The present application relates generally to machines that apply tubular shrink sleeve material to containers and, more particularly, to a system and method for applying tubular bands, such as tamper evident bands, to the necks of moving containers.
Tubular shrink sleeve application devices commonly utilize a mandrel assembly over which a tubular shrink film is moved for cutting, and then the cut sleeve-type label is ejected from the mandrel assembly onto a container located below the mandrel assembly. A downstream application of heat can then be used to shrink the film. These same sleeving machines are used to apply tamper evident bands (TE band) to the cap and neck section of containers. Generally, the TE band is simply a shorter sleeve that is sized so it will not fit around the main body of the container so that the band will engage with the cap and neck section of the container during the heat shrink. The TE band therefore provides an indication of whether the container has been opened. Because of the typical short of height of TE bands, they can be difficult to apply to containers at high speeds.
Therefore, it would be desirable and advantageous to provide a system and method that enhances the ability to effectively and expediently apply tamper evident bands.
In one aspect, a machine for applying a tubular band to a container moving in a feed direction includes a mandrel assembly about which tubular film is passed, the mandrel assembly include a central tooling axis and a lower output end. A film cutter is positioned for cutting the tubular film into a tubular band sized for application to a cap and neck section of the container. A band ejection arrangement is associated with the lower output end of the mandrel assembly, wherein the band ejection arrangement includes a tooling segment having a first side facing against the feed direction and a second side facing in the feed direction. A roller wheel protrudes from the first side of the tooling segment and a chamfer is provided at the second side of the tooling segment. The chamfer angles against the feed direction when moving downward along the tooling segment, such that, as the band moves downward over the tooling segment, a first side portion of the band contacts and moves over the roller wheel causing the tubular band to tilt relative to the central tooling axis so as to facilitate ejection of the tubular band in an eject direction that is at a non-zero angle relative to the central tooling axis.
In another aspect, a machine for applying a tubular band to a container moving in a feed direction includes a mandrel assembly about which tubular film is passed. The mandrel assembly includes a central tooling axis and a lower output end formed by a tooling segment having a first side facing against the feed direction and a second side facing in the feed direction, with a free-spinning wheel protruding from the first side of tooling segment and a chamfer at the second side of the tooling segment, wherein the chamfer angles against the feed direction when moving downward along the tooling segment.
The details of one or more embodiments are set forth in the accompanying drawing and the description below. Other features, objects, and advantages will be apparent from the description and drawing, and from the claims.
An exemplary tubular shrink sleeve applying apparatus 30 is shown in schematic form in
A container conveyor 86 passes beneath the lower output end of the mandrel assembly and carries containers 88 in a conveyance direction 90 such that cut bands that are moved off the mandrel assembly move toward the conveyor and any passing container. The container conveyance system 83 may also include an upstream container spacing device 85, such as a rotating product feed screw, to provide a set distance between successive containers moving past the exit end of the mandrel assembly during sleeve application. One or more sensors 87 may also be provided for detecting container position, with the controller configured to initiate band ejection based upon container detection. The cut band may, for example, be ejected off the mandrel assembly with the assistance of a band ejection arrangement 100, which includes one or more ejector wheels 102 that engage an external surface of the band to eject the band upon completion of the cut. A downstream application of heat can then be used to shrink the film. Other variations of the apparatus are possible, including embodiments that do not include the film drivers 82 and embodiments in which other mechanisms for sleeve ejection are provided. The various machine components, may, for example, be driven by respective servo-motors that enable precise control of speed and position, with a controller 110 provided for operating the motors etc.
Notably, as best seen in
A guide 140 is positioned alongside the tooling segment 120. The guide 140 includes a chamfer 142 that aligns with the chamfer 126 of the tooling segment 120 to form an angled guide channel 144 for the second side portion 136 of the band. Here, the chamfer 142 of the guide 140 and the chamfer 126 of the tooling segment 120 include respective upper ends that are located at a height above a height of a top of the perimeter of the roller wheel 125, which causes the second side portion 136 of the band to move toward the first side portion 132 of the band before the first side portion 132 contacts the roller wheel. This configuration facilitates immediate tilt of the band as the band moves over the roller wheel section of the tooling segment.
As mentioned above, one or more rotatably driven ejector wheels 102 are located alongside the tooling segment 120 for engaging an external surface of the tamper evident band to drive the tamper evident band off of the tooling segment 120 in the eject direction 134. The ejector wheel(s) 102 are angularly offset from the roller wheel 125 about the central tooling axis 55. Here, the angular offset is by ninety degrees. The ejector wheel 102 rotates about an axis 104 that, in side elevation view, runs substantially perpendicular to the central tooling axis 55. The ejector wheel 102 is oriented such that a given point on a perimeter of the ejector wheel rotates in a plane 106 that runs substantially parallel to the central tooling axis 55. In other words, in the illustrated embodiment, the ejector wheel 102 urges the band downward, parallel to the tooling axis 55, and it is the interaction of the band with the roller wheel 125 and chamfers 126, 142 that transitions the band to move in the eject direction 134, rather than simply vertically downward.
Here, an air ejector 150 is oriented to blow air down and into the tamper evident band as the tamper evident band is ejected in the eject direction 134. In this case, the air ejector is formed by an air passage 152 (shown in dashed line) that leads to an ejection port 154 located along a lower portion of the chamfer 142 of the guide 140, so that air is output into a lower section of the angled guide channel 144. This air ejection aids in ejecting the band and also helps the band maintain its expanded shape during ejection. The air injection may be controlled by a valve 156 associated with an air feed line 158.
Here, the perimeter of the roller wheel 125 also protrudes below a bottom side 160 of the tooling segment 120.
As seen in
In one implementation, the air injection via port 154 occurs continuously during operation of the system. In this implementation, the valve 156 is opened when the machine is turned on, and the valve 156 is closed when the machine is turned off. In another implementation, the air injection via port 154 may be timed to occur in pulses, with each pulse occurring after a band 170 has been cut and the side portion 136 of the band has moved below the port 154.
Thus, the described apparatus provides a desirable system and method for applying tubular bands, such as tamper evident bands, to moving containers at relatively high throughput, achievable by the angular ejection of the bands.
It is to be clearly understood that the above description is intended by way of illustration and example only, is not intended to be taken by way of limitation, and that other changes and modifications are possible.
Number | Name | Date | Kind |
---|---|---|---|
2986860 | Salzwedel | Jun 1961 | A |
3594975 | Abrecht | Jul 1971 | A |
4562688 | Mueller | Jan 1986 | A |
4600371 | Fresnel | Jul 1986 | A |
4914893 | Strub | Apr 1990 | A |
4947627 | Scheidegger | Aug 1990 | A |
5086682 | Strub et al. | Feb 1992 | A |
5165215 | Menayan | Nov 1992 | A |
5305578 | Menayan | Apr 1994 | A |
5711135 | Menayan | Jan 1998 | A |
6684599 | Fresnel | Feb 2004 | B1 |
7398811 | Duncan | Jul 2008 | B1 |
20130118122 | Heeman | May 2013 | A1 |
20180141695 | Duncan | May 2018 | A1 |
Number | Date | Country |
---|---|---|
20104972 | Apr 2002 | DE |
102014216192 | Feb 2016 | DE |
102014216193 | Feb 2016 | DE |
202015103924 | Dec 2016 | DE |
2949451 | Dec 2015 | EP |
2606741 | May 1988 | FR |
Number | Date | Country | |
---|---|---|---|
20220161953 A1 | May 2022 | US |