The disclosed embodiments relate to a signaling device and system for an athletic competition and, more particularly, to an electronic starting device that includes signaling devices with lights to permit accurate starting and timing of races and other competitive events and games that include hearing impaired athletes. Traditionally a centralized combination sound and light system is used to initiate the start of a race, wherein a sound is produced either from a starting whistle, pistol or through an electronic loud-speaker in the proximity to the start line. A flash of light often accompanies the sound so the contestants, as well as the officials, are made fully aware of the signal to begin the competition. The equivalent in outdoor track and field competition is a starter's pistol that emits both a sound and a puff of smoke in response to the starter pulling the trigger of the pistol. Although sound generating devices for starting races have long been used, recently they have met objections in that proper placement of the sound source to permit equitable reception of audible signals by all contestants has been difficult to obtain. Furthermore, while hearing impaired athletes and competitors may be disadvantaged by their inability to easily perceive sound, the disclosed embodiments provide a visual cue and an equitable starting method for all athletes. And, the use of a signaling system employing lights may improve the responsiveness and accuracy for hand-timed events as well.
Often races are decided by milliseconds; therefore, the seemingly minimal delay between the start and the times the various athletes receive the audible start signal has become increasingly important in sporting events. Therefore, a visual starting cue, in the proximity of the competitor, has become preferable. Additionally, hearing impaired athletes are becoming more involved in competitive sports, most notably in swimming events. Lacking an individual visual cue the hearing impaired swimmer must either use peripheral vision to react to a flash of light near the starter, or in the alternative look up and observe the starter's hand signals, either of which potentially compromises the hearing impaired swimmer's body position at the start. Consequently, in the interest of equality, it is imperative that an electronic starting system include at least a visual cue for the participants.
In the Swimmers Official's Guidelines Manual (July 2012), hereby incorporated by reference, on page 26 under Modifications for the deaf and hard-of-hearing, the guide states “Deaf and hard of hearing swimmers require a visual starting signal, i.e., a strobe light and/or starter's arm signals. The modification may include the referee reassigning lanes within the swimmer's heat, i.e., exchanging one lane for another, so that the strobe light or starter's arm signal can more clearly be seen by the deaf or hard-of-hearing swimmer.” Given the prerequisite that accommodations for special needs should be as transparent as possible, the interchanging of lanes, visual hand signals and providing a strobe light has been acknowledged as exceedingly intrusive in a hybrid event, and in some cases ineffective. For instance, the preparatory start protocol for any individual competition advises the athlete to first approach the blocks, take their mark and then go, as stated in the Swimmers Official's' Guidelines Manual (p. 8). Furthermore a central strobe light is not necessarily applicable to the referee's announcements of the event as stated in the SOGM on page 9;
It is further noted, in particular, that in conventional swimming events a visual queue must be able to be seen from either a standing position (e.g., on the starting platform), or from an alternate position (e.g., in the water during backstroke events). For example, U.S. Pat. No. 7,193,167 discloses a single start light integrated within a complete starting platform for the purpose of visually alerting an athlete to the start of a race, similar to the aforementioned strobe light as discussed above. The limitation of a solitary start light is that a competitive athlete traditionally relies on a starting sequence including a “step-up” and a “take your mark” indication to psychologically and physiologically prepare for the start of a race.
In accordance with a feature of the disclosed embodiment, providing a sequence of visual indicators at the start of a competitive race significantly “levels the playing field” so that each athlete has an equal reaction opportunity, regardless of any hearing deficiency. Practically speaking, however, given that existing competitive swimming pools already include a starting platform for each lane, it would be cost prohibitive to replace the existing platforms with new platforms.
Therefore it is desirable to provide a signaling system that is modularized and/or self-supporting such that it can be used with various styles of starting platforms or in different athletic event venues (e.g., swimming pools, indoor and outdoor tracks, volleyball and basketball courts, soccer fields, etc.). Moreover, the disclosed embodiments provide a plurality of signaling colors in order to improve the capability for the system to indicate different starting commands. For example, providing at least three signaling elements (e.g., flashing red for ready, solid blue for take your mark, solid green for go) to produce a visual output viewable from a plurality of positions about the start platform.
As further disclosed in alternative embodiments, the signaling system is suitable for use in various configurations, permitting an adaptable configuration that can be used with different starting platforms as well as different venues. For example, each and every starting platform could include a detachable base and illuminating elements electrically connected to a common controller.
Additionally, it is contemplated that a single controller would independently energize the signaling elements in a defined sequence, where a controller (wired or wireless) selectively operates at least one of the signaling elements simultaneously.
Furthermore, each one of the three or more light emitting components could include a unique color, or for color blind athletes a flashing pattern or other nomenclature indicative of the light's significance.
Disclosed in embodiments herein is an athletic competition (e.g., swimming) signaling apparatus, comprising: a translucent housing, said housing including an attachment component coupling the housing to a structure, and at least three independent signaling elements operatively associated with said housing; wherein a first of the at least three signaling elements produces a visual output viewable from a plurality of positions including both a starting position and a staging position, and where the remaining two of the at least three signaling elements are viewable from primarily from the starting position.
Also disclosed herein is an athletic competition signaling apparatus, comprising: a base resting on a surface adjacent the starting position of an athletic competition, said base including a battery compartment therein for holding a battery, and an attachment component extending from said base; a rod, adjustably attached to said attachment component; a translucent light housing, said light housing including a linear tape with a plurality of light emitting diodes of at least two different and individually activated colors sequentially spaced along the linear tape, said linear tape wrapped about a core and inserted within a translucent hollow tube, said tube also including at least one end cap for receiving the core with wrapped tape therein, and a second attachment component coupling the housing to a support structure such as the rod; and control circuitry, operatively connected to said battery and the signaling elements, said circuitry controlling, in response to a plurality of external signals, the on/off state for the signaling elements; wherein a first of the at least three signaling elements produces a visual output viewable from a plurality of positions including both a starting position and a staging position, and where the remaining two of the at least three signaling elements are viewable from primarily from the starting position.
The various embodiments described herein are not intended to limit the disclosure to those embodiments described. On the contrary, the intent is to cover all alternatives, modifications, and equivalents as may be included within the spirit and scope of the various embodiments and equivalents set forth. For a general understanding, reference is made to the drawings. In the drawings, like references have been used throughout to designate identical or similar elements. It is also noted that the drawings may not have been drawn to scale and that certain regions may have been purposely drawn disproportionately so that the features and aspects could be properly depicted.
For a general understanding, reference is made to the drawings. In the drawings, like references have been used throughout to designate identical or equivalent elements. It is also noted that the drawings may not have been drawn to scale and that certain regions may have been purposely drawn disproportionately so that the features and concepts could be properly illustrated.
Referring to
In one embodiment a deck plate 120 may be located in direct proximity of support member 118 to provide connectivity between one or more signaling devices and a central power source and/or controller via a cable or wiring harness 110 to a central connection unit or alternatively a wireless controller to provide a user control device operable by a race official. Alternatively, in the absence of installed deck plates a cable or wiring harness interface may be used between each signaling device. While various forms of interconnection may be used, conventional color-coded banana-type plugs and jacks are illustrated in several embodiments. Such plugs are available from many sources, including Pomona Electronics (e.g., single solderless stackup banana plugs Model 1325, and double plugs with wire guide Model MDP).
In one embodiment deck plate 120 may include connectors for both conventional timing system signals, as well as the power and signal connections for the signaling components disclosed herein. Deck plate 120 is a multi-layer plastic that is engraveable (Rowmark® HW-853 series) and provides connection for the signaling light system that may be mounted on or associated with swimmer platform 100. In one embodiment, for example as depicted in
In other sporting venues the light housing may simply rest on the ground (e.g.,
More specifically, as illustrated in the embodiment of
As noted relative to the embodiments disclosed above, and as further described relative to
The control signals may be received via a cable that is either connected to the banana-type jacks 390 on the top of the base, or via one or more of the plurality of pin-type connectors 392 (e.g., a 5-pin connector from wireless receiver) or 394 (e.g., 8-pin connector from adjacent signaling device or deck plate) on the top portion of the support base. It will be appreciated that the wired connection may be facilitated by a deck plate 120 that includes not only timing signal connections, but also connections for power (12V), speakers and the like.
Referring also to
In operation, the LEDs are independent controllable by color, and the red, blue or green LEDs may be illuminated independently or concurrently. As illustrated in
In the illustrated embodiments, the approximately 18-inch long light tube 210 is about 1-inch in diameter and is frosted so as to appear translucent. In the illustrated embodiment the tube 216 can attach via the supporting structure to the base, or alternatively, the tube may be directly connected to a deck plate or other wired system to provide the appropriate power signals to drive the lights. For example, the signaling device 202 may be configured as a single unit under a block for training, or also to an on-deck cable or wired deck plate 120 that handles as many lanes as needed. As will be appreciated, the signaling device illustrated is intended to run the lights in conjunction with providing other timing connections. And in another embodiment or configuration, a plurality of light tubes and/or signaling systems may be run off a separate 12V control unit that can be operated manually, with a wireless fob, or plunger push button(s) (see
As an alternative to a deck plate or harness, for a wired system, a wireless system can be implemented to control the state of the illuminating elements within the signaling device by the use of either a radio, IR or other frequency, to activate the appropriate lights. Referring to
In a wireless embodiment, the signaling device associated with each swim platform 100 could be connected to and synchronized to a common controller which would then transmit common signals (e.g., battery power) to each of the housings 216 to signal the athletes of the beginning of a race. It is further anticipated that other display devices, for example an alphanumeric display matrix, could be implemented within each swim platform to encode and display commands for the hearing impaired and or for spectators.
With regard to the timing starter signals from system 614, any suitable system providing a low voltage current via suitable switches may be used as an input to circuitry 610, as an input to a microcontroller or equivalent component 612, for controlling illumination of the starting sequence lights. One such system is an Infinity Speed Light system. The starting system switches may be activated manually or in the alternative a timer could be used to automatically sequence the lights (see e.g.,
Also contemplated in one embodiment of the signaling system is a configuration where the receiver is either connected to or located in housing 216 (not separately connected) and is operatively connected to the control circuitry of
The signaling apparatus is well suited for swimming events where, in the past, a sound and arm motion comprised a start signal which has been problematic for athletes in general, but especially inequitable for the hearing impaired. Accordingly a plurality of signaling devices, preferably one attached to each swim platform, are engaged to stage and start a swimming competition by energizing a sequence of at least three lights. In order to discriminate the significance of each signaling operation, a distinct color and/or pattern is assigned to each, as depicted and described relative to the flowchart of
Several of the enclosures or housings described herein may be made from conventional enclosures with modifications to enable the addition of various connections for power, signals and the like. In one embodiment the housings, such as those available from Philmore (e.g., ABS Enclosures No. PB404, PB411 and PB413), are waterproof, meet NEMA 4 specifications and would provide suitable enclosures.
Having referred to the various components of the system, attention is now turned to the typical operation of the system, and a description is included relative to
Next, as detected by step 730, the Take Your Mark (TYM) input initiates the blue LED lights (step 734) used to tell the swimmers take a racing position. These lights are also likely to be controlled MANUALLY by a button plunger or wireless fob in the hand of the starting official who then is “CONTROLLING” the time limit of the lights being on or off.
Lastly, at steps 740 and 744, green lights are used to tell the swimmers to “GO”. These lights may be controlled automatically by the starting official when pushing the start button function on the start system and timing system. In one embodiment, in response to the official pressing or triggering the start of the timing system, the same signal is received by the microprocessor and in response to the signal the green or GO light is turned on. It will be further appreciated that for practice sessions, the fob has an adequate number of buttons so as to be employed to produce signals for all three (TYM, SUP and GO) lights as well as possible additional colors and/or patterns. Once the green light has been illuminated, it is kept in an on state for a defined period “N” (e.g., approx. 3 seconds), and after that delay (748) the system is reset by operation 752 and readied for the next timing sequence and all lights are turned off.
As noted above, the disclosed signaling system may be employed in other athletic venues. As an illustrative example, reference is made to
It will be appreciated that various of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Also that various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims
This application claims priority under 35 U.S.C. § 119(e) from U.S. Provisional Patent Application No. 62/204,483 for a SYSTEM AND METHOD FOR ATHLETIC COMPETITION SIGNALING, filed Aug. 13, 2015 by Nicholas A. Santino, Jr., and from U.S. Provisional Patent Application No. 62/068,892 for a SYSTEM AND METHOD FOR ATHLETIC COMPETITION SIGNALING, filed Oct. 27, 2014 by Nicholas A. Santino, Jr., both US Provisional applications being hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3665452 | MacCreadie | May 1972 | A |
3678496 | Stalp | Jul 1972 | A |
3916214 | Coble, Jr. et al. | Oct 1975 | A |
3944763 | Beierwaltes | Mar 1976 | A |
3955076 | Shaw | May 1976 | A |
D240220 | Meyer | Jun 1976 | S |
D240811 | Beall, Jr. | Aug 1976 | S |
4117283 | Hurzeller et al. | Sep 1978 | A |
4137586 | Davidson | Jan 1979 | A |
4194101 | Berseth | Mar 1980 | A |
4475016 | Berger | Oct 1984 | A |
4780085 | Malone | Oct 1988 | A |
4935733 | Munekata | Jun 1990 | A |
5349549 | Tanaka | Sep 1994 | A |
5920921 | Poole | Jul 1999 | A |
5977493 | Tanaka | Nov 1999 | A |
6181236 | Schneider, Jr. | Jan 2001 | B1 |
6211626 | Lys | Apr 2001 | B1 |
D464699 | Brice | Oct 2002 | S |
6523188 | Kiefer et al. | Feb 2003 | B1 |
7193167 | Brice | Mar 2007 | B1 |
RE42339 | Brice | May 2011 | E |
20030006903 | Naegely | Jan 2003 | A1 |
20030076281 | Morgan | Apr 2003 | A1 |
20040233059 | Smith | Nov 2004 | A1 |
20100165655 | Alcov | Jul 2010 | A1 |
Number | Date | Country |
---|---|---|
02000039518 | Feb 2000 | JP |
Entry |
---|
“SwimSight: Supporting Deaf Users to Participate in Swimming Games”, OzCHI '16, Nov. 29-Dec. 2, 2016, Launceston, TAS, Australia © 2016 ACM (http://dl.acm.org/citation.cfm?doid=3010915.3010969). |
“Quickblox Establish New Starting Block Technology,” Swimming World Magazine, http://www.swimmingworldmagazine.com/news/quikblox-establish-new-starting-block-technology/; Sports Publications, Inc. ; Apr. 10, 2000, (4 pages). |
D. Matchett, “Universal Design Starting System presentation”, Oct. 25, 2011. |
M. Titus et al., “USDS 2012 Universal Starting System 19APR”, Apr. 20, 2012. |
Number | Date | Country | |
---|---|---|---|
20160114238 A1 | Apr 2016 | US |
Number | Date | Country | |
---|---|---|---|
62068892 | Oct 2014 | US | |
62204483 | Aug 2015 | US |