1. Technical Field
The present disclosure relates to vehicle management systems and methods, and more particularly to a vehicle management system and method for arranging vehicle repair service.
2. Description of Related Art
Generally, a global positioning system (GPS) receiver is capable of receiving satellite signals from a plurality of GPS satellites, and triangulating the received satellite signals to obtain a calculated position of the GPS receiver.
One application of the GPS is cargo monitoring. GPS receivers are installed in cargo vehicles for providing real-time position information of the vehicles to a management center. Then, the management center can estimate the times that the cargos will be delivered to their respective destinations. In some situations, a vehicle may have an accident or break down on the road. When this happens, the vehicle may not be able to deliver the cargo before the vehicle is repaired.
Therefore, it is desired to provide a vehicle management system and method for overcoming the above-described shortcomings.
Referring to
Referring to
The vehicle 12 includes a GPS receiver 122, a vehicle processor 124, and a vehicle transceiver 126. The GPS receiver 122 receives satellite signals, and calculates a physical position of the vehicle 12 based on the satellite signals to generate corresponding position signals. The physical position includes a latitude coordinate and a longitude coordinate. The GPS receiver 122 transmits the position signals to the vehicle processor 124. The vehicle processor 124 processes the position signals to thereby generate corresponding position data, and signals the vehicle transceiver 126 to transmit the position data to the management center 14.
In some situations, the vehicle 12 may have crashed or broken down in the middle of the road. One or several parts, such as the brake or the engine of the vehicle 12, may no longer be functioning. In this situation, the malfunctioning vehicle 12 needs repair service arranged by the management center 14. The vehicle 12 having the problem can be hereinafter referred to as a “malfunctioning vehicle 12.”
The particular problems of the malfunctioning vehicle 12 can be determined by a self-checking process or by a manually aided process. The self-checking process can be implemented by periodically collecting or gathering diagnostic data transmitted from internal sensors (not shown) of the vehicle 12. The internal sensors are attached to various parts of the vehicle 12.
The manually aided process typically involves the driver of the malfunctioning vehicle 12 examining the malfunctioning vehicle 12 for defects. The driver can thus collect or gather diagnostic data, and manually input the diagnostic data to the vehicle processor 124. In other embodiments, the vehicle processor 124 collects or gathers diagnostic data of the malfunctioning vehicle 12 via both internal sensors and manual input. In the exemplary situation described herein, the “diagnostic data” includes information that one or several parts, such as the brake or the engine, of the malfunctioning vehicle 12 are in need of repair or replacement.
When the diagnostic data is gathered or collected, the vehicle processor 124 may combine the diagnostic data and the position data together to generate a data package, and signal the vehicle transceiver 126 to transmit the data package to the management center 14 via the communication network 130.
The management center 14 includes a center transceiver 142, a center processor 144, and a center database 146. The center transceiver 142 receives the data package transmitted from the vehicle transceiver 126, and transmits the data package to the center processor 144. The center processor 144 extracts the position data from the received data package to determine the exact location of the malfunctioning vehicle 12, and extracts the diagnostic data to determine the part(s) of the malfunctioning vehicle 12 which needs to be repaired or replaced. The center processor 144 selects a repair station 16 which can provide the necessary services to the malfunctioning vehicle 12, according to the position data and the service data stored in the center database 146. When the center processor 144 selects a repair station 16 which can provide the necessary services, the selection is based on at least two criteria detailed below.
The first criterion, which may be assigned with a higher priority, is whether the repair station 16 is the one located nearest to the malfunctioning vehicle 12. The first criterion involves comparing the position data of the malfunctioning vehicle 12 with the position data of the repair stations 16. The position data of the repair stations 16 are stored in the center database 146 of the management center 14. It should be noted that when the position of the repair stations 16 has been changed, the position data stored in the center database 146 can be updated to reflect this change.
When there are two or more repair stations 16 located nearest to the malfunctioning vehicle 12 by performing the first criterion, a second criterion can be further performed to select the appropriate repair station 16 which can provide the necessary service. The second criterion may be assigned with a lower priority than the first criterion. The second criterion involves comparing the diagnostic data of the malfunctioning vehicle 12 with the service data available of the repair stations 16. The service data may include service charge data which can be used to select the repair station 16. For example, there may be three repair stations 16 located nearest to the malfunctioning vehicle 12 and capable of providing required service. The center processor 144 can further compare the service charge of the three repair stations to select one of them with a lowest service charge.
The repair station 16 satisfying the first condition or both of the first and second conditions described above, as the case may be, is hereinafter referred to as a “selected station 16.” Once the selected station 16 is determined, the center processor 144 signals the center transceiver 142 to transmit a request message to the selected station 16 via the communication network 130.
The selected station 16 includes a station transceiver 162 and a station processor 164. The station transceiver 162 receives the request message transmitted from the center transceiver 142, and transmits the request message to the station processor 164. If the selected station 16 is available to provide the repair service, the station processor 164 signals the station transceiver 162 to transmit a confirmation response message to the management center 14. If the selected station 16 cannot provide the repair service, the station processor 164 signals the station transceiver 162 to transmit a rejection response message to the management center 14. In this latter case, the management center 14 selects another repair station 16 that is available to provide the repair service, based on the two conditions described above. This process is repeated as many times as is necessary until a repair station 16 that is available to provide the repair service is found.
Referring to
At block S402, the center transceiver 122 of the management center 12 receives position data and diagnostic data transmitted from the vehicle transceiver 126 of the malfunctioning vehicle 12.
At block S404, the center processor 144 of the management center 14 selects a repair station 16 by comparing the received position data and the diagnostic data of the malfunctioning vehicle 12 with the position data and the service data of the repair stations 16 stored in the center database 142 of the management center 12. The repair station 16 selected can of course provide the needed repair service. Furthermore, the repair station 16 selected can be the one which is located nearest to the malfunctioning vehicle 14, and which can provide a lowest service charge.
At block S406, the center transceiver 142 of the management center 14 transmits a request message to the station transceiver 162 of the selected station 16. The request message includes position information and diagnostic information of the malfunctioning vehicle 14.
At block S408, the station processor 164 determines if repair service can be provided based on the received request message. If the selected station 16 cannot provide the repair service, the procedure returns to block S404. If the selected station 16 can provide the repair service, the procedure goes to block S410.
At block S410, the selected station 16 transmits a confirmation response message to the management center 14. In particular, the station processor 163 signals the station transceiver 162 to transmit the confirmation response message to the center transceiver 142 via the communication network 130.
At block S412, the selected station 16 communicates with the malfunctioning vehicle 14 via the communication network 130 in order to provide the repair service.
As described above, the vehicle management system 10 can receive position information and diagnostic information of the malfunctioning vehicle 12 via the communication network 130. The vehicle management system 10 also can select the nearest repair station 16, and request the nearest repair station 16 to provide the repair service via the communication network 130. Thus the malfunctioning vehicle 14 can be promptly repaired. This service provided to the malfunctioning vehicle 14 can be particularly helpful when the malfunctioning vehicle 14 is in unfamiliar territory.
It should be noted that the various blocks in the method 400 illustrated in
It is believed that the present embodiments and their advantages will be understood from the foregoing description, and it will be apparent that various changes may be made thereto without departing from the spirit and scope of the invention or sacrificing all of its material advantages, the examples hereinbefore described merely being preferred or exemplary embodiments of the invention.
Number | Date | Country | Kind |
---|---|---|---|
200810300436.7 | Feb 2008 | CN | national |