communication protocol anomalies, and known malicious and benign patterns associated with malicious and benign executable files. The computational analysis subsystem 400 targets digital bit patterns, independent of the context being analyzed by the intelligence-driven analysis subsystem 450. Hence, the computational analysis subsystem 400 is more content centric, which may better detect coding tendencies or styles by malware authors. The computational analysis subsystem 400 provides further assistance in the detection of zero-day (first time) cyber-attacks, where the malware is unknown and has not been previously detected, and in some cases, never analyzed previously.
Herein, the post-analysis subsystem 475 is communicatively coupled to both the computational analysis subsystem 400 and the intelligence-driven analysis subsystem 450, described above. The post-analysis subsystem 475 may include (i) grouping logic 480 and (ii) the classifier 140. According to one embodiment of the disclosure, the grouping logic 480 may be configured to perform mathematical or logical operations (e.g., concatenation) on content from the received outputs 436 and 472 to generate the collective output 482. The classifier 140, as described above, is configured to receive the collective output 482 from the grouping logic 480 and determine a classification assigned to the executable file 410 based, at least in part, on a threat score for collective output 482 in a manner as described above. The message generator (at 150 of
Hence, by deploying the general operability of the computational analysis subsystem together with the intelligence-driven analysis subsystem 450, a more robust technique for classifying executable files is provided.
Referring to
Upon receiving the executable file 600, the pre-processing logic is responsible for extracting a section of binary code 610 from the executable file 600 for analysis. Herein, the section of binary code 610 is set to ten (10) bytes, which is larger in size than the executable file 600. As a result, padding 612 is added to actual extracted binary code 614 to produce the binary code section 610 as shown in
Referring to
Communicatively coupled to the encoding logic, the CNN may be logically represented by a plurality of layer, including one or more convolution layers (see
Herein, as an illustrative embodiment, the parameters for the convolution layer are set as follows: (i) the number of convolution filters (M0) is set to “2” (M0=2); (ii) amount of lengthwise, zero padding (P) permitted is equal to “1” (P=1); (iii) stride (S) is set to “1” (S=1); (iv) the length (F) of each convolution filter is set to “3” (F=3); (v) the height (K) of the convolution filter is set to the dimension (K) of the embedded matrix, which is “2” (K=2). Based on these settings, the input 620 provided to the convolution logic 112 of the convolution layer (see
As shown in
After the above-described convolution operation is performed by convolution logic as shown in
Thereafter, the pooling logic associated with the pooling layer may perform operations on the nonlinear output 640 in order to reduce its spatial dimensions. As shown in
Referring to
Communicatively coupled to the CNN-based logic 430, a classifier is configured to receive the output 665 from the CNN-based logic 430 and determine a classification assigned to the executable file. As shown in
Referring now to
The processor 710 is a multi-purpose, processing component that is configured to execute logic 750 maintained within the non-transitory storage medium 720 operating as a data store. As described below, the logic 750 may include logic 752 controlling operability of the computational analysis subsystem and logic 754 to control operability of the classifier. As shown, the computational analysis subsystem logic 752 includes, but is not limited or restricted to, (i) pre-processing logic 422, (ii) encoding logic 424, (iii) convolution logic 112, (iv) pooling logic 114, and/or (v) FCN logic 116. The classifier logic 754 includes threat assessment logic 142, message generation logic 150, and optionally remediation logic 760 and/or behavioral analysis logic 770.
One example of processor 710 includes one or more graphic processing units (GPUs). Alternatively, processor 710 may include another type of processors such as one or more central processing units (CPUs), an Application Specific Integrated Circuit (ASIC), a field-programmable gate array, or any other hardware component with data processing capability.
According to one embodiment of the disclosure, as shown, the interface 730 is configured to receive incoming data propagating over a network, including the executable file 410 and at least temporarily store the executable file 410 in a data store 755. The executable file 410 may be received, as data packets, directly from the network or via a network tap or Switch Port Analyzer (SPAN) port, also known as a mirror port. Processed by the processor 710, the pre-processing logic 422 may extract and aggregate (reassemble) data from the packets to produce the executable file 410, and thereafter, select a section of the binary code for analysis.
Referring still to
The classifier logic 754 includes the threat assessment logic 142 that is configured to receive an output from the computational analysis system logic 752. From the output, the threat assessment logic 142 determines a classification assigned to the executable file 410, as described above. The message generation logic 150 is configured to produce alert messages to warn of potential cyber-attacks while the remediation logic 760 is configured to mitigate the effects of the cyber-attack or halt the cyber-attack by preventing further operations by the network device caused by the executable file 410.
The behavior analysis logic 770 may be stored in the memory 720 and may be executed in response to the computational analysis being unable to determine whether the executable file 410 is malicious or benign or to verify any such determinations. As a result, the behavior analysis logic 770 creates a virtual machine (VM) environment and the executable file 410 is processed within the VM environment. The behaviors of the VM and the executable file 410 are monitored to assess whether the executable file 410 is malicious or benign based on the monitored behaviors.
Referring now to
The network device 700 performs concurrent analysis of the executable file 410 using both the computational analysis subsystem logic 752 and the intelligence-driven analysis subsystem logic 780. The operations of the computational analysis subsystem logic 752 are described above. Concurrently operating with the computational analysis subsystem, logic 752, the intelligence-driven analysis subsystem logic 780 is configured to receive the executable file 410 and inspect the executable file 410 for indicators associated with a cyber-attack. This inspection is conducted by static analysis logic 460, which is configured to conduct an analysis of the contents of the executable file 410 without any re-assembly. However, where the executable file 410 is received as a plurality of binary packets, the static analysis logic 460 is further configured to analyze the content of the binary packets forming the executable file 410 to identify any communication protocol anomalies and/or indicators (suspicious content) in these packets. The header and other portions of the binary packets may be inspected separately from the payload including the executable file 410.
According to one embodiment of the disclosure, the indicators may be based on intelligence generated by cyber-security analysts and captured in digital signatures (hashes) of known malicious executable files, heuristics and pattern matching based on known executable files, or the like. The comparison of the known indicators associated with malicious and/or benign executable files with the contents of the executable file 410 enables a determination as to whether the executable file includes malware. Thereafter, the static analysis logic 460 produces an output including features representing the detected indicators, which is provided to the static encoding logic 465.
As shown in
Herein, according to this embodiment of the disclosure, the post-analysis subsystem logic 790 includes grouping logic 480, the FCN logic 485 to provide nonlinearity to the output of the grouping logic 480 and the threat assessment logic 142. The grouping logic 480 combines the results of these two subsystems, such as through concatenation, and the combined result is analyzed by the threat assessment logic 142 to determine the threat score used in determining whether the executable file 410 is malicious or benign.
As mentioned above, the concurrent operations of the computational analysis subsystem logic 752 and the intelligence-driven analysis subsystem 780 complement each other. The intelligence-driven analysis subsystem 780 targets an analysis of the context of the executable file 410, e.g., anomalous data placement in binary packets, communication protocol anomalies, and known malicious and benign patterns associated with malicious and benign executable files. The computational analysis subsystem logic 752, however, targets the digital bit patterns, independent of the context being analyzed by the intelligence-driven analysis subsystem logic 780, as described above.
Referring now to
A threat determination logic 830 is configured to receive the first score 815 from the computational analysis system 400 and the second score 825 from the intelligence-driven analysis subsystem 450. Based on these scores, the threat determination logic 830 computes a resultant threat score that represents a threat level based on the collective analyses of the computational analysis system 400 and the intelligence-driven analysis subsystem 450.
In the foregoing description, the invention is described with reference to specific exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the appended claims. For instance, the selective system call monitoring may be conducted on system calls generated by logic outside the guest image.
Number | Name | Date | Kind |
---|---|---|---|
4292580 | Ott et al. | Sep 1981 | A |
5175732 | Hendel et al. | Dec 1992 | A |
5319776 | Hile et al. | Jun 1994 | A |
5440723 | Arnold et al. | Aug 1995 | A |
5490249 | Miller | Feb 1996 | A |
5657473 | Killean et al. | Aug 1997 | A |
5802277 | Cowlard | Sep 1998 | A |
5842002 | Schnurer et al. | Nov 1998 | A |
5960170 | Chen et al. | Sep 1999 | A |
5978917 | Chi | Nov 1999 | A |
5983348 | Ji | Nov 1999 | A |
6088803 | Tso et al. | Jul 2000 | A |
6092194 | Touboul | Jul 2000 | A |
6094677 | Capek et al. | Jul 2000 | A |
6108799 | Boulay et al. | Aug 2000 | A |
6154844 | Touboul et al. | Nov 2000 | A |
6269330 | Cidon et al. | Jul 2001 | B1 |
6272641 | Ji | Aug 2001 | B1 |
6279113 | Vaidya | Aug 2001 | B1 |
6298445 | Shostack et al. | Oct 2001 | B1 |
6357008 | Nachenberg | Mar 2002 | B1 |
6424627 | Sorhaug et al. | Jul 2002 | B1 |
6442696 | Wray et al. | Aug 2002 | B1 |
6484315 | Ziese | Nov 2002 | B1 |
6487666 | Shanklin et al. | Nov 2002 | B1 |
6493756 | O'Brien et al. | Dec 2002 | B1 |
6550012 | Villa et al. | Apr 2003 | B1 |
6775657 | Baker | Aug 2004 | B1 |
6831893 | Ben Nun et al. | Dec 2004 | B1 |
6832367 | Choi et al. | Dec 2004 | B1 |
6895550 | Kanchirayappa et al. | May 2005 | B2 |
6898632 | Gordy et al. | May 2005 | B2 |
6907396 | Muttik et al. | Jun 2005 | B1 |
6941348 | Petry et al. | Sep 2005 | B2 |
6971097 | Wallman | Nov 2005 | B1 |
6981279 | Arnold et al. | Dec 2005 | B1 |
7007107 | Ivchenko et al. | Feb 2006 | B1 |
7028179 | Anderson et al. | Apr 2006 | B2 |
7043757 | Hoefelmeyer et al. | May 2006 | B2 |
7058822 | Edery et al. | Jun 2006 | B2 |
7069316 | Gryaznov | Jun 2006 | B1 |
7080407 | Zhao et al. | Jul 2006 | B1 |
7080408 | Pak et al. | Jul 2006 | B1 |
7093002 | Wolff et al. | Aug 2006 | B2 |
7093239 | van der Made | Aug 2006 | B1 |
7096498 | Judge | Aug 2006 | B2 |
7100201 | Izatt | Aug 2006 | B2 |
7107617 | Hursey et al. | Sep 2006 | B2 |
7159149 | Spiegel et al. | Jan 2007 | B2 |
7213260 | Judge | May 2007 | B2 |
7231667 | Jordan | Jun 2007 | B2 |
7240364 | Branscomb et al. | Jul 2007 | B1 |
7240368 | Roesch et al. | Jul 2007 | B1 |
7243371 | Kasper et al. | Jul 2007 | B1 |
7249175 | Donaldson | Jul 2007 | B1 |
7287278 | Liang | Oct 2007 | B2 |
7308716 | Danford et al. | Dec 2007 | B2 |
7328453 | Merkle, Jr. et al. | Feb 2008 | B2 |
7346486 | Ivancic et al. | Mar 2008 | B2 |
7356736 | Natvig | Apr 2008 | B2 |
7386888 | Liang et al. | Jun 2008 | B2 |
7392542 | Bucher | Jun 2008 | B2 |
7418729 | Szor | Aug 2008 | B2 |
7428300 | Drew et al. | Sep 2008 | B1 |
7441272 | Durham et al. | Oct 2008 | B2 |
7448084 | Apap et al. | Nov 2008 | B1 |
7458098 | Judge et al. | Nov 2008 | B2 |
7464404 | Carpenter et al. | Dec 2008 | B2 |
7464407 | Nakae et al. | Dec 2008 | B2 |
7467408 | O'Toole, Jr. | Dec 2008 | B1 |
7478428 | Thomlinson | Jan 2009 | B1 |
7480773 | Reed | Jan 2009 | B1 |
7487543 | Arnold et al. | Feb 2009 | B2 |
7496960 | Chen et al. | Feb 2009 | B1 |
7496961 | Zimmer et al. | Feb 2009 | B2 |
7519990 | Xie | Apr 2009 | B1 |
7523493 | Liang et al. | Apr 2009 | B2 |
7530104 | Thrower et al. | May 2009 | B1 |
7540025 | Tzadikario | May 2009 | B2 |
7546638 | Anderson et al. | Jun 2009 | B2 |
7565550 | Liang et al. | Jul 2009 | B2 |
7568233 | Szor et al. | Jul 2009 | B1 |
7584455 | Ball | Sep 2009 | B2 |
7603715 | Costa et al. | Oct 2009 | B2 |
7607171 | Marsden et al. | Oct 2009 | B1 |
7639714 | Stolfo et al. | Dec 2009 | B2 |
7644441 | Schmid et al. | Jan 2010 | B2 |
7657419 | van der Made | Feb 2010 | B2 |
7676841 | Sobchuk et al. | Mar 2010 | B2 |
7698548 | Shelest et al. | Apr 2010 | B2 |
7707633 | Danford et al. | Apr 2010 | B2 |
7712136 | Sprosts et al. | May 2010 | B2 |
7730011 | Deninger et al. | Jun 2010 | B1 |
7739740 | Nachenberg et al. | Jun 2010 | B1 |
7779463 | Stolfo et al. | Aug 2010 | B2 |
7784097 | Stolfo et al. | Aug 2010 | B1 |
7832008 | Kraemer | Nov 2010 | B1 |
7836502 | Zhao et al. | Nov 2010 | B1 |
7849506 | Dansey et al. | Dec 2010 | B1 |
7854007 | Sprosts et al. | Dec 2010 | B2 |
7869073 | Oshima | Jan 2011 | B2 |
7877803 | Enstone et al. | Jan 2011 | B2 |
7904959 | Sidiroglou et al. | Mar 2011 | B2 |
7908660 | Bahl | Mar 2011 | B2 |
7930738 | Petersen | Apr 2011 | B1 |
7937387 | Frazier et al. | May 2011 | B2 |
7937761 | Bennett | May 2011 | B1 |
7949849 | Lowe et al. | May 2011 | B2 |
7996556 | Raghavan et al. | Aug 2011 | B2 |
7996836 | McCorkendale et al. | Aug 2011 | B1 |
7996904 | Chiueh et al. | Aug 2011 | B1 |
7996905 | Arnold et al. | Aug 2011 | B2 |
8006305 | Aziz | Aug 2011 | B2 |
8010667 | Zhang et al. | Aug 2011 | B2 |
8020206 | Hubbard et al. | Sep 2011 | B2 |
8028338 | Schneider et al. | Sep 2011 | B1 |
8042184 | Batenin | Oct 2011 | B1 |
8045094 | Teragawa | Oct 2011 | B2 |
8045458 | Alperovitch et al. | Oct 2011 | B2 |
8069484 | McMillan et al. | Nov 2011 | B2 |
8087086 | Lai et al. | Dec 2011 | B1 |
8171553 | Aziz et al. | May 2012 | B2 |
8176049 | Deninger et al. | May 2012 | B2 |
8176480 | Spertus | May 2012 | B1 |
8201246 | Wu et al. | Jun 2012 | B1 |
8204984 | Aziz et al. | Jun 2012 | B1 |
8214905 | Doukhvalov et al. | Jul 2012 | B1 |
8220055 | Kennedy | Jul 2012 | B1 |
8225288 | Miller et al. | Jul 2012 | B2 |
8225373 | Kraemer | Jul 2012 | B2 |
8233882 | Rogel | Jul 2012 | B2 |
8234640 | Fitzgerald et al. | Jul 2012 | B1 |
8234709 | Viljoen et al. | Jul 2012 | B2 |
8239944 | Nachenberg et al. | Aug 2012 | B1 |
8260914 | Ranjan | Sep 2012 | B1 |
8266091 | Gubin et al. | Sep 2012 | B1 |
8286251 | Eker et al. | Oct 2012 | B2 |
8291499 | Aziz et al. | Oct 2012 | B2 |
8307435 | Mann et al. | Nov 2012 | B1 |
8307443 | Wang et al. | Nov 2012 | B2 |
8312545 | Tuvell et al. | Nov 2012 | B2 |
8321936 | Green et al. | Nov 2012 | B1 |
8321941 | Tuvell et al. | Nov 2012 | B2 |
8332571 | Edwards, Sr. | Dec 2012 | B1 |
8365286 | Poston | Jan 2013 | B2 |
8365297 | Parshin et al. | Jan 2013 | B1 |
8370938 | Daswani et al. | Feb 2013 | B1 |
8370939 | Zaitsev et al. | Feb 2013 | B2 |
8375444 | Aziz et al. | Feb 2013 | B2 |
8381299 | Stolfo et al. | Feb 2013 | B2 |
8402529 | Green et al. | Mar 2013 | B1 |
8464340 | Ahn et al. | Jun 2013 | B2 |
8479174 | Chiriac | Jul 2013 | B2 |
8479276 | Vaystikh et al. | Jul 2013 | B1 |
8479291 | Bodke | Jul 2013 | B1 |
8510827 | Leake et al. | Aug 2013 | B1 |
8510828 | Guo et al. | Aug 2013 | B1 |
8510842 | Amit et al. | Aug 2013 | B2 |
8516478 | Edwards et al. | Aug 2013 | B1 |
8516590 | Ranadive et al. | Aug 2013 | B1 |
8516593 | Aziz | Aug 2013 | B2 |
8522348 | Chen et al. | Aug 2013 | B2 |
8528086 | Aziz | Sep 2013 | B1 |
8533824 | Hutton et al. | Sep 2013 | B2 |
8539582 | Aziz et al. | Sep 2013 | B1 |
8549638 | Aziz | Oct 2013 | B2 |
8555391 | Demir et al. | Oct 2013 | B1 |
8561177 | Aziz et al. | Oct 2013 | B1 |
8566476 | Shiffer et al. | Oct 2013 | B2 |
8566946 | Aziz et al. | Oct 2013 | B1 |
8584094 | Dadhia et al. | Nov 2013 | B2 |
8584234 | Sobel et al. | Nov 2013 | B1 |
8584239 | Aziz et al. | Nov 2013 | B2 |
8595834 | Xie et al. | Nov 2013 | B2 |
8627476 | Satish et al. | Jan 2014 | B1 |
8635696 | Aziz | Jan 2014 | B1 |
8682054 | Xue et al. | Mar 2014 | B2 |
8682812 | Ranjan | Mar 2014 | B1 |
8689333 | Aziz | Apr 2014 | B2 |
8695096 | Zhang | Apr 2014 | B1 |
8713631 | Pavlyushchik | Apr 2014 | B1 |
8713681 | Silberman et al. | Apr 2014 | B2 |
8726392 | McCorkendale et al. | May 2014 | B1 |
8739280 | Chess et al. | May 2014 | B2 |
8776229 | Aziz | Jul 2014 | B1 |
8782792 | Bodke | Jul 2014 | B1 |
8789172 | Stolfo et al. | Jul 2014 | B2 |
8789178 | Kejriwal et al. | Jul 2014 | B2 |
8793278 | Frazier et al. | Jul 2014 | B2 |
8793787 | Ismael et al. | Jul 2014 | B2 |
8805947 | Kuzkin et al. | Aug 2014 | B1 |
8806647 | Daswani et al. | Aug 2014 | B1 |
8832829 | Manni et al. | Sep 2014 | B2 |
8850570 | Ramzan | Sep 2014 | B1 |
8850571 | Staniford et al. | Sep 2014 | B2 |
8881234 | Narasimhan et al. | Nov 2014 | B2 |
8881271 | Butler, II | Nov 2014 | B2 |
8881282 | Aziz et al. | Nov 2014 | B1 |
8898788 | Aziz et al. | Nov 2014 | B1 |
8935779 | Manni et al. | Jan 2015 | B2 |
8949257 | Shiffer et al. | Feb 2015 | B2 |
8984638 | Aziz et al. | Mar 2015 | B1 |
8990939 | Staniford et al. | Mar 2015 | B2 |
8990944 | Singh et al. | Mar 2015 | B1 |
8997219 | Staniford et al. | Mar 2015 | B2 |
9009822 | Ismael et al. | Apr 2015 | B1 |
9009823 | Ismael et al. | Apr 2015 | B1 |
9027135 | Aziz | May 2015 | B1 |
9071638 | Aziz et al. | Jun 2015 | B1 |
9104867 | Thioux et al. | Aug 2015 | B1 |
9106630 | Frazier et al. | Aug 2015 | B2 |
9106694 | Aziz et al. | Aug 2015 | B2 |
9118715 | Staniford et al. | Aug 2015 | B2 |
9159035 | Ismael et al. | Oct 2015 | B1 |
9171160 | Vincent et al. | Oct 2015 | B2 |
9176843 | Ismael et al. | Nov 2015 | B1 |
9189627 | Islam | Nov 2015 | B1 |
9195829 | Goradia et al. | Nov 2015 | B1 |
9197664 | Aziz et al. | Nov 2015 | B1 |
9223972 | Vincent et al. | Dec 2015 | B1 |
9225740 | Ismael et al. | Dec 2015 | B1 |
9241010 | Bennett et al. | Jan 2016 | B1 |
9251343 | Vincent et al. | Feb 2016 | B1 |
9262635 | Paithane et al. | Feb 2016 | B2 |
9268936 | Butler | Feb 2016 | B2 |
9275229 | LeMasters | Mar 2016 | B2 |
9282109 | Aziz et al. | Mar 2016 | B1 |
9292686 | Ismael et al. | Mar 2016 | B2 |
9294501 | Mesdaq et al. | Mar 2016 | B2 |
9300686 | Pidathala et al. | Mar 2016 | B2 |
9306960 | Aziz | Apr 2016 | B1 |
9306974 | Aziz et al. | Apr 2016 | B1 |
9311479 | Manni et al. | Apr 2016 | B1 |
9355247 | Thioux et al. | May 2016 | B1 |
9356944 | Aziz | May 2016 | B1 |
9363280 | Rivlin et al. | Jun 2016 | B1 |
9367681 | Ismael et al. | Jun 2016 | B1 |
9398028 | Karandikar et al. | Jul 2016 | B1 |
9413781 | Cunningham et al. | Aug 2016 | B2 |
9426071 | Caldejon et al. | Aug 2016 | B1 |
9430646 | Mushtaq et al. | Aug 2016 | B1 |
9432389 | Khalid et al. | Aug 2016 | B1 |
9438613 | Paithane et al. | Sep 2016 | B1 |
9438622 | Staniford et al. | Sep 2016 | B1 |
9438623 | Thioux et al. | Sep 2016 | B1 |
9459901 | Jung et al. | Oct 2016 | B2 |
9467460 | Otvagin et al. | Oct 2016 | B1 |
9483644 | Paithane et al. | Nov 2016 | B1 |
9495180 | Ismael | Nov 2016 | B2 |
9497213 | Thompson et al. | Nov 2016 | B2 |
9507935 | Ismael et al. | Nov 2016 | B2 |
9516057 | Aziz | Dec 2016 | B2 |
9519782 | Aziz et al. | Dec 2016 | B2 |
9536091 | Paithane et al. | Jan 2017 | B2 |
9537972 | Edwards et al. | Jan 2017 | B1 |
9560059 | Islam | Jan 2017 | B1 |
9565202 | Kindlund et al. | Feb 2017 | B1 |
9591015 | Amin et al. | Mar 2017 | B1 |
9591020 | Aziz | Mar 2017 | B1 |
9594904 | Jain et al. | Mar 2017 | B1 |
9594905 | Ismael et al. | Mar 2017 | B1 |
9594912 | Thioux et al. | Mar 2017 | B1 |
9609007 | Rivlin et al. | Mar 2017 | B1 |
9626509 | Khalid et al. | Apr 2017 | B1 |
9628498 | Aziz et al. | Apr 2017 | B1 |
9628507 | Haq et al. | Apr 2017 | B2 |
9633134 | Ross | Apr 2017 | B2 |
9635039 | Islam et al. | Apr 2017 | B1 |
9641546 | Manni et al. | May 2017 | B1 |
9654485 | Neumann | May 2017 | B1 |
9661009 | Karandikar et al. | May 2017 | B1 |
9661018 | Aziz | May 2017 | B1 |
9674298 | Edwards et al. | Jun 2017 | B1 |
9680862 | Ismael et al. | Jun 2017 | B2 |
9690606 | Ha et al. | Jun 2017 | B1 |
9690933 | Singh et al. | Jun 2017 | B1 |
9690935 | Shiffer et al. | Jun 2017 | B2 |
9690936 | Malik et al. | Jun 2017 | B1 |
9690938 | Saxe et al. | Jun 2017 | B1 |
9705904 | Davis | Jul 2017 | B1 |
9736179 | Ismael | Aug 2017 | B2 |
9740857 | Ismael et al. | Aug 2017 | B2 |
9747446 | Pidathala et al. | Aug 2017 | B1 |
9756074 | Aziz et al. | Sep 2017 | B2 |
9773112 | Rathor et al. | Sep 2017 | B1 |
9781144 | Otvagin et al. | Oct 2017 | B1 |
9787700 | Amin et al. | Oct 2017 | B1 |
9787706 | Otvagin et al. | Oct 2017 | B1 |
9792196 | Ismael et al. | Oct 2017 | B1 |
9824209 | Ismael et al. | Nov 2017 | B1 |
9824211 | Wilson | Nov 2017 | B2 |
9824216 | Khalid et al. | Nov 2017 | B1 |
9825976 | Gomez et al. | Nov 2017 | B1 |
9825989 | Mehra et al. | Nov 2017 | B1 |
9838408 | Karandikar et al. | Dec 2017 | B1 |
9838411 | Aziz | Dec 2017 | B1 |
9838416 | Aziz | Dec 2017 | B1 |
9838417 | Khalid et al. | Dec 2017 | B1 |
9846776 | Paithane et al. | Dec 2017 | B1 |
9876701 | Caldejon et al. | Jan 2018 | B1 |
9888016 | Amin et al. | Feb 2018 | B1 |
9888019 | Pidathala et al. | Feb 2018 | B1 |
9910988 | Vincent et al. | Mar 2018 | B1 |
9912644 | Cunningham | Mar 2018 | B2 |
9912681 | Ismael et al. | Mar 2018 | B1 |
9912684 | Aziz et al. | Mar 2018 | B1 |
9912691 | Mesdaq et al. | Mar 2018 | B2 |
9912698 | Thioux et al. | Mar 2018 | B1 |
9916440 | Paithane et al. | Mar 2018 | B1 |
9921978 | Chan et al. | Mar 2018 | B1 |
9934376 | Ismael | Apr 2018 | B1 |
9934381 | Kindlund et al. | Apr 2018 | B1 |
9946568 | Ismael et al. | Apr 2018 | B1 |
9954890 | Staniford et al. | Apr 2018 | B1 |
9973531 | Thioux | May 2018 | B1 |
10002252 | Ismael et al. | Jun 2018 | B2 |
10019338 | Goradia et al. | Jul 2018 | B1 |
10019573 | Silberman et al. | Jul 2018 | B2 |
10025691 | Ismael et al. | Jul 2018 | B1 |
10025927 | Khalid et al. | Jul 2018 | B1 |
10027689 | Rathor et al. | Jul 2018 | B1 |
10027690 | Aziz et al. | Jul 2018 | B2 |
10027696 | Rivlin et al. | Jul 2018 | B1 |
10033747 | Paithane et al. | Jul 2018 | B1 |
10033748 | Cunningham et al. | Jul 2018 | B1 |
10033753 | Islam et al. | Jul 2018 | B1 |
10033759 | Kabra et al. | Jul 2018 | B1 |
10050998 | Singh | Aug 2018 | B1 |
10068091 | Aziz et al. | Sep 2018 | B1 |
10075455 | Zafar et al. | Sep 2018 | B2 |
10083302 | Paithane et al. | Sep 2018 | B1 |
10084813 | Eyada | Sep 2018 | B2 |
10089461 | Ha et al. | Oct 2018 | B1 |
10097573 | Aziz | Oct 2018 | B1 |
10104102 | Neumann | Oct 2018 | B1 |
10108446 | Steinberg et al. | Oct 2018 | B1 |
10121000 | Rivlin et al. | Nov 2018 | B1 |
10122746 | Manni et al. | Nov 2018 | B1 |
10133863 | Bu et al. | Nov 2018 | B2 |
10133866 | Kumar et al. | Nov 2018 | B1 |
10146810 | Shiffer et al. | Dec 2018 | B2 |
10148693 | Singh et al. | Dec 2018 | B2 |
10165000 | Aziz et al. | Dec 2018 | B1 |
10169585 | Pilipenko et al. | Jan 2019 | B1 |
10176321 | Abbasi et al. | Jan 2019 | B2 |
10181029 | Ismael et al. | Jan 2019 | B1 |
10191861 | Steinberg et al. | Jan 2019 | B1 |
10192052 | Singh et al. | Jan 2019 | B1 |
10198574 | Thioux et al. | Feb 2019 | B1 |
10200384 | Mushtaq et al. | Feb 2019 | B1 |
10210329 | Malik et al. | Feb 2019 | B1 |
10216927 | Steinberg | Feb 2019 | B1 |
10218740 | Mesdaq et al. | Feb 2019 | B1 |
10242185 | Goradia | Mar 2019 | B1 |
20010005889 | Albrecht | Jun 2001 | A1 |
20010047326 | Broadbent et al. | Nov 2001 | A1 |
20020018903 | Kokubo et al. | Feb 2002 | A1 |
20020038430 | Edwards et al. | Mar 2002 | A1 |
20020091819 | Melchione et al. | Jul 2002 | A1 |
20020095607 | Lin-Hendel | Jul 2002 | A1 |
20020116627 | Tarbotton et al. | Aug 2002 | A1 |
20020144156 | Copeland | Oct 2002 | A1 |
20020162015 | Tang | Oct 2002 | A1 |
20020166063 | Lachman et al. | Nov 2002 | A1 |
20020169952 | DiSanto et al. | Nov 2002 | A1 |
20020184528 | Shevenell et al. | Dec 2002 | A1 |
20020188887 | Largman et al. | Dec 2002 | A1 |
20020194490 | Halperin et al. | Dec 2002 | A1 |
20030021728 | Sharpe et al. | Jan 2003 | A1 |
20030074578 | Ford et al. | Apr 2003 | A1 |
20030084318 | Schertz | May 2003 | A1 |
20030101381 | Mateev et al. | May 2003 | A1 |
20030115483 | Liang | Jun 2003 | A1 |
20030188190 | Aaron et al. | Oct 2003 | A1 |
20030191957 | Hypponen et al. | Oct 2003 | A1 |
20030200460 | Morota et al. | Oct 2003 | A1 |
20030212902 | van der Made | Nov 2003 | A1 |
20030229801 | Kouznetsov et al. | Dec 2003 | A1 |
20030237000 | Denton et al. | Dec 2003 | A1 |
20040003323 | Bennett et al. | Jan 2004 | A1 |
20040006473 | Mills et al. | Jan 2004 | A1 |
20040015712 | Szor | Jan 2004 | A1 |
20040019832 | Arnold et al. | Jan 2004 | A1 |
20040047356 | Bauer | Mar 2004 | A1 |
20040083408 | Spiegel et al. | Apr 2004 | A1 |
20040088581 | Brawn et al. | May 2004 | A1 |
20040093513 | Cantrell et al. | May 2004 | A1 |
20040111531 | Staniford et al. | Jun 2004 | A1 |
20040117478 | Triulzi et al. | Jun 2004 | A1 |
20040117624 | Brandt et al. | Jun 2004 | A1 |
20040128355 | Chao et al. | Jul 2004 | A1 |
20040165588 | Pandya | Aug 2004 | A1 |
20040236963 | Danford et al. | Nov 2004 | A1 |
20040243349 | Greifeneder et al. | Dec 2004 | A1 |
20040249911 | Alkhatib et al. | Dec 2004 | A1 |
20040255161 | Cavanaugh | Dec 2004 | A1 |
20040268147 | Wiederin et al. | Dec 2004 | A1 |
20050005159 | Oliphant | Jan 2005 | A1 |
20050021740 | Bar et al. | Jan 2005 | A1 |
20050033960 | Vialen et al. | Feb 2005 | A1 |
20050033989 | Poletto et al. | Feb 2005 | A1 |
20050050148 | Mohammadioun et al. | Mar 2005 | A1 |
20050086523 | Zimmer et al. | Apr 2005 | A1 |
20050091513 | Mitomo et al. | Apr 2005 | A1 |
20050091533 | Omote et al. | Apr 2005 | A1 |
20050091652 | Ross et al. | Apr 2005 | A1 |
20050108562 | Khazan et al. | May 2005 | A1 |
20050114663 | Cornell et al. | May 2005 | A1 |
20050125195 | Brendel | Jun 2005 | A1 |
20050149726 | Joshi et al. | Jul 2005 | A1 |
20050157662 | Bingham et al. | Jul 2005 | A1 |
20050183143 | Anderholm et al. | Aug 2005 | A1 |
20050201297 | Peikari | Sep 2005 | A1 |
20050210533 | Copeland et al. | Sep 2005 | A1 |
20050238005 | Chen et al. | Oct 2005 | A1 |
20050240781 | Gassoway | Oct 2005 | A1 |
20050262562 | Gassoway | Nov 2005 | A1 |
20050265331 | Stolfo | Dec 2005 | A1 |
20050283839 | Cowburn | Dec 2005 | A1 |
20060010495 | Cohen et al. | Jan 2006 | A1 |
20060015416 | Hoffman et al. | Jan 2006 | A1 |
20060015715 | Anderson | Jan 2006 | A1 |
20060015747 | Van de Ven | Jan 2006 | A1 |
20060021029 | Brickell et al. | Jan 2006 | A1 |
20060021054 | Costa et al. | Jan 2006 | A1 |
20060031476 | Mathes et al. | Feb 2006 | A1 |
20060047665 | Neil | Mar 2006 | A1 |
20060070130 | Costea et al. | Mar 2006 | A1 |
20060075496 | Carpenter et al. | Apr 2006 | A1 |
20060095968 | Portolani et al. | May 2006 | A1 |
20060101516 | Sudaharan et al. | May 2006 | A1 |
20060101517 | Banzhof et al. | May 2006 | A1 |
20060117385 | Mester et al. | Jun 2006 | A1 |
20060123477 | Raghavan et al. | Jun 2006 | A1 |
20060143709 | Brooks et al. | Jun 2006 | A1 |
20060150249 | Gassen et al. | Jul 2006 | A1 |
20060161983 | Cothrell et al. | Jul 2006 | A1 |
20060161987 | Levy-Yurista | Jul 2006 | A1 |
20060161989 | Reshef et al. | Jul 2006 | A1 |
20060164199 | Glide et al. | Jul 2006 | A1 |
20060173992 | Weber et al. | Aug 2006 | A1 |
20060179147 | Tran et al. | Aug 2006 | A1 |
20060184632 | Marino et al. | Aug 2006 | A1 |
20060191010 | Benjamin | Aug 2006 | A1 |
20060221956 | Narayan et al. | Oct 2006 | A1 |
20060236393 | Kramer et al. | Oct 2006 | A1 |
20060242709 | Seinfeld et al. | Oct 2006 | A1 |
20060248519 | Jaeger et al. | Nov 2006 | A1 |
20060248582 | Panjwani et al. | Nov 2006 | A1 |
20060251104 | Koga | Nov 2006 | A1 |
20060288417 | Bookbinder et al. | Dec 2006 | A1 |
20070006288 | Mayfield et al. | Jan 2007 | A1 |
20070006313 | Porras et al. | Jan 2007 | A1 |
20070011174 | Takaragi et al. | Jan 2007 | A1 |
20070016951 | Piccard et al. | Jan 2007 | A1 |
20070019286 | Kikuchi | Jan 2007 | A1 |
20070033645 | Jones | Feb 2007 | A1 |
20070038943 | FitzGerald et al. | Feb 2007 | A1 |
20070064689 | Shin et al. | Mar 2007 | A1 |
20070074169 | Chess et al. | Mar 2007 | A1 |
20070094730 | Bhikkaji et al. | Apr 2007 | A1 |
20070101435 | Konanka et al. | May 2007 | A1 |
20070128855 | Cho et al. | Jun 2007 | A1 |
20070142030 | Sinha et al. | Jun 2007 | A1 |
20070143827 | Nicodemus et al. | Jun 2007 | A1 |
20070156895 | Vuong | Jul 2007 | A1 |
20070157180 | Tillmann et al. | Jul 2007 | A1 |
20070157306 | Elrod et al. | Jul 2007 | A1 |
20070168988 | Eisner et al. | Jul 2007 | A1 |
20070171824 | Ruello et al. | Jul 2007 | A1 |
20070174915 | Gribble et al. | Jul 2007 | A1 |
20070192500 | Lum | Aug 2007 | A1 |
20070192858 | Lum | Aug 2007 | A1 |
20070198275 | Malden et al. | Aug 2007 | A1 |
20070208822 | Wang et al. | Sep 2007 | A1 |
20070220607 | Sprosts et al. | Sep 2007 | A1 |
20070240218 | Tuvell et al. | Oct 2007 | A1 |
20070240219 | Tuvell et al. | Oct 2007 | A1 |
20070240220 | Tuvell et al. | Oct 2007 | A1 |
20070240222 | Tuvell et al. | Oct 2007 | A1 |
20070250930 | Aziz et al. | Oct 2007 | A1 |
20070256132 | Oliphant | Nov 2007 | A2 |
20070271446 | Nakamura | Nov 2007 | A1 |
20080005782 | Aziz | Jan 2008 | A1 |
20080018122 | Zierler et al. | Jan 2008 | A1 |
20080028463 | Dagon et al. | Jan 2008 | A1 |
20080040710 | Chiriac | Feb 2008 | A1 |
20080046781 | Childs et al. | Feb 2008 | A1 |
20080066179 | Liu | Mar 2008 | A1 |
20080072326 | Danford et al. | Mar 2008 | A1 |
20080077793 | Tan et al. | Mar 2008 | A1 |
20080080518 | Hoeflin et al. | Apr 2008 | A1 |
20080086720 | Lekel | Apr 2008 | A1 |
20080098476 | Syversen | Apr 2008 | A1 |
20080120722 | Sima et al. | May 2008 | A1 |
20080134178 | Fitzgerald et al. | Jun 2008 | A1 |
20080134334 | Kim et al. | Jun 2008 | A1 |
20080141376 | Clausen et al. | Jun 2008 | A1 |
20080184367 | McMillan et al. | Jul 2008 | A1 |
20080184373 | Traut et al. | Jul 2008 | A1 |
20080189787 | Arnold et al. | Aug 2008 | A1 |
20080201778 | Guo et al. | Aug 2008 | A1 |
20080209557 | Herley et al. | Aug 2008 | A1 |
20080215742 | Goldszmidt et al. | Sep 2008 | A1 |
20080222729 | Chen et al. | Sep 2008 | A1 |
20080263665 | Ma et al. | Oct 2008 | A1 |
20080295172 | Bohacek | Nov 2008 | A1 |
20080301810 | Lehane et al. | Dec 2008 | A1 |
20080307524 | Singh et al. | Dec 2008 | A1 |
20080313738 | Enderby | Dec 2008 | A1 |
20080320594 | Jiang | Dec 2008 | A1 |
20090003317 | Kasralikar et al. | Jan 2009 | A1 |
20090007100 | Field et al. | Jan 2009 | A1 |
20090013408 | Schipka | Jan 2009 | A1 |
20090031423 | Liu et al. | Jan 2009 | A1 |
20090036111 | Danford et al. | Feb 2009 | A1 |
20090037835 | Goldman | Feb 2009 | A1 |
20090044024 | Oberheide et al. | Feb 2009 | A1 |
20090044274 | Budko et al. | Feb 2009 | A1 |
20090064332 | Porras et al. | Mar 2009 | A1 |
20090077666 | Chen et al. | Mar 2009 | A1 |
20090083369 | Marmor | Mar 2009 | A1 |
20090083855 | Apap et al. | Mar 2009 | A1 |
20090089879 | Wang et al. | Apr 2009 | A1 |
20090094697 | Provos et al. | Apr 2009 | A1 |
20090113425 | Ports et al. | Apr 2009 | A1 |
20090125976 | Wassermann et al. | May 2009 | A1 |
20090126015 | Monastyrsky et al. | May 2009 | A1 |
20090126016 | Sobko et al. | May 2009 | A1 |
20090133125 | Choi et al. | May 2009 | A1 |
20090144823 | Lamastra et al. | Jun 2009 | A1 |
20090158430 | Borders | Jun 2009 | A1 |
20090172815 | Gu et al. | Jul 2009 | A1 |
20090187992 | Poston | Jul 2009 | A1 |
20090193293 | Stolfo et al. | Jul 2009 | A1 |
20090198651 | Shiffer et al. | Aug 2009 | A1 |
20090198670 | Shiffer et al. | Aug 2009 | A1 |
20090198689 | Frazier et al. | Aug 2009 | A1 |
20090199274 | Frazier et al. | Aug 2009 | A1 |
20090199296 | Xie et al. | Aug 2009 | A1 |
20090228233 | Anderson et al. | Sep 2009 | A1 |
20090241187 | Troyansky | Sep 2009 | A1 |
20090241190 | Todd et al. | Sep 2009 | A1 |
20090265692 | Godefroid et al. | Oct 2009 | A1 |
20090271867 | Zhang | Oct 2009 | A1 |
20090300415 | Zhang et al. | Dec 2009 | A1 |
20090300761 | Park et al. | Dec 2009 | A1 |
20090328185 | Berg et al. | Dec 2009 | A1 |
20090328221 | Blumfield et al. | Dec 2009 | A1 |
20100005146 | Drako et al. | Jan 2010 | A1 |
20100011205 | McKenna | Jan 2010 | A1 |
20100017546 | Poo et al. | Jan 2010 | A1 |
20100030996 | Butler, II | Feb 2010 | A1 |
20100031353 | Thomas et al. | Feb 2010 | A1 |
20100037314 | Perdisci et al. | Feb 2010 | A1 |
20100043073 | Kuwamura | Feb 2010 | A1 |
20100054278 | Stolfo et al. | Mar 2010 | A1 |
20100058474 | Hicks | Mar 2010 | A1 |
20100064044 | Nonoyama | Mar 2010 | A1 |
20100077481 | Polyakov et al. | Mar 2010 | A1 |
20100083376 | Pereira et al. | Apr 2010 | A1 |
20100115621 | Staniford et al. | May 2010 | A1 |
20100132038 | Zaitsev | May 2010 | A1 |
20100154056 | Smith et al. | Jun 2010 | A1 |
20100180344 | Malyshev et al. | Jul 2010 | A1 |
20100192223 | Ismael et al. | Jul 2010 | A1 |
20100220863 | Dupaquis et al. | Sep 2010 | A1 |
20100235831 | Dittmer | Sep 2010 | A1 |
20100251104 | Massand | Sep 2010 | A1 |
20100281102 | Chinta et al. | Nov 2010 | A1 |
20100281541 | Stolfo et al. | Nov 2010 | A1 |
20100281542 | Stolfo et al. | Nov 2010 | A1 |
20100287260 | Peterson et al. | Nov 2010 | A1 |
20100299754 | Amit et al. | Nov 2010 | A1 |
20100306173 | Frank | Dec 2010 | A1 |
20110004737 | Greenebaum | Jan 2011 | A1 |
20110025504 | Lyon et al. | Feb 2011 | A1 |
20110041179 | St Hlberg | Feb 2011 | A1 |
20110047594 | Mahaffey et al. | Feb 2011 | A1 |
20110047620 | Mahaffey et al. | Feb 2011 | A1 |
20110055907 | Narasimhan et al. | Mar 2011 | A1 |
20110078794 | Manni et al. | Mar 2011 | A1 |
20110093951 | Aziz | Apr 2011 | A1 |
20110099620 | Stavrou et al. | Apr 2011 | A1 |
20110099633 | Aziz | Apr 2011 | A1 |
20110099635 | Silberman et al. | Apr 2011 | A1 |
20110113231 | Kaminsky | May 2011 | A1 |
20110145918 | Jung et al. | Jun 2011 | A1 |
20110145920 | Mahaffey et al. | Jun 2011 | A1 |
20110145934 | Abramovici et al. | Jun 2011 | A1 |
20110167493 | Song et al. | Jul 2011 | A1 |
20110167494 | Bowen et al. | Jul 2011 | A1 |
20110173213 | Frazier et al. | Jul 2011 | A1 |
20110173460 | Ito et al. | Jul 2011 | A1 |
20110219449 | St. Neitzel et al. | Sep 2011 | A1 |
20110219450 | McDougal et al. | Sep 2011 | A1 |
20110225624 | Sawhney et al. | Sep 2011 | A1 |
20110225655 | Niemela et al. | Sep 2011 | A1 |
20110247072 | Staniford et al. | Oct 2011 | A1 |
20110265182 | Peinado et al. | Oct 2011 | A1 |
20110289582 | Kejriwal et al. | Nov 2011 | A1 |
20110302587 | Nishikawa et al. | Dec 2011 | A1 |
20110307954 | Melnik et al. | Dec 2011 | A1 |
20110307955 | Kaplan et al. | Dec 2011 | A1 |
20110307956 | Yermakov et al. | Dec 2011 | A1 |
20110314546 | Aziz et al. | Dec 2011 | A1 |
20120023593 | Puder et al. | Jan 2012 | A1 |
20120054869 | Yen et al. | Mar 2012 | A1 |
20120066698 | Yanoo | Mar 2012 | A1 |
20120079596 | Thomas et al. | Mar 2012 | A1 |
20120084859 | Radinsky et al. | Apr 2012 | A1 |
20120096553 | Srivastava et al. | Apr 2012 | A1 |
20120110667 | Zubrilin et al. | May 2012 | A1 |
20120117652 | Manni et al. | May 2012 | A1 |
20120121154 | Xue et al. | May 2012 | A1 |
20120124426 | Maybee et al. | May 2012 | A1 |
20120174186 | Aziz et al. | Jul 2012 | A1 |
20120174196 | Bhogavilli et al. | Jul 2012 | A1 |
20120174218 | McCoy et al. | Jul 2012 | A1 |
20120198279 | Schroeder | Aug 2012 | A1 |
20120210423 | Friedrichs et al. | Aug 2012 | A1 |
20120222121 | Staniford et al. | Aug 2012 | A1 |
20120255015 | Sahita et al. | Oct 2012 | A1 |
20120255017 | Sallam | Oct 2012 | A1 |
20120260342 | Dube et al. | Oct 2012 | A1 |
20120266244 | Green et al. | Oct 2012 | A1 |
20120278886 | Luna | Nov 2012 | A1 |
20120297489 | Dequevy | Nov 2012 | A1 |
20120330801 | McDougal et al. | Dec 2012 | A1 |
20120331553 | Aziz et al. | Dec 2012 | A1 |
20130014259 | Gribble et al. | Jan 2013 | A1 |
20130036472 | Aziz | Feb 2013 | A1 |
20130047257 | Aziz | Feb 2013 | A1 |
20130074185 | McDougal et al. | Mar 2013 | A1 |
20130086684 | Mohler | Apr 2013 | A1 |
20130097699 | Balupari et al. | Apr 2013 | A1 |
20130097706 | Titonis et al. | Apr 2013 | A1 |
20130111587 | Goel et al. | May 2013 | A1 |
20130117852 | Stute | May 2013 | A1 |
20130117855 | Kim et al. | May 2013 | A1 |
20130139264 | Brinkley et al. | May 2013 | A1 |
20130160125 | Likhachev et al. | Jun 2013 | A1 |
20130160127 | Jeong et al. | Jun 2013 | A1 |
20130160130 | Mendelev et al. | Jun 2013 | A1 |
20130160131 | Madou et al. | Jun 2013 | A1 |
20130167236 | Sick | Jun 2013 | A1 |
20130174214 | Duncan | Jul 2013 | A1 |
20130185789 | Hagiwara et al. | Jul 2013 | A1 |
20130185795 | Winn et al. | Jul 2013 | A1 |
20130185798 | Saunders et al. | Jul 2013 | A1 |
20130191915 | Antonakakis et al. | Jul 2013 | A1 |
20130196649 | Paddon et al. | Aug 2013 | A1 |
20130205014 | Muro | Aug 2013 | A1 |
20130227691 | Aziz et al. | Aug 2013 | A1 |
20130246370 | Bartram et al. | Sep 2013 | A1 |
20130247186 | LeMasters | Sep 2013 | A1 |
20130263260 | Mahaffey et al. | Oct 2013 | A1 |
20130291109 | Staniford et al. | Oct 2013 | A1 |
20130298243 | Kumar et al. | Nov 2013 | A1 |
20130318038 | Shiffer et al. | Nov 2013 | A1 |
20130318073 | Shiffer et al. | Nov 2013 | A1 |
20130325791 | Shiffer et al. | Dec 2013 | A1 |
20130325792 | Shiffer et al. | Dec 2013 | A1 |
20130325871 | Shiffer et al. | Dec 2013 | A1 |
20130325872 | Shiffer et al. | Dec 2013 | A1 |
20140032875 | Butler | Jan 2014 | A1 |
20140053260 | Gupta et al. | Feb 2014 | A1 |
20140053261 | Gupta et al. | Feb 2014 | A1 |
20140130158 | Wang et al. | May 2014 | A1 |
20140137180 | Lukacs et al. | May 2014 | A1 |
20140169762 | Ryu | Jun 2014 | A1 |
20140179360 | Jackson et al. | Jun 2014 | A1 |
20140181131 | Ross | Jun 2014 | A1 |
20140189687 | Jung et al. | Jul 2014 | A1 |
20140189866 | Shiffer et al. | Jul 2014 | A1 |
20140189882 | Jung et al. | Jul 2014 | A1 |
20140237600 | Silberman et al. | Aug 2014 | A1 |
20140280245 | Wilson | Sep 2014 | A1 |
20140283037 | Sikorski et al. | Sep 2014 | A1 |
20140283063 | Thompson et al. | Sep 2014 | A1 |
20140328204 | Klotsche et al. | Nov 2014 | A1 |
20140337836 | Ismael | Nov 2014 | A1 |
20140344926 | Cunningham et al. | Nov 2014 | A1 |
20140351935 | Shao et al. | Nov 2014 | A1 |
20140380473 | Bu et al. | Dec 2014 | A1 |
20140380474 | Paithane et al. | Dec 2014 | A1 |
20150007312 | Pidathala et al. | Jan 2015 | A1 |
20150096022 | Vincent et al. | Apr 2015 | A1 |
20150096023 | Mesdaq et al. | Apr 2015 | A1 |
20150096024 | Haq et al. | Apr 2015 | A1 |
20150096025 | Ismael | Apr 2015 | A1 |
20150180886 | Staniford et al. | Jun 2015 | A1 |
20150186645 | Aziz et al. | Jul 2015 | A1 |
20150199513 | Ismael et al. | Jul 2015 | A1 |
20150199531 | Ismael et al. | Jul 2015 | A1 |
20150199532 | Ismael et al. | Jul 2015 | A1 |
20150220735 | Paithane et al. | Aug 2015 | A1 |
20150372980 | Eyada | Dec 2015 | A1 |
20160004869 | Ismael et al. | Jan 2016 | A1 |
20160006756 | Ismael et al. | Jan 2016 | A1 |
20160044000 | Cunningham | Feb 2016 | A1 |
20160127393 | Aziz et al. | May 2016 | A1 |
20160191547 | Zafar et al. | Jun 2016 | A1 |
20160191550 | Ismael et al. | Jun 2016 | A1 |
20160261612 | Mesdaq et al. | Sep 2016 | A1 |
20160285914 | Singh et al. | Sep 2016 | A1 |
20160301703 | Aziz | Oct 2016 | A1 |
20160335110 | Paithane et al. | Nov 2016 | A1 |
20170083703 | Abbasi et al. | Mar 2017 | A1 |
20180013770 | Ismael | Jan 2018 | A1 |
20180048660 | Paithane et al. | Feb 2018 | A1 |
20180063169 | Zhao | Mar 2018 | A1 |
20180121316 | Ismael et al. | May 2018 | A1 |
20180288077 | Siddiqui et al. | Oct 2018 | A1 |
Number | Date | Country |
---|---|---|
2439806 | Jan 2008 | GB |
2490431 | Oct 2012 | GB |
0206928 | Jan 2002 | WO |
0223805 | Mar 2002 | WO |
2007117636 | Oct 2007 | WO |
2008041950 | Apr 2008 | WO |
2011084431 | Jul 2011 | WO |
2011112348 | Sep 2011 | WO |
2012075336 | Jun 2012 | WO |
2012145066 | Oct 2012 | WO |
2013067505 | May 2013 | WO |
2017011702 | Jan 2017 | WO |
WO-2017011702 | Jan 2017 | WO |
Entry |
---|
PCT/US2018/055508 filed Oct. 11, 2018 International Search Report and Written Opinion dated Dec. 12, 2018. |
“Mining Specification of Malicious Behavior”—Jha et al, UCSB, Sep. 2007 https://www.cs.ucsb.edu/.about.chris/research/doc/esec07.sub.--mining.pdf-. |
“Network Security: NetDetector—Network Intrusion Forensic System (NIFS) Whitepaper”, (“NetDetector Whitepaper”), (2003). |
“When Virtual is Better Than Real”, IEEEXplore Digital Library, available at, http://ieeexplore.ieee.org/xpl/articleDetails.isp?reload=true&arnumbe- r=990073, (Dec. 7, 2013). |
Abdullah, et al., Visualizing Network Data for Intrusion Detection, 2005 IEEE Workshop on Information Assurance and Security, pp. 100-108. |
Adetoye, Adedayo , et al., “Network Intrusion Detection & Response System”, (“Adetoye”), (Sep. 2003). |
Apostolopoulos, George; hassapis, Constantinos; “V-eM: A cluster of Virtual Machines for Robust, Detailed, and High-Performance Network Emulation”, 14th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, Sep. 11-14, 2006, pp. 117-126. |
Aura, Tuomas, “Scanning electronic documents for personally identifiable information”, Proceedings of the 5th ACM workshop on Privacy in electronic society. ACM, 2006. |
Baecher, “The Nepenthes Platform: An Efficient Approach to collect Malware”, Springer-verlag Berlin Heidelberg, (2006), pp. 165-184. |
Bayer, et al., “Dynamic Analysis of Malicious Code”, J Comput Virol, Springer-Verlag, France., (2006), pp. 67-77. |
Boubalos, Chris , “extracting syslog data out of raw pcap dumps, seclists.org, Honeypots mailing list archives”, available at http://seclists.org/honeypots/2003/q2/319 (“Boubalos”), (Jun. 5, 2003). |
Chaudet, C. , et al., “Optimal Positioning of Active and Passive Monitoring Devices”, International Conference on Emerging Networking Experiments and Technologies, Proceedings of the 2005 ACM Conference on Emerging Network Experiment and Technology, CoNEXT '05, Toulousse, France, (Oct. 2005), pp. 71-82. |
Chen, P. M. and Noble, B. D., “When Virtual is Better Than Real, Department of Electrical Engineering and Computer Science”, University of Michigan (“Chen”) (2001). |
Cisco “Intrusion Prevention for the Cisco ASA 5500-x Series” Data Sheet (2012). |
Cohen, M.I. , “PyFlag—An advanced network forensic framework”, Digital investigation 5, Elsevier, (2008), pp. S112-S120. |
Costa, M. , et al., “Vigilante: End-to-End Containment of Internet Worms”, SOSP '05, Association for Computing Machinery, Inc., Brighton U.K., (Oct. 23-26, 2005). |
Didier Stevens, “Malicious PDF Documents Explained”, Security & Privacy, IEEE, IEEE Service Center, Los Alamitos, CA, US, vol. 9, No. 1, Jan. 1, 2011, pp. 80-82, XP011329453, ISSN: 1540-7993, DOI: 10.1109/MSP.2011.14. |
Distler, “Malware Analysis: An Introduction”, SANS Institute InfoSec Reading Room, SANS Institute, (2007). |
Dunlap, George W. , et al., “ReVirt: Enabling Intrusion Analysis through Virtual-Machine Logging and Replay”, Proceeding of the 5th Symposium on Operating Systems Design and Implementation, USENIX Association, (“Dunlap”), (Dec. 9, 2002). |
FireEye Malware Analysis & Exchange Network, Malware Protection System, FireEye Inc., 2010. |
FireEye Malware Analysis, Modern Malware Forensics, FireEye Inc., 2010. |
FireEye v.6.0 Security Target, pp. 1-35, Version 1.1, FireEye Inc., May 2011. |
Goel, et al., Reconstructing System State for Intrusion Analysis, Apr. 2008 SIGOPS Operating Systems Review, vol. 42 Issue 3, pp. 21-28. |
Gregg Keizer: “Microsoft's HoneyMonkeys Show Patching Windows Works”, Aug. 8, 2005, XP055143386, Retrieved fom the Internet: URL:http://www.informationweek.com/microsofts-honeymonkeys-show-patching-windows-works/d/d-id/1035069? [retrieved on Jun. 1, 2016]. |
Heng Yin et al, Panorama: Capturing System-Wide Information Flow for Malware Detection and Analysis, Research Showcase @ CMU, Carnegie Mellon University, 2007. |
Hiroshi Shinotsuka, Malware Authors Using New Techniques to Evade Automated Threat Analysis Systems, Oct. 26, 2012, http://www.symantec.com/connect/blogs/, pp. 1-4. |
Idika et al., A-Survey-of-Malware-Detection-Techniques, Feb. 2, 2007, Department of Computer Science, Purdue University. |
Isohara, Takamasa, Keisuke Takemori, and Ayumu Kubota. “Kernel-based behavior analysis for android malware detection.” Computational intelligence and Security (CIS), 2011 Seventh International Conference on. IEEE, 2011. |
Kaeo, Merike , “Designing Network Security”, (“Kaeo”), (Nov. 2003). |
Kevin A Roundy et al: “Hybrid Analysis and Control of Malware”, Sep. 15, 2010, Recent Advances in Intrusion Detection, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 317-338, XP019150454 ISBM:978-3-642-15511-6. |
Khaled Salah et al: “Using Cloud Computing to Implement a Security Overlay Network”, Security & Privacy, IEEE, IEEE Service Center, Los Alamitos, CA, US, vol. 11, No. 1, Jan. 1, 2013 (Jan. 1, 2013). |
Kim, H. , et al., “Autograph: Toward Automated, Distributed Worm Signature Detection”, Proceedings of the 13th Usenix Security Symposium (Security 2004), San Diego, (Aug. 2004), pp. 271-286. |
King, Samuel T., et al., “Operating System Support for Virtual Machines”, (“King”), (2003). |
Kreibich, C. , et al., “Honeycomb-Creating Intrusion Detection Signatures Using Honeypots”, 2nd Workshop on Hot Topics in Networks (HotNets-11), Boston, USA, (2003). |
Kristoff, J. , “Botnets, Detection and Mitigation: DNS-Based Techniques”, NU Security Day, (2005), 23 pages. |
Lastline Labs, The Threat of Evasive Malware, Feb. 25, 2013, Lastline Labs, pp. 1-8. |
Li et al., A VMM-Based System Call Interposition Framework for Program Monitoring, Dec. 2010, IEEE 16th International Conference on Parallel and Distributed Systems, pp. 706-711. |
Lindorfer, Martina, Clemens Kolbitsch, and Paolo Milani Comparetti. “Detecting environment-sensitive malware.” Recent Advances in Intrusion Detection. Springer Berlin Heidelberg, 2011. |
Marchette, David J., “Computer Intrusion Detection and Network Monitoring: A Statistical Viewpoint”, (“Marchette”), (2001). |
Moore, D. , et al., “Internet Quarantine: Requirements for Containing Self-Propagating Code”, INFOCOM, vol. 3, (Mar. 30-Apr. 3, 2003), pp. 1901-1910. |
Morales, Jose A., et al., ““Analyzing and exploiting network behaviors of malware.””, Security and Privacy in communication Networks. Springer Berlin Heidelberg, 2010. 20-34. |
Mori, Detecting Unknown Computer Viruses, 2004, Springer-Verlag Berlin Heidelberg. |
Natvig, Kurt , “SANDBOXII: Internet”, Virus Bulletin Conference, (“Natvig”), (Sep. 2002). |
NetBIOS Working Group. Protocol Standard for a NetBIOS Service on a TCP/UDP transport: Concepts and Methods. Std 19, RFC 1001, Mar. 1987. |
Newsome, J. , et al., “Dynamic Taint Analysis for Automatic Detection, Analysis, and Signature Generation of Exploits on Commodity Software”, In Proceedings of the 12th Annual Network and Distributed System Security, Symposium (NDSS '05), (Feb. 2005). |
Nojiri, D. , et al., “Cooperation Response Strategies for Large Scale Attack Mitigation”, DARPA Information Survivability Conference and Exposition, vol. 1, (Apr. 22-24, 2003), pp. 293-302. |
Oberheide et al., CloudAV.sub.—N-Version Antivirus in the Network Cloud, 17th USENIX Security Symposium USENIX Security '08 Jul. 28-Aug. 1, 2008 San Jose, CA. |
Reiner Sailer, Enriquillo Valdez, Trent Jaeger, Roonald Perez, Leendert van Doorn John Linwood Griffin, Stefan Berger., sHype: Secure Hypervisor Appraoch to Trusted Virtualized Systems (Feb. 2, 2005) (“Sailer”). |
Silicon Defense, “Worm Containment in the Internal Network”, (Mar. 2003), pp. 1-25. |
Singh, S. , et al., “Automated Worm Fingerprinting”, Proceedings of the ACM/USENIX Symposium on Operating System Design and Implementation, San Francisco, California, (Dec. 2004). |
Thomas H. Ptacek, and Timothy N. Newsham , “Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection”, Secure Networks, (“Ptacek”), (Jan. 1998). |
Venezia, Paul , “NetDetector Captures Intrusions”, InfoWorld Issue 27, (“Venezia”), (Jul. 14, 2003). |
Vladimir Getov: “Security as a Service in Smart Clouds—Opportunities and Concerns”, Computer Software and Applications Conference (COMPSAC), 2012 IEEE 36th Annual, IEEE, Jul. 16, 2012 (Jul. 16, 2012). |
Wahid et al., Characterising the Evolution in Scanning Activity of Suspicious Hosts, Oct. 2009, Third International Conference on Network and System Security, pp. 344-350. |
Whyte, et al., “DNS-Based Detection of Scanning Works in an Enterprise Network”, Proceedings of the 12th Annual Network and Distributed System Security Symposium, (Feb. 2005), 15 pages. |
Williamson, Matthew M., “Throttling Viruses: Restricting Propagation to Defeat Malicious Mobile Code”, ACSAC Conference, Las Vegas, NV, USA, (Dec. 2002), pp. 1-9. |
Yuhei Kawakoya et al: “Memory behavior-based automatic malware unpacking in stealth debugging environment”, Malicious and Unwanted Software (Malware), 2010 5th International Conference on, IEEE, Piscataway, NJ, USA, Oct. 19, 2010, pp. 39-46, XP031833827, ISBN:978-1-4244-8-9353-1. |
Zhang et al., The Effects of Threading, Infection Time, and Multiple-Attacker Collaboration on Malware Propagation, Sep. 2009, IEEE 28th International Symposium on Reliable Distributed Systems, pp. 73-82. |
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097-1105). |
Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., . . . & Bengio, Y. (Jun. 2015). Show, attend and tell: Neural image caption generation with visual attention. In International Conference on Machine Learning (pp. 2048-2057). |
Zhang, X., Zhao, J., & LeCun, Y. (2015). Character-level convolutional networks for text classification. In Advances in neural information processing systems (pp. 649-657). |
Number | Date | Country | |
---|---|---|---|
20190132334 A1 | May 2019 | US |